
SANDIA REPORT 
SAND2007-7928 
Unlimited Release 
Printed December 2007 
 
 
 

Analytic Solutions for Seismic Travel 
Time and Ray Path Geometry Through  
Simple Velocity Models 
 
 
Sanford Ballard  
 
 
 
 
 
Prepared by 
Sandia National Laboratories 
Albuquerque, New Mexico  87185 and Livermore, California  94550 

 
Sandia is a multiprogram laboratory operated by Sandia Corporation, 
a Lockheed Martin Company, for the United States Department of Energy’s 
National Nuclear Security Administration under Contract DE-AC04-94AL85000. 

 
Approved for public release; further dissemination unlimited. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 
 
 
 

Issued by Sandia National Laboratories, operated for the United States Department of Energy 
by Sandia Corporation. 
 
NOTICE:  This report was prepared as an account of work sponsored by an agency of the 
United States Government.  Neither the United States Government, nor any agency thereof, 
nor any of their employees, nor any of their contractors, subcontractors, or their employees, 
make any warranty, express or implied, or assume any legal liability or responsibility for the 
accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represent that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government, any agency thereof, or any of 
their contractors or subcontractors.  The views and opinions expressed herein do not 
necessarily state or reflect those of the United States Government, any agency thereof, or any 
of their contractors. 
 
Printed in the United States of America. This report has been reproduced directly from the best 
available copy. 
 
Available to DOE and DOE contractors from 
 U.S. Department of Energy 
 Office of Scientific and Technical Information 
 P.O. Box 62 
 Oak Ridge, TN  37831 
 
 Telephone: (865) 576-8401 
 Facsimile: (865) 576-5728 
 E-Mail: reports@adonis.osti.gov 
 Online ordering: http://www.osti.gov/bridge 
 
Available to the public from 
 U.S. Department of Commerce 
 National Technical Information Service 
 5285 Port Royal Rd. 
 Springfield, VA  22161 
 
 Telephone: (800) 553-6847 
 Facsimile: (703) 605-6900 
 E-Mail: orders@ntis.fedworld.gov 
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online 
 
 

 
 

 



 3

SAND2007-7928 
Unlimited Release 

Printed December 2007 
 
 

Analytic Solutions for Seismic Travel Time and 
Ray Path Geometry Through Simple Velocity 

Models 
 
 

Sanford Ballard 
Next Generation Monitoring Systems 

Sandia National Laboratories 
P.O. Box 5800 

Albuquerque, New Mexico  87185-0401 
 
 
 
 
 

Abstract 
 
Analytic solutions are described for the geometry and travel time of infinite frequency rays 
through radially symmetric 1D Earth models characterized by an inner sphere where the velocity 
distribution is given by the function 2)( BrArV  , optionally surrounded by some number of 
spherical shells of constant velocity.  The mathematical basis of the calculations is described, 
sample calculations are presented, and results are compared to the Taup Toolkit of Crotwell et al. 
(1999).   
 
These solutions are useful for evaluating the fidelity of sophisticated 3D travel time calculators 
and in situations where performance requirements preclude the use of more computationally 
intensive calculators. 
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INTRODUCTION 
 
The geometry of ray paths through realistic Earth models can be extremely complex due to the 
vertical and lateral heterogeneity of the velocity distribution within the models.  Calculation of 
high fidelity ray paths and travel times through these models generally involves sophisticated 
algorithms that require significant assumptions and approximations.  To test such algorithms it is 
desirable to have available analytic solutions for the geometry and travel time of rays through 
simpler velocity distributions against which the more complex algorithms can be compared.  
Also, in situations where computational performance requirements prohibit implementation of 
full 3D algorithms, it may be necessary to accept the accuracy limitations of analytic solutions in 
order to compute solutions that satisfy those requirements. 
 
In this paper, solutions are described for the geometry and travel time of infinite frequency rays 
through radially symmetric 1D Earth models characterized by an inner sphere where the velocity 
distribution is described by the function 2)( BrArV  , optionally surrounded by some number 
of spherical shells of constant velocity.  If the surface of the inner sphere were to correspond 
with the Moho, then the computed rays correspond to PmP and Pn.  The mathematical basis of 
the calculations is described, sample calculations are presented, and results are compared to the 
Taup Toolkit of Crotwell et al. (1999). 
 
It should be noted that most of the solutions presented are only quasi-analytic.  Exact, closed 
form equations are derived but computation of solutions to specific problems generally require 
application of numerical integration or root finding techniques, which, while approximations, can 
be calculated to very high accuracy.  Tolerances are set in the numerical algorithms such that 
computed travel time accuracies are better than 1 microsecond. 
 
