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Note on numerical study of the beam energy spread in NDCX-I 
J.-L. Vay, P.A. Seidl, A. Friedman 

(Dated: 19 January 2011) 

The kinetic energy spread (defined here as the standard deviation of the beam particle energies) sets the 
ultimate theoretical limit on the longitudinal compression that can be attained on NDCX-I and NDCX-II. 
Experimental measurements will inevitably include the real influences on the longitudinal phase space of the 
beam due to injector and accelerator field imperfections1. These induced energy variations may be the real 
limit to the longitudinal compression in an accelerator. We report on a numerical investigation of the energy 
spread evolution in NDCX-I; these studies do not include all the real imperfections, but rather are intended to 
confirm that there are no other intrinsic mechanisms (translaminar effects, transverse-longitudinal anisotropy 
instability, etc.) for significant broadening of the energy distribution. 

cc 

(c) 
Beam Current 

o.o? 

001 

0.00 
0 1 

(b) 
Marx waveform 

^ 200 

Q) 
O) 
S 
O 
> 

100 

i 

1 

-- I 

1 

1 

) 
1 -

t -

M -
0.04 % 

>> 

2 4 

Time (us) 

(d) 

Z(m) 
4 0 

Time (microsec. 

FIG. 1. From a Warp simulation of NDCX-I (snapshots taken at t=4/xs), (a) snapshot of the beam (black) and lattice (green), 
(b) Marx waveform, (c) snapshot of beam current, (d) kinetic energy history by of beam macroparticles hitting the end plate 
at 2 = 3 m. 

We have performed Warp simulations that use a realistic Marx voltage waveform which was derived from exper­
imental measurements (averaged over several shots), a fully-featured model of the accelerating and focusing lattice, 
and new diagnostics for computing the local energy spread (and temperature) that properly account for linear corre­
lations that arise from the discrete binning along each physical dimension (these capabilities reproduce and extend 
those of the earlier HIF code BPIC2 ; see Appendix I for more details). The new diagnostics allow for the calculation 
of multi-dimensional maps of energy spread and temperature in 2-D axisymmetric or 3-D Cartesian space at selected 
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FIG. 2. From a Warp simulation of NDCX-I , (a) 2-D axisymmetric map of energy spread (in LoglO(eV)); (b) scatter plot of 
kinetic energy versus radius and longitudinal position (0.28 m< z < 3 m) colored according to local energy spread. 
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FIG. 3. NDCX-I beam energy history from (left) Warp simulation; (right) NDCX-I measurement using a spectrometer and a 
streak camera. 

times. The simulated beam-line was terminated at z = 3 m by a conducting plate, so as to approximately reproduce 
the experimental conditions at the entrance of the spectrometer that was used for mapping the longitudinal phase 
space. 

Snapshots of the beam projection and current, as well as the Marx waveform and history of beam kinetic energy 
collected at the end plate, are shown in Fig. 1. A two-dimensional axisymmetric map of energy spread from simulations 
of a typical NDCX-I configuration is shown in Fig. 2 (a). The energy spread starts at 0.1 eV at the source and rapidly 
rises to a few eV, then fluctuates between a fraction of an eV and tens of eV, ending near the exit in a range of a few 
eV at the outer edge of the beam to a few tens of eV near the axis. The higher value on-axis is associated with greater 
numerical noise there, due to the axisymmetric geometry of the calculation, resulting in poorer simulation-particle 
statistics at small radius. A scatter plot of the macroparticles kinetic energy (KE) versus radius (R) and longitudinal 
position (0.28 m < z < 3 m) colored by local energy spread is shown in Fig. 2 (b). As expected, there is a correlation 
of the kinetic energy with radius that is clearly visible at z = 2.8 m and vanishes at the metal plate at z = 3 m. 
More snapshots from simulations varying the time step, grid resolution and number of macroparticles are given in 
Appendix II. 

