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ABSTRACT

Leptin down-regulates orexigenic and up-regulates anorexigenic neuropeptide gene expres-
sion in hypothalamus. Surgical removal of adipose tissue leads to decrease in circulating
leptin concentrations in rats. In the present study, we tested: (a) regulation of neuropeptide
gene expression in hypothalamus, (b) food intake, and (c) standard growth rate after removal
of adipose tissue in rats. Partial lipectomy caused an approximately 10-fold reduction of
subcutaneous, retroperitoneal and epididymal adipose tissue weight (at the end of experi-
ments adipose tissue weight was 1.5+ 0.9 in lipectomy and 15+3.9¢g in control rats;
statistically significant). Compared to control rats, the animals subjected to lipectomy
presented increased food intake, standard growth rate, and decreased serum leptin con-
centrations (2.6 £0.8 vs. 3.7 + 1.2 ng/mL in the controls, statistically significant). These
changes were associated with approximately twofold increase in neuropeptide Y, threefold
increase in agouti-related peptide (orexigenic neuropeptides) and about 50% decrease in pro-
opiomelanocortin and cocaine-amphetamine-regulated transcript peptide (anorexigenic
neuropeptides) mRNA levels in the hypothalamus. These results suggest that partial
lipectomy, leading to a decrease in circulating leptin concentrations, may exert an effect
on hypothalamic orexigenic and anorexigenic neuropeptide gene expression, and conse-

quently modulate food intake and standard growth rate in rats.
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Introduction

Liposuction, a cosmetic procedure of removing fat from various
anatomical regions of human body, is frequently performed in
overweight women (Mordon and Plot, 2009). However, the
consequences of this procedure to human health are still poorly
understood and the reported results are inconclusive (Danilla
et al,, 2013; Klein et al., 2004; Martinez-Abundis et al., 2007,
Giugliano et al., 2004). Also the data from animal experimental
models used to study the effect of removal (Gabriely et al., 2002;
Shi et al., 2007) or deprivation (Moitra et al., 1998) of white
adipose tissue on insulin resistance and circulating metabolite
concentrations are inconclusive. Biomedicine, which applies
biological principles to clinical practice, including experimental
neuroscience, laboratory diagnostic, molecular and cell biology
(Berger, 2011), may help to resolve some issues related to the
effect of lipectomy on human health.

Adipose tissue is the largest endocrine organ, synthesizing
and secreting many adipokines (including leptin), free fatty
acids and steroid hormones that play an important role in
control of feeding, energy homeostasis, carbohydrate and lipid
metabolism, neuroendocrine function and many other pro-
cesses (Filer, 2004; Swierczynski, 2006; Swierczynski and
Sledzinski, 2012). Thus, removal of adipose tissue may likely
lead to a decrease in the serum/tissue concentrations of the
above-mentioned substances, and consequently, may influ-
ence many important functions and processes, including
hypothalamic expression of orexigenic and anorexigenic
neuropeptide genes. Hypothalamus is a major center regulat-
ing feeding behaviors and body weight (Bray, 1992). Leptin, a
protein secreted mostly by adipocytes, is one of the most
important signal molecules, regulating energy intake and
expenditure. After reaching the hypothalamus, leptin causes a
decrease in food intake and an increase in energy expenditure
(Swierczynski, 2006; Zhang et al., 1994; Friedman and Hallas,
1998). Leptin down-regulates orexigenic and up-regulates
anorexigenic neuropeptide gene expression (Korner et al.,
2001; Takahashi and Cone, 2005). Both our previous studies
(Nogalska et al., 2009) and the experiments conducted by other
authors (Gabriely et al., 2002) showed that surgical removal of
adipose tissue is reflected by a decrease in the amount of
circulating leptin in rats. As the assessment of changes in
orexigenic and anorexigenic neuropeptide gene expression in
human hypothalamus after adipose tissue removal is not
possible, we examined this phenomenon in an animal model.
The aim of this study was to evaluate whether partial surgical
removal of white adipose tissue (WAT) in rats (which may
simulate liposuction in humans) has an impact on hypotha-
lamic orexigenic and anorexigenic neuropeptide gene expres-
sion and, consequently, on food intake, body mass gain and
standard growth rate.