 

METHOD 
 
Four scenarios are considered.  First, we consider cases where both the source and receiver are 
located at the surface of the inner sphere, with no surrounding constant velocity shells.  Second, 
the source and receiver are located at the surface of the outer-most of N constant velocity shells 
surrounding the inner sphere.  The third and fourth scenarios we consider are similar to the 
second, only the source is located below the surface of the inner sphere, or within one of the 
constant velocity shells.  The manner in which reflections are handled is described last. 
 
 
Inner Sphere Only 
 
Consider a source, S, and receiver, P0, located at the surface of a sphere of radius R0 in which the 
velocity distribution is given by 2)( BrArV  , where r is radial distance from the center of the 
sphere (Figure 1a).  Given the angular distance from the source to the receiver, Δ, we wish to 
find the radius of the ray path as a function of angular distance from the receiver and the travel 
time from the source to the receiver, T. 
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Figure 1 – Geometry of ray path for scenarios where both the source and receiver reside at the 
surface of the model. a) inner sphere only.  b) one outer shell. 
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From the information provided, the following are true: 
 
Given the velocity at the surface of the sphere, V0, and the velocity gradient with respect to 
radius at the surface of the sphere, drdVg /0  , then  

 

0

0
2R

gB   (1) 

 
and  
 

2
00 BRVA   (2) 

 
The ray path from the source to the receiver, r, is described by the arc of a circle with radius 

1)2( pB ,  (Bullen and Bolt, 1985), where p is the ray parameter 
 

00 /sin ViRp   (3) 

 
and i is the incidence angle of the ray immediately below the surface of the sphere. 
 
Applying the Law of Sines (Zwillinger, 2003) in triangle ECP0, 
 

0
0

sin
sin2

R
Bp

   (4) 

 
where δ0 is the angular distance from the turning point of the ray to the surface of the sphere. 
 
Since the angles of a triangle sum to π,  
 

 
20 i  (5) 

 
Combining these equations and eliminating θ, we find that  
 

   1

00
2
0

1 tan/21tan
  VBRi  (6) 

 
Applying the Law of Cosines (Zwillinger, 2003) in triangle ECP0, we can deduce that c, the 
vertical distance from the center of the Earth to the center of the circular arc that defines the ray 
path is 
 

   2
1

22 B
ABpc    (7) 

 
Applying the Law of Cosines in triangle E-C-r( δ ), we find that the radius of a point on the ray as 
function of angular distance from the turning point of the ray is  
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  2
1

222 sin)2(cos)(  cBpcr    (8) 
 
where δ is angular distance from the turning point of the ray. 
 
The travel time from the turning point of the ray to the surface of the sphere, T0 is given by 
 


0

0

0



V

ds
T  (9)  

 
where ds is a small increment of the ray path. Given that  
 

i

rd
ds

sin




 (10) 
 
we can use the definition of the ray parameter, Equation 3, to find that  
 

 


0

0
22

2

0 )(



d
BrAp

r
T  (11) 

 
Equation 8 is substituted into Equation 11 and the integral is solved numerically.  
 
Since the source and receiver are both located at the surface of the sphere the problem is 
symmetric about the turning point of the ray so 
 

2/0   PS  (12) 

 
where δS and δP are the angular distances from the turning point of the ray to the source and 
receiver, respectively.  The total travel time from the source to the receiver is 
 

02TTTT SP   (13) 

 
 
Constant Velocity Shells 
 
A more complicated situation arises if we wish to also consider one or more constant velocity 
shells which surround the inner sphere described above (Figure 1b).  We are given N shells, each 
extending outward from radius Rj-1 to radius Rj, and each characterized by a constant velocity Vj.  
The receiver is now located at PN, and Pj; j=0, N-1 represent points where the ray pierces 
subsurface interfaces.  The source, S, like the receiver, is located at the surface of the Nth shell.  
Note that in Figure 1b, only one constant velocity layer is shown (N=1). 
 
In this case, the solutions for r( δ) and T as functions of source-receiver separation, Δ, are 
difficult but solutions in terms of ray parameter, p, are readily obtained.    If Δ is known but p is 
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not, then an appropriate root finding algorithm can be implemented that systematically varies an 
initial estimate of p until a solution is produced that matches the known Δ to some acceptable 
tolerance.  Routine zbrent from Numerical Recipes in C++ (Press et al., 2002) works well for this 
purpose. 
 
