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Prediction of survival expectancy after surgery is so important. Soft computing approaches using training
data are good approximations to model the different systems.

We present many solutions to predict 1-year the post-operative survival expectancy in thoracic lung
cancer surgery base on artificial intelligence. We implement multi-layer architecture of SUB- Adaptive
neuro fuzzy inference system (MLA-ANFIS) approach with various combinations of multiple input
features, neural networks, regression and ELM (extreme learning machine) based on the used thoracic
surgery data set with sixteen input features. Our results contribute to the ELM (wave kernel) based on 16
features is more accurate than different proposed methods for predict the post-operative survival
expectancy in thoracic lung cancer surgery purpose.
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Introduction

It’s very important for a person to know how long he survives.
People encounter different diseases throughout life and they may
survive from the death of vital organ disease, by surgery or organ
transplants, in some cases. Medical decision making is a serious
challenge, about the risks of survival after the surgery.

Analytical data are the basis for modelling systems and
computational formulae. In fact, by modelling a system and
designing it, we gain a relationship between its inputs and outputs.
The black box is connected between the input-output system, it
can be a regression, neural network, fuzzy system, or a different
equation using empirical data.

Past researches prove that artificial intelligence techniques
such as an artificial neural network (ANN) (Abraham, 2005; Altan
et al, 2016; Bajpai et al, 2011; Markou and Singh, 2003;
Mazurowski et al., 2008; Vyas et al., 2016; Zhang et al., 2016),
support vector machine (SVM) (Vyas et al., 2016), decision support
(Lisboa and Taktak, 2006) and regression has good performance in
predicting from experimental data.
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Zieba et al. (2014) extracted 9 decision rules from the boosted
SVM for medical usage of expecting postoperative survival
expectancy in the lung cancer patients. They used thoracic surgery
data set containing 470 instances and 17 attributes, they applied
boosted SVM classifier to classify the patients into two categories:
class 1 — death within one year after surgery, class 2-survival.

Matsopoulos et al. (2005) have presented an automatic three-
dimensional inflexible registration layout using self-organizing
maps and radial basis functions. They modeled, approximations of
lung tumor masses during radiotherapy by the feature points from
thoracic computed tomography (CT) data.

Delen et al. (2010) suggested a machine learning method to
select the prognosticator variables which, is more powerful in the
risk category of thoracic patients. They applied multilayer
perceptron (MLP), M5 algorithm-based regression tree and the
support vector machine with a radial basis kernel function, making
the best result R?, in the prediction of survival time after lung
transplantations and prognosis analysis.

Clark (1996) tries to calculate medical risk by using different
methods such as uni-variate analysis, additive method, logistic
regression, Bayes' theorem and neural network via the society of
thoracic surgeons database.

Bhuvaneswari et al. (2014) offered one solution to classify lung
CT images based on the extracted features using gabor filter and
Walsh Hadamard transform. They implemented genetic algorithm
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to select best features and they used K nearest neighbour (KNN),
decision tree and multilayer perceptron to perform the classifica-
tion of the lung diseases, the accuracy of neural network was
higher.

In Kuruvilla and Gunavathi (2014) tomography (CT) images of
the lungs are as the inputs and an approach is proposed to use feed
forward back propagation neural networks method with the
statistical features such as mean, standard deviation, skewness,
kurtosis, fifth central moment and sixth central moment for the
classification.

In the article of Paulpandi and Prasath (2014) the ANFIS method
is used to categorize lung tissue on CT scan images. Mahersia et al.
(2015) have reviewed the article to determine lung cancer by using
different methods in three steps: pre-processing, segmentation of
the lung and classification of the tumour patients.

Hashemi et al. (2013) have expressed the region, growing
segmentation for feature extraction as input, they have applied
Fuzzy Inference System (FIS) and artificial neural networks (ANNs)
methods for mass detection in lung CT images, and the sensitivity
of their results was 95%.

Polat and Giines (2008) declared an approach for lung cancer
detection by fuzzy weighting pre-processing and the artificial
immune recognition system (AIRS) classifier. They selected four
features from among 54 features using principles component
analysis (PCA) and the classification accuracy of their proposed
system was obtained 100%.