The macro-particles were collected at the exit plate and their kinetic energy history is plotted in Fig. 3 (left) and 
contrasted to an experimental measurement using a streak camera shown in Fig. 3 (right) (taken from [1]). For some 
types of measurements, averaging over several pulses to improve signal-to-noise will contribute an additional spread 
that may not be present on any single beam pulse [1]. The upper bound for the energy spread is in the range of a 
few 100 eV for the experiment while in the range of a few eV for the reported Warp simulations. The Marx voltage 
exhibits variations in the range of up to several hundreds of volts, playing a significant role in the experimentally 
measured energy spread, which may account for the difference between the experimental and the simulated bounds. 
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APPENDIX A - CALCULATION OF THE TEMPERATURE AND ENERGY SPREAD IN WARP 

Assuming a distribution of particles f(X, V) of positions X = {x,y,z} and velocities V = {vx,vy,vz}, the tem-
peiatuie kTu along the direction u = x, y 01 z and the kinetic eneigy spiead 5K at X$ = {#0.3/0, ZQ} are defined 
as being dnectly related respectively to the vanance of the velocity components and the standard deviation of the 
kinetic energy as 

. „ , 1 T =^2 1 / Z ^ / ( * o , V t i ) ( v u - t ^ ) 2 dvu M u = - m ( u u - uu) = - m fO0 — (1) 2 l J-vofiXoiVu) dvu 

5K=si(K-K)2 = \m< J~f{X0,V)(K-K)2 dK 
2 \ r / t ^ n d/f 

wheie m, v = Jv* + v% + v% and K = ~mv2 are lespectively the mass, velocity and kinetic eneigy oi the particles, 
and the mean values of the velocity components and kinetic eneigy aie given by 

.r/(x0,K)/c <** 

The above definitions apply to infinitesimal volumes and continuous density functions / and can be interpreted as 
the mathematical limit of disci etized equivalent definitions foi a finite size sample of N paiticles and finite volumes 
5Q when N —> oo and SQ —> 0 At these limits, conelations between velocity (or kinetic energy) with positron vanish 
and do not need to appeal explicitly in the calculation of temperatuie oi energy spiead In piactrce, however, both 
N and 5Q are finite, and conelations need eventually to be accounted for 

As an example, we considei a snapshot from a simulation of NDCX-I The longitudinal phase space z-vz is plotted 
in Fig 4-(a) for 0 < z < lm, while a small sample for 5 cm< z < 5 1 cm and 6 4 mm< i < 7 7 mm is shown m 
Fig 4-(b), and with averages removed m Fig 4-(c) A lineai correlation is cleaily visible, which would give rise to 
an oveiestrmate of the local temperatuie if not removed The sample with linear correlatron lemoved rs shown in Fig 
4-(d) 

Removing the linear correlations necessitates the knowledge of the con elation coefficients for each spatial dnection, 
which aie computed as follows 

Let us assume that at Xo = {xo,ya,Zo}, the kinetic eneigy K\ = K — K has a linear correlation with the 
sample positions x, y and z, such that K\ = K2 + a\Xi + b±yi + c\Z\ where X\ = x - x, y\ = y - y, z\ = z — z, 
x\K2 = y\K2 = Z\K2 = 0, and a\, b\ and c\ are scalars giving the "slopes" of the coupling in each spatial direction 
Fiom the definitions given above, one can wnte 

x\K2 = x\ (/Ci - aixi - 6r?/r - c^zi) = 0 (5) 

yj<2 = y\ [Ki - aiTi - bipi - CiZi) = 0 (6) 

zil<2 = z\ {Ki - a ix i - biyi - cizx) = 0 (7) 

such that ai, b\ and c\ are the solutions of the lineai system 

%\a\ + Xiyjbi + x\Z\Ci - xiK\ = 0 
yix\a>i + y\bi + yTziCi - y\I<i = 0 (8) 
zjxjai + z^yibi + z\c\ - Z]_l<i = 0 

The system is solved explicitly m Warp The same pioceduie is used to leinove lineai coirelations between vXi vy 
and vz for the temperature calculations 

Although not present (or discernable) in the 1 mm sample that was shown, highei order correlatrons can be 
present, as shown m Frg 5 for a 4 mm long sample, and should ideally be lemoved In the present veision of the 
Waip diagnostic, only the lineai correlatron is lemoved, as a compromise between accuiacy and speed In the futuie, 
the subroutine could be modified to lecuisively remove spatial coirelations up-to an aibitiary ordei, as desenbed 
below 
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FIG. 4. Longitudinal z — vz phase-space projection from a simulation of NDCX-I for (a) 0 < z < 1 m, (b) a small sample 
between 6.4 mm< r < 7.7 mm and 5 cm< z < 5.1 cm, (c) same sample as (b) with averages removed along z and v*, (d) same 
sample as (c) with linear correlation between w2 and z removed. 