Given ray parameter, p, equations 3.66 and 3.68 in Lay and Wallace (1995) are integrated across 
each shell to obtain the horizontal offset of the ray and the travel time as it traverses the shell.  
The total horizontal offset across all N constant velocity shells is given by 
 
 

 



 

N

j

jjjjShells RpVRpV

1

1
11 )/(cos)/(cos  (14) 

 
and the total one-way travel time across the shells is given by  
 

 


 
N

j

jjjjShells pVRpVRT

1

222
1

222 //  (15) 

 
Given the ray parameter, p, we can apply Equation 7 to obtain a value for c, the distance from the 
center of the model to the center of the circular arc that describes the ray path.  Then applying the 
Law of Sines to triangle ECP0 (Figure 1b), we find that  
 













 
 

Bpc

RpV

2

)/(1
sin

2
001

0  (16) 

 
Since the source is located at the same radius as the receiver, PS   , the total distance from 

receiver to the source, Δ, is given by 
 

)(2 0  Shells  (17) 

 
and the total travel time, T, by 
 

)(2 0TTT Shells   (18) 

 
To find the radius of the ray at some distance from the turning point of the ray, r( δ), we use 
Equation 8 when the ray is in the inner sphere ( 0  ).  When the ray is in the jth outer shell, 

jj  1 , we need to interpolate the radius of the ray at the appropriate distance.  Consider 

triangle E-r(δ )-Pj-1 illustrated in Figure 2.  E is the center of the model and Pj-1 is the ray pierce 
point on interface j-1.   
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Figure 2 – Illustration of triangle E-r(δ )-Pj-1, used to find the horizontal offset, δ- δ j-1, of point 

r( δ) relative to point Pj-1. 
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Because the angles of a triangle sum to π, 
 

)( 11   jjii   (20) 

 
and from the Law of Sines 
 

1
11

1

)sin(

sin
)( 






 j

jjj

j R
i

i
r


  (21) 
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Subsurface Sources 
 
The solutions presented thus far have all assumed that the source and receiver are both located at 
the surface of the model.  For subsurface sources these solutions need to be modified since now 

PS    (Figure 3).  The approach is to first estimate p and then find ShellsP   0  using 

Equations 14 and 16.  Given PS   , calculate RS, the radius of the source.  If the source is 

in the inner sphere ( 0 S ), then RS is found using Equation 8 with S  .  If the source is in 

the jth shell surrounding the inner sphere ( jSj  1 ), then RS is found using Equation 21 

with S  .  A root-finding algorithm such as zbrent (Press et al., 2002) is then implemented to 

find the value p that minimizes the difference between the calculated and known values of source 
radius.   
 
After the optimal ray parameter, p, has been identified by the root-finder, the calculation of the 
total travel time depends on the source location.  If the source is located in the inner sphere then 
the total travel time is given by  
 

 


S

d
BrAp

r
TTT Shells




0

22

2

0 )(
 (22) 

 
 
The integral in Equation 22 is added to the first two terms if the ray leaves the source in a 
downgoing direction ( P ), and subtracted if the ray leaves the source in an upgoing direction 

( P ).   
 
If the source is located in the jth shell surrounding in the inner sphere ( jSj  1 ), then the 

total travel time is given by 
 

 
222

1
222

1

1

222
1

222

0

//

//

2

pVRpVR

pVRpVR

TTT

jjjS

j

k

kkkk

Shells













  (23) 

 
where the first term represents the travel time from the surface of the inner sphere up to the 
receiver, the second term represents the travel time through the inner sphere, the summation 
represents the travel time through all the complete shells beneath the source and the last two 
terms represent the travel time from the source down to the bottom of the shell in which it 
resides. 
 
The radius of the ray as a function of distance from the turning point, r( δ ), is still given by 
Equation 8 for 0   or by Equation 21 for 0  . 
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Figure 3 - Geometry of ray path for scenarios where the source resides below the surface of the 

inner sphere, a) ray leaves the source in the downgoing direction, b) in upgoing direction. 
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Reflections 
 
In situations where the source resides in one of the constant velocity shells (Figure 1b), and the 
source-receiver separation is less than some threshold value, Δmin, it will be impossible for 
energy from the source to be refracted into the inner sphere and still arrive at the receiver.  This 
occurs when the ray parameter p exceeds a critical value pmax given by  
 

00max /VRp   (24) 

 
To evaluate Δmin we set maxpp   and find the horizontal offset from the turning point of the ray 

to the source using 
 

 

)/(cos)/(cos

)/(cos)/(cos

1
11

1

1

1
11














kkSk

k

j

jjjjSoffset

RpVRpV

RpVRpV
 (25) 

 
where k is the index of the shell in which the source resides. 
 
