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Abstract

The LCLS undulator �eld integrals must be very small so that the beam trajectory slope
and o¤set stay within tolerance. In order to make accurate measurements of the small �eld
integrals, a long coil will be used. This note describes the design of the coil measurement
system.

1 Introduction1

The primary tuning of the LCLS undulators will be done by sampling the magnetic �eld at many
points and numerically calculating quantities of interest. The sampling will be done with Hall
probes. For some measurements, however, the errors associated with this technique are too large.
An example is the calculation of the �eld integrals. A small DC o¤set from the Hall probe, when
integrated over the undulator length, can exceed the required �eld integral tolerances. A better
technique to measure �eld integrals involves the use of a long coil. As the coil is moved through
the �eld, the induced voltage is integrated to give the �ux change. The �eld integrals can be
calculated from the measured �ux changes. Small o¤sets are easily dealt with by measuring in both
the forward and backward directions. In this note, the coil measurement system under construction
is described.
The maximum values for the �eld integrals have been speci�ed2 . The �rst integral of both Bx

and By must be less than 40� 10�6 Tm. The second integral of both Bx and By must be less than
50 � 10�6 Tm2. The exact de�nitions of these integrals and a discussion of their importance will
be given below.
The �eld integrals should be measured better than the required maximum values for the undu-

lators. This is very di¢ cult, if not impossible, to do even with the best Hall probes. Consider a
Sentron Hall probe as used at ANL and many other laboratories for precision undulator measure-
ments. The speci�ed DC o¤set drift of the Sentron probe is 0:1 G, or 10�5 T (average output
noise in the bandwidth 0:01 Hz to 100 Hz3). Over the 3:4 m length of the undulator, a 10�5 T
o¤set would contribute 3:4� 10�5 Tm to the �rst �eld integral, which is roughly the speci�ed limit.
Because the required Hall probe o¤set is at the limit of what can be achieved, a second method of
measuring the �eld integrals is desired.
Field integral measurements are fairly easy to do with a long integrating coil, and o¤sets can

be easily dealt with by measuring as the coil moves both forward and back, then subtracting and
dividing by 2. An additional bene�t is that the equipment is somewhat mobile, unlike the granite
bench required for Hall probe measurements, allowing measurements to also be done in the tunnel.
Coil measurements similar to those required for the �eld integrals are done routinely in the magnetic

1Work supported in part by the DOE Contract DE-AC02-76SF00515. This work was performed in support of the
LCLS project at SLAC.

2H. D. Nuhn et al, "LCLS Undulator Requirements", LCLS Speci�cation # 1.4-001 rev 2.
3Sentron model 3M12-2-2-0.2T data sheet.
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measurements lab, but typically with larger signals. Extra care must be taken in the present system
design to make these low level measurements.
We begin the note with a discussion of the �eld integrals and their importance. We then discuss

how to measure the �eld integrals with a coil. The measurement system is described. Estimates
are made of the signal levels and noise. The required number of turns on the coil is determined. A
second coil system for use in the tunnel is discussed.

2 Discussion Of The Field Integrals

The �eld integrals determine the overall e¤ect of the undulator on the electron beam. Let x be the
horizontal position of an electron, y the vertical position, and z the position along the undulator.
The equations of motion for the electron can be expressed as follows4

x00 = � q


mvz
By (1)

y00 =
q


mvz
Bx (2)

The prime indicates a derivative with respect to z. In these equations, q is the electron charge, 
 is
the Lorentz factor, m is the electron rest mass, vz is the velocity along the undulator, and Bx and
By are the horizontal and vertical magnetic �eld components, respectively.
The horizontal and vertical slopes of the trajectories are found by integrating these equations

along z. At the initial point z = z0, we take the initial slopes x0(z0) and y0(z0) to be zero. The
slopes for arbitrary z are given as follows.

x0(z) =

Z z

z0

x00(z1) dz1 = �
q


mvz

Z z

z0

By(z1) dz1 (3)

y0(z) =

Z z

z0

y00(z1) dz1 =
q


mvz

Z z

z0

Bx(z1) dz1 (4)