Materials and methods
Animals and white adipose tissue removal

Three-month-old male Wistar rats were obtained from
the breeding colony at Tri-City Central Animal Laboratory

—Research and Service Centre, Medical University of Gdansk,
Gdansk (Poland). The rats were kept under controlled
temperature and humidity (60%) with a 12 h day/12 h night
cycle throughout the experiment, with lights on at 7:00 a.m.
All the procedures involving the animals and their care were
approved by the Institutional Ethics Committee. The rats
were kept individually in stainless-steel standard wire-mesh
cages with free access to tap water. The rats were fed
ad libitum, with the commercial chow provided by Labofeed
Chow Manufacturer Morawski (Poland). The rats were
randomly divided into two groups. The first group, referred
to as the lipectomy rats (n=6), underwent resection of
both epididymal and retroperitoneal WAT. The second
group, referred to as the control animals (n = 10), underwent
anesthesia and incision of the skin and muscles, but
without removal of the epididymal and retroperitoneal
WAT (sham surgery). The animals from the two groups
were anesthetized with an intraperitoneal injection of
ketamine (60 mg/kg body weight) and xylazine (6 mg/kg
body weight). After 4 weeks, the lipectomy rats were
anesthetized again (as described above), and subcutaneous
WAT was removed. At the same time, control animals
underwent anesthesia and incision of the skin without
removal of subcutaneous WAT (sham surgery). The amount
of WAT removed from the lipectomy rats was 7.7 £0.6¢g
(subcutaneous =3.8 £ 0.3 g, epididymal=2.0+04g, and
retroperitoneal = 1.9 + 0.4 g). Lipectomy was performed in
two steps to reduce perioperative mortality. We decided to
remove epididymal, retroperitoneal and subcutaneous WAT
as these fat depots are easy to locate and manipulate in live,
anesthetized rats. Surgeries were performed carefully in
order to avoid bleeding.

Food intake was monitored every other day, between
08:15a.m. and 09:00 a.m. Food intake was calculated by
subtracting the residual food from the total food. After 90
days from the first surgery, all rats were anesthetized and
killed by decapitation (between 08:00a.m. and 10:00 a.m.).
Serum samples were collected. Fragments of abdominal
(epididymal and retroperitoneal adipose tissue) and subcuta-
neous WAT from the control animals, as well as the remnant
pieces of WAT from the lipectomy animals, were removed and
weighted. Mesenteric WAT, as well as the hypothalamic
portion of the brain (as a whole), were also collected from all
the animals. Immediately after obtaining, the tissues were
rapidly frozen in liquid nitrogen for subsequent analyses of
gene expression. The material was stored at —80°C until
analysis.

Determination of a standard growth rate

Standard growth rate was determined as described previously
(Dreon et al., 2010; Burrells et al., 1999). Briefly, body weight
was determined daily for the control and lipectomy rats. The
standard growth rate (SGR) was calculated according to the
formula:

[ (W 1t
SGR{(Wt> —13 x100

where Wy, is the initial body weight, W, is the final body weight,
and t is the time in days.
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RNA isolation

Total cellular RNA was isolated from the frozen hypothalamic
portion of the brain and mesenteric WAT by a guanidinium
isothiocyanate-phenol/chloroform method (Chomczynski
and Sacchi, 1987). The RNA concentration was determined
from the absorbance at 260 nm; all the samples showed 260/
280 nm absorbance ratio of about 2.0.

cDNA synthesis

First strand cDNA was synthesized from 1 pg of total RNA
(RevertAid™ First Strand cDNA Synthesis Kit -~ Fermentas,
International Inc., Canada). Prior to the reverse transcription,
RNA sample was treated with RNase-free DNase I (Fermentas,
International Inc., Canada).

Determination of mRNA levels by real-time RT-PCR

Real-time RT-PCR, using Chromo4 Real-Time Detection
System (Bio-Rad Laboratories Inc., USA), quantified NPY,
AgRP, POMC, CART, leptin and B-actin mRNA levels. The
primer sequences used in this study are presented in
Supplementary Table 1. Real-time PCR amplification was
performed in a 20 pl volume using Maxima SYBR Green qPCR
Master Mix (Fermentas, International Inc., Canada). Each
reaction included 0.3 uM of each primer. The samples were
incubated at 95 °C for 10 min for an initial denaturation and
polymerase activation, followed by 40 PCR cycles of amplifi-
cation (95 °C for 30 s, 53 °C for 30 s, and 72 °C for 60 s). Control
reactions, with omission of the RT step or with no template
cDNA added, were performed during each experiment. All
the samples were runin duplicate. B-Actin mRNA was used as
aninternal standard to compensate for any differences in
the amount of RNA/cDNA, and/or the efficiency of the reverse
transcription. Relative quantities of the transcripts were
calculated using the 2724°T formula (Livak and Schmittgen,
2001). The results are shown as relative expression ratios of a
target gene to the B-actin gene. The amplification of specific
transcripts was further confirmed by obtaining the melting
curve profiles.