Note that if the source resides at the surface of the model then ShellsSoffset   .  Then 

 

SoffsetShells  min  (27) 

 
There are several options on how to proceed when min .  The first is to simply not return any 
solutions, thereby indicating that refraction into the inner sphere is not possible.  Another option 
would be to compute and return solutions for rays that bottom in one of the outer shells.  The 
option adopted here is to return solutions for the ray that reflects off the surface of the inner 
sphere since the travel times and slowness for this ray are continuous with the travel times for the 
refracted ray at min .  This is accomplished by using a root-finding technique to find the 

value of p such that  SoffsetShells  .  Once the optimal value of p has been identified, the 

radius of the ray as a function of distance, r( δ), can be found using Equation 21 and the total 
travel time computed using Equation 23 with 00 T . 
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SAMPLE CALCULATIONS 
 
In the following sections, sample calculations are presented for each of 4 different situations.  
Travel times are believed to be accurate to the precision specified. 
 
 
Single Layer Model with Sources at the Surface 
 
Layer  Radius    Depth    Velocity 
        (km)      (km)    (km/sec) 
 
  0  6371.0000   0.0000    8.0000 
 
Gradient : 0.003000 sec-1 
A : 17.556500000000 km/sec 
B : 2.354418458641e-07 (sec km)-1 
 
Source depth = 0.0000 km 
 
Distance    Travel        Ray            Max 
             Time      Parameter        Depth 
 (deg)       (sec)    (sec/radian)       (km) 
 
  1.0     13.897340    796.026907      0.821960 
  2.0     27.782544    794.985151      3.285365 
  3.0     41.643564    793.257243      7.382818 
  4.0     55.468525    790.855534     13.102097 
  5.0     69.245808    787.796968     20.426305 
  6.0     82.964128    784.102748     29.334077 
  7.0     96.612604    779.797935     39.799840 
  8.0    110.180824    774.910982     51.794109 
  9.0    123.658895    769.473231     65.283821 
 10.0    137.037498    763.518385     80.232697 
 11.0    150.307913    757.081968     96.601619 
 12.0    163.462056    750.200794    114.349019 
 13.0    176.492492    742.912450    133.431271 
 14.0    189.392444    735.254818    153.803077 
 15.0    202.155798    727.265626    175.417842 
 16.0    214.777091    718.982057    198.228033 
 17.0    227.251505    710.440396    222.185518 
 18.0    239.574842    701.675737    247.241883 
 19.0    251.743507    692.721740    273.348718 
 20.0    263.754478    683.610437    300.457879 
 21.0    275.605275    674.372089    328.521723 
 22.0    287.293931    665.035086    357.493310 
 23.0    298.818959    655.625883    387.326583 
 24.0    310.179314    646.168976    417.976513 
 25.0    321.374365    636.686907    449.399232 
 26.0    332.403854    627.200292    481.552130 
 27.0    343.267868    617.727872    514.393934 
 28.0    353.966806    608.286580    547.884776 
 29.0    364.501345    598.891622    581.986226 
 30.0    374.872416    589.556563    616.661327 
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Figure 4 – Ray geometry for a single layer model with sources at the surface. 
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Figure 5 – Travel time curve for a single layer model with sources at the surface. 
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Two Layer Model with Sources at the Surface 
 
Layer  Radius    Depth    Velocity 
        (km)      (km)    (km/sec) 
 
  1  6371.0000   0.0000    6.0000 
  0  6271.0000 100.0000    8.0000 
 
Gradient : 0.003000 sec-1 
A : 17.406500000000 km/sec 
B : 2.391963004306e-07 (sec km)-1 
 
Source depth = 0.0000 km 
 
Distance    Travel        Ray            Max 
             Time      Parameter        Depth 
 (deg)       (sec)    (sec/radian)       (km) 
 