Note that the slope depends on the �rst integral of the magnetic �eld. The exit slope from the
undulator is found by integrating through the undulator. If the region of interest, which includes
the undulator, has length L, the exit slope is given by

x0exit =

Z z0+L

z0

x00(z1) dz1 = �
q


mvz

Z z0+L

z0

By(z1) dz1 (5)

y0exit =

Z z0+L

z0

y00(z1) dz1 =
q


mvz

Z z0+L

z0

Bx(z1) dz1 (6)

These equations explain why the �rst �eld integrals should be small, so that the electrons receive a
minimal transverse kick as they go through the undulator.
To �nd the horizontal and vertical positions of the electrons, the slopes are integrated again.

The initial positions x(z0) and y(z0) are taken to be zero.

x(z) =

Z z

z0

x0(z2) dz2 = �
q


mvz

Z z

z0

Z z2

z0

By(z1) dz1 dz2 (7)

y(z) =

Z z

z0

y0(z2) dz2 =
q


mvz

Z z

z0

Z z2

z0

Bx(z1) dz1 dz2 (8)

4Z. Wolf, "Introduction To LCLS Undulator Tuning", LCLS-TN-04-7, June 2004.

2



The positions at the exit of the undulator are given by

xexit =

Z z0+L

z0

x0(z2) dz2 = �
q


mvz

Z z0+L

z0

Z z2

z0

By(z1) dz1 dz2 (9)

yexit =

Z z0+L

z0

y0(z2) dz2 =
q


mvz

Z z0+L

z0

Z z2

z0

Bx(z1) dz1 dz2 (10)

Note that in order for the electrons to receive a small transverse displacement in the undulator, the
second integral of the magnetic �eld must be small.
We now explicitly de�ne the �eld integrals as follows

I1x �
Z z0+L

z0

Bx(z1) dz1 (11)

I1y �
Z z0+L

z0

By(z1) dz1 (12)

I2x �
Z z0+L

z0

Z z2

z0

Bx(z1) dz1 dz2 (13)

I2y �
Z z0+L

z0

Z z2

z0

By(z1) dz1 dz2 (14)

Using these de�nitions, we have

x0exit = � q


mvz
I1y (15)

y0exit =
q


mvz
I1x (16)

xexit = � q


mvz
I2y (17)

yexit =
q


mvz
I2x (18)

At this point, it is interesting to put numerical values into these expressions. Approximating
vz by c and using the LCLS value of 
 = 266935 , the factor

q

mc in these expressions has a value of

q

mc = 2:20� 10

�2 1
Tm . With the limits given in the introduction (for both the x and y directions)

of

I1x;y < 40� 10�6 Tm (19)

I2x;y < 50� 10�6 Tm2 (20)

we �nd

x0exit;max = y0exit;max = 8:8� 10�7 (21)

xexit;max = yexit;max = 1:1� 10�6 m (22)

These are obviously very tight requirements.
The form of the second �eld integral is suitable for sampling the �eld with a Hall probe and

numerically integrating. It is not clear, however, how to use a coil to determine the second �eld
integral expressed in this form. In order to have a more useful expression, we integrate by parts.
Temporarily suppressing the x or y subscript, we have

I2 =

Z z0+L

z0

Z z2

z0

B(z1) dz1 dz2 (23)

5LCLS parameter database http://www-ssrl.slac.stanford.edu/htbin/rdbweb/LCLS_params_DB_public.
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Let u(z2) =
R z2
z0
B(z1) dz1, dv = dz2. Then du = B(z2)dz2, v = z2. Integrating by parts, we �nd

I2 = z2

Z z2

z0

B(z1) dz1

����z0+L
z0

�
Z z0+L

z0

z2B(z2)dz2 (24)

Putting the limits into the �rst term gives

I2 = (z0 + L)

Z z0+L

z0

B(z1) dz1 �
Z z0+L

z0

z2B(z2)dz2 (25)

Adding the �eld components to the notation, we can write the equations for I2x;y as

I2x =

Z z0+L

z0

(z0 + L� z2)Bx(z2)dz2 (26)

I2y =

Z z0+L

z0

(z0 + L� z2)By(z2)dz2 (27)

In this form, it is clear that the second �eld integrals have a weighting factor equal to the distance
to the end point of the integration. This linear weighting factor allows easy interpretation for doing
measurements with a coil, as shown below.