Supplementary Table S1related to this article can be found,
in the online version, at doi:10.1016/j.jab.2015.01.003.

Serum leptin analysis

Serum leptin was assessed using a commercially available
ELISA Kit (Mouse and Rat Leptin ELISA kit provided by
BioVendor - Laboratorni medicina a.s., Czech Republic). The
sensitivity of the assay was 0.50 pg/mL.

Statistical analysis

Statistical analysis was conducted using a MS Excel 2010
spreadsheet (Microsoft). All the data were expressed as mean
values for the control and lipectomy group + SD. To verify the
significance of differences in the analyzed parameters of the
control and lipectomy rats Student's t-test was performed at
the significance level 2o = 0.05.

Results

The weight of subcutaneous (inguinal), retroperitoneal and
epididymal WAT determined at the end of the experiment, as
well as the cumulative weight of the abovementioned fat
depots in the control and lipectomy rats, are presented in
Fig. 1. When compared to the control rats, lipectomy resulted
in a complete reduction of the subcutaneous and approxi-
mately 80% reduction of the retroperitoneal and epididymal
adipose tissue weight. Consequently, the cumulative weight of
subcutaneous, retroperitoneal and epididymal adipose tissue
was reduced by about 90% in the lipectomy rats. At the
beginning of the experiment, mean body weight of the control
and lipectomy rats was essentially similar (Fig. 2A). After the
first surgery, mean body weight of the lipectomy rats
decreased by approximately 13 g (Fig. 2A). Subsequently, the
body weight of both the control and lipectomy rats increased
constantly, although the lipectomy rats gained body weight
faster than the controls (Fig. 2A). Essentially similar changes
were found after the second surgery (Fig. 2A). At the end of the
experiment, final body weights of the control and lipectomy
rats were 403 + 21 g and 407 + 17 g respectively. During the
first 70 days of the experiment, the lipectomy rats displayed a
significantly greater standard growth rate than the controls
(Fig. 2B). This phenomenon was probably at least in part due to
greater food ingestion by the lipectomy rats, especially up to 40
days after the first surgery (Fig. 3). This intergroup difference in
standard growth rate was no longer observed on subsequent
days of the experiment, when the standard growth rates of the
lipectomy and control rats were essentially similar (Fig. 2B).
Three months after the surgery, serum leptin concentrations
of the lipectomy rats were significantly lower than in the
controls (Fig. 4A). Also the expression of leptin in mesenteric
WAT of the lipectomy rats tended to be lower than in the
controls, but this difference did not prove to be statistically

20.0 1
18.0 4 OControl
oLi
16.0 Lipectomy
T 14.0
g
T 12.0
B
S 100
73
]
® 8.0 A
7]
o
o
5 6.0 1
<
4.0 A
*
2.0 A * *
0.0
SC fat RP fat ED fat Total fat

Fig. 1 - The weight of subcutaneous (SC), retroperitoneal (RP)
and epididymal (ED) white adipose tissue and total weight
of those three fat depots in the control and lipectomy rats.
Subcutaneous adipose tissue was completely removed in
the lipectomy rats. *Statistically significant.
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Fig. 2 - Average body weight of the lipectomy (gray squares)
and control rats (white triangles) (A) and average growth
rates of the lipectomy rats (gray squares) as compared to
the controls (white triangles), calculated per each five-day
period (B). The data are presented as mean + SD. Symbols
as in Fig. 1.

significant (Fig. 4B). Both hypothalamic NPY (Fig. 5A) and AgRP
(Fig. 5B) mRNA levels in the lipectomy rats were significantly
higher than in the controls, possibly due to the decrease in the
serum leptin concentration. In contrast, the mRNA levels of
hypothalamic anorexigenic neuropeptides, POMC (a precursor
of a-melanocyte stimulating hormone - «-MSH) (Fig. 6A), and
CART (Fig. 6B) were reduced in the lipectomy animals when
compared to the controls. Since NPY and AgRP enhance, and
a-MSH (which acts on melanocortin receptors - MC4R), and
CART reduce food intake, one would expect an increase in this
parameter in the lipectomy rats.