  0.2     33.535557    115.516367    100.000000 
  0.4     34.135041    226.974964    100.000000 
  0.6     35.111440    330.993828    100.000000 
  0.8     36.434462    425.298025    100.000000 
  1.0     38.067981    508.807981    100.000000 
  1.2     39.973945    581.454282    100.000000 
  1.4     42.115375    643.866502    100.000000 
  1.6     44.458254    697.064142    100.000000 
  1.8     46.972441    742.216818    100.000000 
  2.0     49.631902    780.488131    100.000000 
  2.2     52.367558    783.864056    100.026122 
  2.4     55.103702    783.826363    100.116097 
  2.6     57.839667    783.761742    100.270367 
  2.8     60.575360    783.670149    100.489063 
  3.0     63.310686    783.551547    100.772307 
  4.0     76.978508    782.552685    103.160535 
  5.0     90.622993    780.877737    107.176295 
  6.0    104.232375    778.531341    112.825272 
  7.0    117.795014    775.523451    120.107012 
  8.0    131.299490    771.869312    129.014568 
  9.0    144.734694    767.589284    139.534324 
 10.0    158.089915    762.708507    151.646009 
 11.0    171.354919    757.256422    165.322923 
 12.0    184.520019    751.266184    180.532326 
 13.0    197.576135    744.773979    197.235998 
 14.0    210.514839    737.818305    215.390898 
 15.0    223.328389    730.439231    234.949910 
 16.0    236.009752    722.677684    255.862607 
 17.0    248.552613    714.574780    278.076025 
 18.0    260.951369    706.171223    301.535399 
 19.0    273.201121    697.506786    326.184841 
 20.0    285.297655    688.619878    351.967959 
 21.0    297.237409    679.547196    378.828392 
 22.0    309.017448    670.323465    406.710272 
 23.0    320.635423    660.981252    435.558610 
 24.0    332.089534    651.550849    465.319609 
 25.0    343.378489    642.060217    495.940912 
 26.0    354.501463    632.534977    527.371797 
 27.0    365.458059    622.998445    559.563315 
 28.0    376.248268    613.471692    592.468391 
 29.0    386.872428    603.973637    626.041883 
 30.0    397.331191    594.521152    660.240617 
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Figure 6 – Ray geometry for a two layer model with sources at the surface. 
 

 
Figure 7 – Travel time curve for a two layer model with sources at the surface. 
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Three Layer Model with Sources in Outer Shell 
 
Layer  Radius    Depth    Velocity 
        (km)      (km)    (km/sec) 
 
  2  6371.0000   0.0000    4.0000 
  1  6321.0000  50.0000    6.0000 
  0  6271.0000 100.0000    8.0000 
 
Gradient : 0.003000 sec-1 
A : 17.406500000000 km/sec 
B : 2.391963004306e-07 (sec km)-1 
 
Source depth = 20.0000 km 
 
Distance    Travel        Ray            Max 
             Time      Parameter        Depth 
 (deg)       (sec)    (sec/radian)       (km) 
 
  0.2     36.929399    149.911327    100.000000 
  0.4     37.704825    292.637105    100.000000 
  0.6     38.957254    422.433074    100.000000 
  0.8     40.634792    535.831091    100.000000 
  1.0     42.677571    631.680334    100.000000 
  1.2     45.025052    710.634263    100.000000 
  1.4     47.621108    774.454730    100.000000 
  1.6     50.354586    783.865723    100.022143 
  1.8     53.090739    783.829974    100.107477 
  2.0     55.826721    783.767343    100.256995 
  3.0     69.500764    783.050470    101.969743 
  4.0     83.156428    781.661613    105.295193 
  5.0     96.782021    779.605933    110.234782 
  6.0    110.365987    776.893556    116.784528 
  7.0    123.896988    773.539483    124.934865 
  8.0    137.363989    769.563373    134.670603 
  9.0    150.756338    764.989215    145.971008 
 10.0    164.063833    759.844892    158.810012 
 11.0    177.276792    754.161663    173.156547 
 12.0    190.386104    747.973581    188.974961 
 13.0    203.383269    741.316875    206.225528 
 14.0    216.260437    734.229324    224.864997 
 15.0    229.010426    726.749639    244.847180 
 16.0    241.626731    718.916885    266.123532 
 17.0    254.103532    710.769945    288.643732 
 18.0    266.435678    702.347051    312.356223 
 19.0    278.618680    693.685375    337.208720 
 20.0    290.648684    684.820693    363.148660 
 21.0    302.522449    675.787122    390.123616 
 22.0    314.237311    666.616911    418.081642 
 23.0    325.791151    657.340303    446.971578 
 24.0    337.182361    647.985447    476.743299 
 25.0    348.409806    638.578351    507.347923 
 26.0    359.472786    629.142890    538.737970 
 27.0    370.370998    619.700826    570.867494 
 28.0    381.104502    610.271872    603.692173 
 29.0    391.673685    600.873771    637.169371 
 30.0    402.079226    591.522384    671.258183 
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Figure 8 – Ray geometry for a three layer model with sources in outermost shell. 
 