3 Coil Measurement Technique

The �eld integrals can be measured using a long coil. Consider �rst a wire translated parallel
to itself horizontally through a magnetic �eld as shown in �gure 1. If the return path is �xed,

Figure 1: A wire moving through a magnetic �eld generates a voltage. The voltage is integrated to
give the �ux change.

the magnitude of the voltage induced in the circuit is the time rate of change of the magnetic �ux
V = d�=dt. The voltage is sent to an integrator giving output V T �

R
V dt =

R
d� = ��. The

integrator output gives the �ux change in the circuit. If the wire is moved a distance �x, the �ux
change is given by �� = �x

R
Bydz. The �eld integral can be measured by dividing the integrator

output by the distance the wire is moved.

I1y =

Z
Bydz =

V T

�x
(28)

For a coil of N turns, the expression becomes

I1y =

Z
Bydz =

V T

N�x
(29)
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Thus, the �rst �eld integral is measured by moving a bundle of wires parallel to itself through the
magnetic �eld. Horizontal motion gives I1y, and vertical motion gives I1x.
Now suppose the exit end of the wire is held �xed and the entrance end is moved by a distance

�x. This situation is illustrated in �gure 2. In this case the integrator output, which is equal to

Figure 2: The undulator entrance end of the wire is moved and the exit end is held stationary to
measure the second �eld integral.

the �ux change, is given by

V T = �� =

Z z0+L

z0

�x
z0 + L� z

L
Bydz (30)

Thus, the second �eld integral is given by

I2y =

Z z0+L

z0

(z0 + L� z)Bydz =
V T L

�x
(31)

For an N turn coil, this expression becomes

I2y =

Z z0+L

z0

(z0 + L� z)Bydz =
V T L

N�x
(32)

This equation illustrates that the second �eld integral can be easily obtained from the integrator
output when one end of the wire is moved. Moving the wire horizontally gives I2y. Moving the
wire vertically gives I2x.
A schematic of the coil is shown in �gure 3. The coil will have a tall vertical part to give it

strength. A thin part will �t into the gap and hold the bundle of wires. The return path of
the wires will be on a �xed support which does not move. The coil will be moved vertically and
horizontally to make the measurement. The coil will be parked in its home position outside the
undulator when not in use. The motion will be done by a set of xy stages moving together at both
ends of the undulator. A schematic of the overall system is shown in �gure 4.

4 System Performance

Using the formulas from the previous section, we can calculate the expected signals from a coil
measurement system and compare them to the integrator noise level. This will tell us how many
turns the coil must have in order for the signal to be above the noise.
If the �rst �eld integral in the undulator is to be below the speci�ed limit of 40� 10�6 Tm, then

the measurement system must be capable of accurately measuring �eld integrals smaller than this,
on the order of I1;meas = 4� 10�6 Tm. Similarly, if the second �eld integrals in the undulator are
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Figure 3: Schematic of the measurement coil and its return path. The coil will be parked in its
home position when not in use.

to be below 50 � 10�6 Tm2, then the measurement system must be able to measure second �eld
integrals on the order of I2;meas = 5� 10�6 Tm2. This is summarized below.