Esteva et al. (2007) developed neural networks and artificial
intelligence to predict the thoracic surgery after lung resections.
Their results had reported that naive bayes method achieved good
results in terms of surgical risk classifying for lung separation
candidates.

The up survey discussed the use of different existing methods
for lung and thoracic surgery using artificial intelligence.

The number of patients who survive after surgery in compari-
son to patients who die is higher, in a one year period. The proper
patient choice for surgery, taking risk and advantages.

So this need of system seems essential, which helps doctors to
correct the classification of survival expectancy for treating
patients after surgery accurately.

The motivation of undertaken study is design an intelligent
system with different artificial intelligence methods to assist
clinicians in predicting postoperative thoracic survival with high
accuracy.

In this paper, a new intelligent method in the clinical diagnosis
of thoracic lung cancer surgery is proposed, that helps doctors in
patient selection and identifies the risk of death in patients after
surgery.

Material and methods
Neural network

Neural networks are like the human brain's ability to predict
and category. The structure of the neural network is made of
activation functions and cells called neurons (Abraham, 2005). The
neural network training aim is, projected output training in order
to make it so close to the actual output and have a low error
(Mazurowski et al., 2008). Types of education, are supervised and
unsupervised training. Input data and output are applied to the
system in the training supervisor, but only the input data are
applied to an education system without an observer and target
categories. The purpose of learning is changing the parameters of
the neural network in a way that they will be appropriate for the
data network performance. A variety of activation functions and
different learning rules are used for this purpose (Bajpai et al.,
2011).The multi layer perceptron (MLP) (Altan et al., 2016), support

vector machine (SVM) (Vyas et al., 2016), radial base function (RBF)
(Zhang et al., 2016), self organize map (SOM), hopfid (Markou and
Singh, 2003) are some types of neural networks.

Neural networks are made of neurons and they are used for
predicting the relationship between inputs and output. The
relationship between input and output neurons is done by middle
(hidden) layer. Neural network output is measured from the
Eq. (1).

V=1 (wa}pi + b}') (M

yj’? =output of neuron j of hidden neuron

p; =input i to hidden neuron

Wg- =weight connection among input and hidden neuron from
input i to neuron j

=

b]h =bias of hidden neuron j

f}1 = transfer function for hidden neuron j

The transfer function is computed by following equation:
tansig(n) = 2 1 (2)

1 + exp(—2n)

We utilized feed forward neural network and back propagation
(BP) learning method in this research (Fig. 1). More information
about neural networks is available in (Houska et al., 2014).

Neural networks deploy a model of the system by using such a
data that 70% of it is randomly selected for training data and 15% for
validation and 15% for testing.

ANFIS topology

Fuzzy system

Fuzzy logic is versus binary logic, which a member belongs to all
categories, but with a different membership function. Fuzzy
system is composed of a set of rules and membership functions.
Rules created by the system designer are responsible for the
inference system. The type of membership functions are influ-
enced by the behaviour of input variables. Minimum and
maximum fuzzy operators apply the rules (Zadeh, 1965).

The fuzzy system design process is as follows:

1. Converting numeric values to linguistic variables (fuzzifying of
inputs).

2. Designing rules.

3. De-fuzzification of output.

Fuzzy systems are divided to two categories: typel-Mamdani
and type2-takagi-sugeno model (Sugeno, 1985). Learnability of the
neural network, using training input data and making calibration
membership functions and accurate the fuzzy rules (Buckley and
Hayashi, 1994). Ann and fuzzy system can be used together, the so-
called “fuzzy neural networks”. Sugeno unlike mamdani system, is
used in the final part of a function in terms of the input variables, so

Fig. 1. Neural network structure.
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that it can be a zero-order sugeno (fixed), one or more order (Jang,
1993; Kayacan and Khanesar, 2015).

Many applications of the neuro fuzzy systems are student
modelling, medical systems, economic systems, traffic control,
image processing, prediction, manufacturing, electrical systems
and social sciences expressed in (Kar et al, 2014; Melin and
Castillo, 2013; Precup and Hellendoorn, 2011).