 
Figure 9 – Travel time curve for a three layer model with sources in outermost shell. 
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Three Layer Model with Sources in Inner Sphere 
 
Layer  Radius    Depth    Velocity 
        (km)      (km)    (km/sec) 
 
  2  6371.0000   0.0000    4.0000 
  1  6321.0000  50.0000    6.0000 
  0  6271.0000 100.0000    8.0000 
 
Gradient : 0.003000 sec-1 
A : 17.406500000000 km/sec 
B : 2.391963004306e-07 (sec km)-1 
 
Source depth = 120.0000 km 
 
Distance    Travel        Ray            Max 
             Time      Parameter        Depth 
 (deg)       (sec)    (sec/radian)       (km) 
  0.2     23.686604    205.648370    120.000000 
  0.4     24.732280    388.041411    120.000000 
  0.6     26.351100    532.524570    120.000000 
  0.8     28.400852    635.022158    120.000000 
  1.0     30.739788    699.376437    120.000000 
  1.2     33.249881    734.987898    120.000000 
  1.4     35.850970    753.286853    120.000000 
  1.6     38.498738    762.782742    120.000000 
  1.8     41.171305    767.995938    120.000000 
  2.0     43.857873    771.036303    120.000000 
  3.0     57.368117    775.469654    120.000000 
  4.0     70.901627    775.006363    121.363397 
  5.0     84.412703    773.074309    126.069717 
  6.0     97.881871    770.248938    132.986204 
  7.0    111.295290    766.703685    141.722768 
  8.0    124.641155    762.517691    152.122041 
  9.0    137.908749    757.741797    164.098952 
 10.0    151.088143    752.417447    177.594244 
 11.0    164.170105    746.583060    192.558219 
 12.0    177.146060    740.276311    208.944361 
 13.0    190.008094    733.534864    226.706689 
 14.0    202.748948    726.396475    245.798697 
 15.0    215.362024    718.898826    266.173008 
 16.0    227.841378    711.079236    287.781382 
 17.0    240.181713    702.974362    310.574887 
 18.0    252.378361    694.619888    334.504147 
 19.0    264.427269    686.050264    359.519622 
 20.0    276.324973    677.298478    385.571882 
 21.0    288.068569    668.395867    412.611869 
 22.0    299.655685    659.371989    440.591136 
 23.0    311.084449    650.254522    469.462056 
 24.0    322.353456    641.069213    499.178003 
 25.0    333.461731    631.839858    529.693503 
 26.0    344.408699    622.588311    560.964358 
 27.0    355.194150    613.334520    592.947748 
 28.0    365.818205    604.096581    625.602298 
 29.0    376.281286    594.890814    658.888138 
 30.0    386.584084    585.731837    692.766934 
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Figure 10 – Ray geometry for a three layer model with sources in the inner sphere. 

 

 
Figure 11 – Travel time curve for a three layer model with sources in the inner sphere. 
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COMPARISON WITH TAUP 
 
To verify that computed analytic solutions are correct, results were compared with travel times 
calculated using the Taup Toolkit software package (Crotwell et al., 1999).  A Taup Toolkit 
model was constructed with a 100 km thick crust consisting of two 50 km thick layers, the upper 
and lower crustal layers having velocities of 6 and 7 km/sec, respectively.  The top of the mantle 
had a velocity of 8 km/sec and a velocity gradient of 0.003 sec-1.  The Taup Toolkit model file 
had velocities defined by the function 2)( BrArV   every 50 km from the Moho at 100 km 
depth to the outer core boundary at approximately 2900 km.  Travel time curves were 
constructed using the Taup_Curve utility for source depths of 0, 25 and 150 km.   
 
The differences between the Taup Toolkit travel times and those computed using the algorithm 
described in this document were less than 2.5 milliseconds for the distance range from 0º to 80 º.   
Taup Toolkit documentation states that the expected accuracy of Taup Toolkit travel times is 
approximately 10 milliseconds.   
 
 

SUMMARY 
 
Analytic solutions for the ray geometry and travel time for seismic rays through some simple 
velocity models have been derived and sample calculations presented.  Results obtained using 
these solutions are compared to results obtained using the Taup Toolkit software package 
(Crotwell et al., 1999). These solutions are useful for evaluating the fidelity of sophisticated 3D 
travel time calculators and in situations where performance requirements preclude the use of 
more computationally intensive calculators. 
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