I1x;y;meas = 4� 10�6 Tm (33)

I2x;y;meas = 5� 10�6 Tm2 (34)

We can calculate the signal levels corresponding to the �eld integral values we must measure.
The LCLS undulator is 3:4 m long. For these calculations we take L = 3:4 m, although the actual
coil will be slightly longer. The undulator aperture is only 6:8 mm high. We assume that we can
build a coil approximately 4 mm high. With appropriate clearance, we take the maximum distance
that we can move the coil vertically to be �y = 1 mm. Although the coil can be moved farther in
x, we use this 1 mm distance to make a worst case estimate. Using these values, we arrive at the
following required measurement capabilities. From the �rst �eld integral, we get�

V T

N

�
I1

= I1x;y;meas�y =
�
4� 10�6Tm

� �
1� 10�3m

�
= 4� 10�9Tm2 (35)

From the second �eld integral, we get�
V T

N

�
I2

= I2x;y;meas
�y

L
=
�
5� 10�6Tm2

� 1� 10�3m
3:4m

= 1:5� 10�9Tm2 (36)

Note that 1 Tm2 = 1 VS. Both the �rst and second �eld integral measurements lead to similar
requirements on the integrated voltage measurement. We must be able to measure

V T =
�
1:5� 10�9V s

�
N (37)

where N is the number of turns in the coil, as noted above.
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Figure 4: Coil measurement system schematic.

If the integrator is limited to signals larger than V Tmin, then we require

N >
V Tmin

1:5� 10�9V s (38)

We will use a model PDI5025 digital integrator from Metrolab for these measurements. Its mea-
surement ranges and noise performance are shown in �gure 5. Suppose the coil measurement takes
one second. If we use the maximum gain of 1000, the noise level gives V Tmin = 2 � 10�7 Vs, as
indicated by the circle in the �gure. Using this value for V Tmin in the formula for the minimum
number of turns on the coil gives N > 133. Thus we need a measurement coil with at least 133
turns.

5 Tunnel Measurements

It has been pointed out that �eld integral measurements in the tunnel would be useful6 . The
horizontal component of the �eld is not expected to change between the measurement lab and the
tunnel because it is caused by internal imperfections in the undulator. External horizontal �elds are
shielded by the magnet poles. The vertical component of the �eld may change, however, since it is
in�uenced by the Earth�s �eld and stray magnetic �elds. Measuring the vertical �elds is relatively
easy because the coil can be moved a large distance horizontally. Suppose we move the coil 1 cm
horizontally. The signal is 10 times larger than our previous estimate in which the coil could only

6 Isaac Vasserman, private communication.
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Figure 5: Plot from the PDI5052 manual showing the measurement noise levels and resolution for
di¤erent gain settings.

be moved 1 mm. Alternatively, we can use 10 times fewer turns on the coil. We plan to build a
separate system for tunnel measurements which will only move the coil horizontally and will have a
coil with roughly 13 turns.
The tunnel measurement system will allow us to zero the �rst and second �eld integrals near the

�nal location of the undulator. A shim on the undulator entrance will �rst be adjusted to zero I2y.
Then a shim on the undulator exit will be adjusted to zero I1y. These are intended to be small
corrections, after the undulator has been tuned, to account for background �eld di¤erences between
the measurement lab and the tunnel.

6 Conclusion

Two systems will be built for �eld integral measurements. The primary system will be used in
the magnetic measurement facility. It will measure the �eld integrals of both Bx and By with an
accuracy of roughly �I1;xy = 4 � 10�6 Tm and �I2 = 5 � 10�6 Tm2, both limited by integrator
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noise. These measurement accuracies are 10 times better than the required �eld integral limits on
the undulators. The measurement of Bx is made di¢ cult because only small (� 1 mm) motions of
the coil can be made due to the small size of the undulator gap. This is compensated for by having
many turns on the coil (N > 133). Larger motions are possible for the �eld integrals of By, and
correspondingly larger signals will be measured.
A second system will be used for �eld integral measurements in the tunnel. Only measurements

of the vertical �eld are required. The system will only have horizontal motion. A separate coil
with around 13 turns will be built. The coil will be moved roughly 1 cm for these measurements.
The accuracy of these measurements will be the same as for the measurements in the lab. Final
zeroing of the �rst and second �eld integrals of the vertical �eld will be done by applying shims in
the tunnel.

Acknowledgements
Many thanks to Isaac Vasserman, Paul Emma, Heinz-Dieter Nuhn, and Yurii Levashov for valu-

able assistance with this note.

9