Melin and Castillo (2013) states that the neuro fuzzy system
type-2 is applied to classify matters, mostly because of the ability
of adapting more uncertainty.

Data are as the rules in neural systems. Adaptive fuzzy neural
networks used rules, membership functions and training data.
(Zieba et al.,, 2014) extracted 9 decision rules and 16 pre-operative
features for prediction problem of 1-year survival period by
boosted SVM method from data set that we apply these features for
prediction the post-operative survival expectancy in the lung
cancer in this study. Among the neural networks; reasons for the
select ANFIS methodology is that ANFIS have calibrated the
membership functions by using training data and offers better
performance in forecasting and optimization.

Adaptive neuro fuzzy influence system

The neuro-fuzzy system creates multiple rules from the
multiple input-output data. The basic rules of the fuzzy system
are as follows in Fig. 2:

1.if(d isMy;)and(e isM,;)thenZ; = r{(d, e)
2.if(d isMy7)and(e isM,;)thenZ, = r,(d,e)
3.if(d isM;7)and(e isM,3)thenZs = r3(d, e) 3)

9.if(d isMy3)and(e isMy3)thenZo — ro(d, e)

With Zyg = r¢(d,e) K=1,..,9 and Where Mj;, Zx and rx demonstrate
the jth MF of the ith input, the output of kth rule, and the kth
output MF, in order.

Layer 1. The Numerical values become to linguistic values using the
membership function.
Generalized bell MFs for (i=1ori=2),(j=1,2,3),(x=dorx=e):

My(x) — Gellx:ai. b i) — 1/(1 -+ X1 2 4

J

Where aij, bij, cij are premised parameters that define the shape of
the membership function. Gaussian, bell and trapezoidal MFs are
defined by two, three and four parameters.

Layer 2. The second layer is calculated as the weight of the rule
(wk), after the first layer using the membership function of the
fuzzy values and the operator “and”,

w1 = Mjq(d)My(e)
wy = My (d)Myz(e) (5)
\./\/9 = M13(d)M23(e)

Layer 3. In the third layer, the normal weight is calculated using the
following equation.

9
Wk:Wk/ZWi,k:l,...g (6)
i=1

Layer 4. The weighted rules de-fuzzy Output, the fourth layer as
follows.

Wiz = Wieri(d, ) = Wy (pr1d + P2 +pr3)k=1,...,9 (7)

®/ W)
w —>[zq=Pq,d+Pq,e+ Pos

W,
layer #1 layer#2 layer #3
fuzzy product normalized
layer layer layer

layer #4 layer#5
defuzzy summation
layer layer

Fig. 2. Adaptive neural network fuzzy structure (Sugeno).
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Pk are conclusion parameters that state output in the de-fuzzy
value, lineal input form.

Layer 5. Fuzzy weighted sum of the output of all rules is calculated
as follows in the fifth layer.

9 9 9
0=> "Wz => wiz/ > Wi (8)
i=1 i=1 i=1

One of the restrictions of adaptive fuzzy neural network based
on takagi-sugeno model is increasing the number of ANFIS inputs
more than siX, out of memory message which occurs when it
depends on the hardware (Khoshnevisan et al., 2014).

Because of hardware limitations, we are able to run ANFIS up to
six inputs and since the number of input variables is greater than
six then we can use various topologies of ANFIS (Iraji, 2017).

Multi-layer ANFIS topology

Counts of premise parameters and rules were determined by
the fuzzy subtractive clustering technique and then the conclusion
parameters were distinguished by using linear least squares
technique and hybrid learning algorithm were handled for training
the sugeno (Angiulli and Versaci, 2003).

When the number of rules and parameters of ANFIS increase,
the number of inputs and linguistic variables increase too, so ANFIS
shows little efficiency. Our proposed solution is using several
layers, which can be from a few ANFIS numbers of input variables
of a maximum of six.