More generally, one can write the kinetic energy distribution as the weighted sum of powers of X\, y^ and z\ up to 
order n 

K = Kn+i + Y^ {aiA + biV\ + ctz\ + dt) (9) 
t = 0 

while imposing xnKn+\ = ynKn+i = znKn+\ = 0 and Kn = 0. The distribution Kn+\ can be computed recursively 
using 

Kn+i = Kn- anx'l - b„y^ - cnz[l ~ dn (10) 

and solving for 

£] ft-n i x^ y^ bn -\- Xj z^ cn -\- Xj dn — x^ l\ji 
» + Wbn + yMCn + Wdn = WE„ 
z?x?an + z?tfbn + zjy» + z?dn = z?Kn 

£?«n + !/"&« + ^Cn + dn = 0 

We note that for n odd, then .T" = y" = z" = 0, giving dn = 0 and the system to solve simplifies to 

xYlan + xjtfbn + xJz^Cn = X^Kn 

yMan + ylnbn + yj^cn = yJKn 
2n„ , n 

(11) 

(12) 
z[lx?an + z?y?bn + zfncn = z?Kn 
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FIG. 5. Longitudinal z—vz phase-space projection from a simulation of NDCX-I for (a) a small sample between 6.4 mm< ?■ < 7.7 
mm and 5 cm< z < 5.4 cm, (b) same sample as (a) with averages removed along z and vz, (c) same sample as (b) with linear 
correlation between vz and z removed (d) same sample as (c) with quadratic correlation between vz and z removed. 

The recursive procedure that was just described has been applied successfully to the sample case shown in Fig. 
5, for removing the quadratic correlation between vz and z that is visible in Fig. 5-(c), giving the uncorrected 
distribution plotted in Fig. 5-(d). Comparing Fig. 4-(d) arrd 5-(d) shows that removing higher order correlations 
allows for larger samples, reducing the size of the diagnostic arrays and improving the statistic per cell. This procedure 
will be implemented in Warp in the near future, adding the option of either setting a maximum level of recursion 
level (or equivalently highest order of correlation to be removed) or setting a tolerance for stopping the recursion 
orr the difference between the temperature (or energy spread) value at two consecutive recursion levels. Sorting 
the macroparticle data by temperature (or energy spread) grid cells beforehand would allow for each cell to reach 
independent levels of recursion. 

Finally, although this was not discussed here, the emitter region presents a near singularity which calls for finer 
sampling of the diagnostic. Thus, accurate and detailed calculation of energy spread and temperature near the source 
would benefit from adaptive mesh refinement (AMR) of the diagnostic grid near those singular regions. The AMR 
tools developed for field calculations may thus be of benefit for those diagnostics. 

APPENDIX B - WARP SIMULATIONS OF NDCX-I VARYING NUMERICAL PARAMETERS 

Snapshots of energy spread, longitudinal temperature, kinetic energy, and kinetic energy minus the slice average, 
are plotted from Warp simulations of NDCX-I for various numerical parameters: 

• Fig. 6: 6x = Sz = 2 mm, 6t = 1.25 ns, Afp « 1.8 million macroparticles, 
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• Fig. 7: Sx = 5z — 2 mm, St = 0.625 ns, Npf& 1.8 million macroparticles, 

• Fig. 8: 5x = 0.4 mm, Sz = 1 mm, <5£ = 1.25 ns, Np ?s 1.8 million macroparticles, 

• Fig. 9: 6x = 8z = 2 mm, St = 1.25 ns, Np ~ 18 million macroparticles, 

• Fig. 10: 8x = 0.4 mm, Sz = 1 mm, <5i = 1.25 ns, Np « 18 million macroparticles. 