Discussion

The principal finding of this study is that the removal of
adipose tissue has an impact on food intake, standard growth
rate, serum leptin concentration and hypothalamic neuro-
peptide gene expression of rats. The decrease in serum leptin
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Fig. 3 - Effect of lipectomy on food consumption. Average
chow consumption is shown in grams consumed per 24 h
per 100 g animal body weight. The bars represent mean
daily food consumption in periods of the experiment
indicated below. Symbols as in Fig. 1.

concentration and leptin mRNA level in subcutaneous WAT
after removal of visceral fat was previously reported in Zucker
Diabetic Fatty rats (Gabriely et al., 2002). This suggests that the
decrease in serum leptin levels may result from a reduction of
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Fig. 4 - Serum leptin level of the lipectomy rats as compared
to the controls (A); the relative transcript level of leptin in
mesenteric WAT (B). Symbols as in Fig. 1.
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Fig. 5 — The relative transcript abundance of hypothalamic
NPY (A) and AgRP (B) in the lipectomy and control rats.
Symbols as in Fig. 1.

fat mass and, at least in part, from reduced synthesis of
leptin. In this context, the hereby presented findings (Fig. 4A
and B) are consistent with the previously reported results
(Gabriely et al., 2002). The reduction of fat content in our rats
resulted in the decrease in circulating leptin concentration,
determined 3 months after the first and 2 months after the
second surgery. This time point was chosen to avoid
potential confounding effects of stress and inflammatory
response to surgery (and associated anesthesia) on serum
leptin concentrations, hypothalamic neuropeptide gene
expression and food intake.

An increase in hypothalamic NPY and AgRP mRNA levels,
as well as a concominant decrease in POMC and CART mRNA
levels, was reflected by slightly greater food intake. To the
best of our knowledge, this is the first report on the impact of
adipose tissue removal on the hypothalamic expression of
orexigenic and anorexigenic neuropeptide genes. The post-
lipectomy increase in food intake can be explained by the
fact, that NPY and AgRP are the most potent known
orexigenic neuropeptides, whereas POMC and CART are
considered the most potent anorexigenic neuropeptides.
However, contrary to our findings, several previous studies
showed no effect of lipectomy on food intake in mice with
genetic alterations of leptin and its receptor (Harris et al,,
2002), Siberian hamster (Shi and Bartness, 2005) and rats
(Ling et al., 2014; Bueno et al.,, 2011, 2005). One possible
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Fig. 6 — The relative transcript abundance of hypothalamic
POMC (A) and CART (B) in the lipectomy and control rats.
Symbols as in Fig. 1.

explanation for these discrepancies is a different effect of
lipectomy on circulating leptin concentration. We found a
significant post-lipectomy decrease in circulating leptin
concentration, whereas other authors showed that lipecto-
my exerts no effect on this parameter (Ling et al., 2014; Bueno
et al,, 2011). Too small amount of removed WAT may be one
reason behind the lack of post-lipectomy changes in
circulating leptin concentration and, consequently, food
intake. In this study, the total amount of removed WAT
exceeded 2.5% of total body weight, as compared to 1.5-2.5%
in previous experiments (Ling et al., 2014; Bueno et al., 2011).
Moitra et al. (1998) showed that transgenic mice (A-ZIP/F-1
mice), which had no WAT and presented with lower
circulating leptin concentrations, consumed almost twice
as much food as their littermate controls. This supports our
hypothesis that the amount of removed fat plays a key role in
the control of food consumption, possibly via regulation of
the hypothalamic neuropeptide gene expression. The role of
leptin and its receptor in the control of food intake is also
supported by the results of a study analyzing the effects of
lipectomy or fat transplantation in leptin-receptor deficient
mice (db/db mice) (Erion et al.,, 2014). Although lipectomy
resulted in a decrease (similar to our experiment) and fat
transplantation to an increase in the circulating leptin
concentration, no changes in food intake were observed in
this study (Erion et al., 2014). Probably, the expressions of
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orexigenic and anorexigenic neuropeptide genes did not
change after lipectomy or fat transplantation due to the lack
of leptin receptor in db/db mice, and thus their food intake
remained unchanged.

In this study, we removed WAT from three main anatomi-
cal locations. In turn, abdominal WAT was the only fat depot
removed in the previous experiments (Ling et al., 2014; Bueno
et al,, 2011). Schreiber et al. (2006) found that the circulating
leptin concentration after liposuction of subcutaneous fat in
obese Zucker rats is higher than in sham operated animals.
Also the removal of subcutaneous WAT in mice fed high-fat
diet resulted an increase in serum leptin level (Foster et al.,
2013). Furthermore, the transplantation of subcutaneous WAT
into visceral cavity led to a decrease in serum leptin
concentration (Foster et al., 2013). Altogether, these data
suggest that anatomical location of the removed WAT may be
another factor modulating the effect of lipectomy on serum
leptin concentration in rodents.