From the limited set of numerical parameters that were involved, the following indications emerge: the energy 
spread and longitudinal temperature are not sensitive to the time step but are very sensitive to the resolution and 
the number of macroparticles. This suggests that numerical noise is contributing to unphysical heating and that the 
simulation with the highest resolution and number of macroparticles may not yet be converged. The usage of standard 
techniques for noise reduction (e.g. higher order particle shapes, filtering of charge density) should be considered for 
future simulations, with the caveat that care must be exercised near conductors (this may need some study and 
algorithm development). We finally note that despite the fact that convergence was not demonstrated on the highest 
resolution run, the upper bound that was obtained for energy spread is well below the one that has been obtained 
experimentally, and is thus deemed adequate for the present purpose. 
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FIG. fi. From Warp simulation of NDCX-I with Sx = Sz = 2 mm, St = 1.25 ns, Np w 1.8 million macroparticles: snapshots 
of (top-left) beam kinetic energy spread vs (r,z); (top-middle) kinetic energy vs z; (top-right) kinetic energy vz (r,z), colored 
by energy spread for 2.8 m< z < 3 m; (bottom-left) longitudinal temperature vs (r,z); (bottom-middle) kinetic energy minus 
averaged slice energy for 0 < z < 1 m and a thin annulus 0.76 cm< r < 0.78 cm, colored by energy spread; (bottom-right) 
same as (bottom-middle) but for 2.8 m< z < 3 m and 1.7 cm< r < 1.72 cm. 

•j .E. Coleman, Ph.D. thesis, Berkeley, USA, 2008 
2J.-L. Vay, Ph.D. thesis, Orsay, France, 1996 
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FIG. 7. From Warp simulation of NDCX-I with Sx = Sz — 2 mm, St = 0.625 ns, Np « 1.8 million macroparticles: snapshots 
of (top-left) beam kinetic energy spread vs (r,z); (top-middle) kinetic energy vs z; (top-right) kinetic energy vz (r,z), colored 
by energy spread for 2.8 m< z < 3 m; (bottom-left) longitudinal temperature vs (r,z); (bottom-middle) kinetic energy minus 
averaged slice energy for 0 < z < 1 m and a thin annulus 0.76 cm< r < 0.78 cm, colored by energy spread; (bottom-right) 
same as (bottom-middle) but for 2.8 m< z < 3 m and 1.7 cm< r < 1.72 cm. 
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FIG. 8. From Warp simulation of NDCX-I with Sx = 0.4 mm, Sz = 1 mm, St = 1.25 ns, Np « 1.8 million macroparticles: 
snapshots of (top-left) beam kinetic energy spread vs (r,z); (top-middle) kinetic energy vs z; (top-right) kinetic energy vz 
(?',z), colored by energy spread for 2.8 m< z < 3 m; (bottom-left) longitudinal temperature vs (r,z); (bottom-middle) kinetic 
energy minus averaged slice energy for 0 < z < 1 m and a thin annulus 0.76 cm< r < 0.78 cm, colored by energy spread; 
(bottom-right) same as (bottom-middle) but for 2.8 m< z < 3 m and 1.7 cm< r < 1.72 cm. 



FIG. 9. From Warp simulation of NDCX-I with Sx = 6z = 2 mm, St = 1.25 ns, Np « 18 million macroparticles: snapshots 
of (top-left) beam kinetic energy spread vs (r,z); (top-middle) kinetic energy vs z; (top-right) kinetic energy vz {r,z), colored 
by energy spread for 2.8 m< z < 3 m; (bottom-left) longitudinal temperature vs (r,z); (bottom-middle) kinetic energy minus 
averaged slice energy for 0 < z < 1 m and a thin annulus 0.76 cm< r < 0.78 cm, colored by energy spread; (bottom-right) 
same as (bottom-middle) but for 2.8 m< z < 3 m and 1.7 cm< r < 1.72 cm. 
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FIG. 10. From Warp simulation of NDCX-I with Sx = 0.4 mm, r5z = 1 mm, St = 1.25 ns, Np (a 18 million macroparticles: 
snapshots of (top-left) beam kinetic energy spread vs (r,z); (top-middle) kinetic energy vs z; (top-right) kinetic energy vz 
(r,z), colored by energy spread for 2.8 m< z < 3 m; (bottom-left) longitudinal temperature vs (r,z); (bottom-middle) kinetic 
energy minus averaged slice energy for 0 < z < 1 m and a thin annulus 0.76 cm< r < 0.78 cm, colored by energy spread; 
(bottom-right) same as (bottom-middle) but for 2.8 m< z < 3 m and 1.7 cm< r < 1.72 cm. 