Theincrease in food intake (Fig. 3) and standard growth rate
(Fig. 2B) associated with overexpression of orexigenic neuro-
peptide genes (Fig. 5) and down-regulation of anorexigenic
neuropeptide genes (Fig. 6) may partially explain regeneration
of non-excised adipose tissue that was observed after lipec-
tomy (Mauer et al., 2001; Faust et al., 1977). It was suggested
that a decrease in energy expenditure may also contribute to
the compensatory increase in fat mass after liposuction
(Benatti et al., 2012). Lower concentration of circulating leptin
and changes in the hypothalamic neuropeptide gene expres-
sion favors the post-lipectomy decrease in energy expenditure
(Busetto et al., 2008; Joly-Amado et al., 2014). Thus, it was the
decrease in the energy expenditure which likely contributed,
at least in part, to the accelerated body weight gain and
increase in standard growth rate observed in our experimental
model.

Itis unclear whether liposuction induces similar changes in
blood leptin concentration, orexigenic and anorexigenic
neuropeptide gene expression in humans. Busetto et al.
(2008) showed that surgical removal of subcutaneous adipose
tissue in obese women led to a decrease in circulating leptin
concentration and concominant decrease in energy expendi-
ture. Also D'Andrea et al. (2005) observed a decrease in plasma
leptin concentration and improvement in basal metabolism
within 90 days after large-volume liposuction conducted in
obese women. Thus, one may suppose that surgical removal of
adipose tissue in obese women is associated with changes in
the hypothalamic neuropeptide gene expression that favor a
decrease in energy expenditure. A significant decrease in
circulating leptin concentration was also observed after
liposuction of subcutaneous abdominal fat in obese women
(Robles-Cervantes et al., 2007). The post-liposuction decrease
in circulating leptin concentration was associated with a
diminished appetite (Robles-Cervantes et al., 2007).

The reduction of peripheral fat content in healthy women
leads to a decrease in serum leptin concentration that persists
for at least one week after liposuction, and then gradually
returns to its baseline level (Talisman et al., 2001). Theoreti-
cally, the lower serum concentrations of leptin observed after
liposuction should stimulate the appetite center via the leptin
receptor and lead to an increase in appetite and decrease
in energy expenditure. However, despite the decrease in

concentration of circulating leptin, most lipectomized women
were shown to lost appetite for 1-3 weeks post-surgery, and
displayed about 7% reduction in body weight (Talisman et al.,
2001). These discrepancies between the results of rat experi-
ments and the data from healthy and obese humans after
liposuction can be hardly explained based on the putative
adipostatic role of leptin. Therefore, one can suppose that the
loss of appetite observed in subjects after liposuction is not
attributable to leptin itself.

Similarly to rodents, the effect of lipectomy on circulating
leptin concentration in humans is proportional to the amount
of removed fat. For example, Davis et al. (2006) showed that
small-volume suction lipectomy leads to a decrease in
circulating leptin concentration immediately after operation,
but this effect is no longer observed one month after the
procedure. Shcheglova et al. (2004) demonstrated that while a
small-volume liposuction is associated with an increase in
circulating leptin concentration, the large-volume procedures
leads to an initial decrease of this parameter and its
subsequent normalization at the baseline level.

Our findings suggest that accelerated body weight gain and
increased standard growth rate observed after partial lipec-
tomy in rats resemble compensatory increase of visceral fat
after abdominal liposuction in healthy, normal-weight women
(Benatti et al., 2012). Unfortunately, we did not determine
accurately the weight of mesenteric WAT or fat from other
anatomical locations. Lipectomy seems to result in compen-
satory increase in the volume of mesenteric WAT and fat
depots in other anatomical regions of a body. However, further
research needs to be conducted to elucidate this problem.

In conclusion, we revealed that partial lipectomy leads to
up-regulation of orexigenic and down-regulation of anorexi-
genic hypothalamic neuropeptide gene expressions in rats,
and consequently affects appetite regulation and standard
growth rate, possibly via decreasing serum leptin concentra-
tion. As the changes in orexigenic and anorexigenic hypotha-
lamic neuropeptide gene expressions may favor the decrease
in energy expenditure in rats, one should not exclude that the
latter also contributes to increased standard growth rate.
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