ANFIS topology which can be considered for the sixteen inputs
(Fig. 3) from various topologies, is different combinations of
features calculated manually for four ANFIS with 5,5,5,1 inputs
named ANFIS 5-3-1 models.

We can model our design with a multi-layer model of ANFIS
depending on the number of input features and topology issues
given above. The important point in this multi-tier model is, the
combination of variables as inputs to the small ANFIS which will
resultin a better indicator, for example it has fewer errors than the
actual output. We choose a name for our proposed model as
“multi-layered ordered ANFIS model” (Iraji, 2017).

Extreme learning machine

Huang et al. (2006) have presented extreme learning machine
(ELM) as a learning rule for single layer feed-forward neural
network that determines the weights of the input randomly and
the output weights analytically. ELM is an efficient algorithm to
speed up learning, it has a greater ability than non-linear activation
functions and kernels that ascertains network parameters.

SLFN function with L hidden nodes includes both additive and
RBF hidden nodes that are formulated by the following equation:

I
Vi) = BG(a, by xi),i=1...N 9)
k=1

In this equation ay, by are learning parameters of k™ hidden
neuron and [, is the associated weight of k™ hidden neuron to
output neuron. Input data are (X;,t;) and N is the number of
samples where X; = [X;1X2 - - - Xin]| € RPandt; = [tiitip - - tim]T € R™.
Activation functions for additive hidden neuron are defined, and
functions like sigmoid (equation 10) and gaussian (equation 11) for
RBF hidden node are exemplified:

G(ay, by, x;) = g(arx; + by) (10)
G(ax, by, x;) = g(bi|xi — aill) (11)
Eq. (9) can be expressed as the following closed form formula:
HB=T (12)
So that:
} G(ar, b1,x1) G(ar, b, x1)
H(@,b,%) = : . : (13)
G(aq, b1, xn) G(ar,br,xn) | N
Bi f
B=1: lmandt=[: |y.n (14)
Bl t

Matrix H calculates the output of the hidden layer in a neural
network.

Discussion and experimental results

Zieba et al. (2014) presented Boosted SVM for discovering rules
from data set of the post-operative survival expectancy in the lung
cancer patients and extracted 16 features for prediction the post-
operative survival expectancy.

We tries to provide a way for predicting the post-operative
survival expectancy in the lung cancer patients with a thoracic
surgery data set (Zieba et al., 2014), 470 sample and number of
input variables is 16 features that are defined below.

f1. DGN: Diagnosis - specific combination of ICD

f2. PRE4: Forced vital capacity — FVC

{f1 ---fs} Anfis 1
{f6 - fr0} Anfis 2 [T — —
/ Anfs - Anfis
{fi1 - fas} Anfis 3
(o) | e yd

Fig. 3. ANFIS (5, 3, 1) topology model.
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f3. PRE5: Volume that has been exhaled at the end of the first
second of forced expiration — FEV1 (numeric)

f4. PREG6: Performance status — Zubrod scale

f5. PRE7: Pain before surgery

f6. PRE8: Haemoptysis before surgery

f7. PRE9: Dyspnoea before surgery

f8. PRE10: Cough before surgery

f9. PRE11: Weakness before surgery

f10. PRE14: T in clinical TNM - size of the original tumour

f11. PRE17: Type 2 DM - diabetes mellitus

f12. PRE19: MI up to 6 months

f13. PRE25: PAD - peripheral arterial diseases

f14. PRE30: Smoking

f15. PRE32: Asthma

f16. AGE: Age at surgery

Output: Risk1Y: True value if died in 1 year survival period

The number of patients who survive after surgery in comparison to
patients who die is higher, in a one year period; from total samples,
400 patients are positive (survival) and 70 patients are negative
(died).

It is important, selecting patients for thoracic lung cancer
surgery with a low risk of post-operative in short-term 30-day
period or long-term 1 or 5year survival (Zieba et al., 2014). We
consider 1year survival period for prediction the post-operative
survival expectancy in the lung cancer patients in this paper.

We implement our proposed system in Matlab version 7.12 on a
laptop, 1.7 GHZ CPU, and we used the roots mean square error
(RMSE) in order to determine the evaluation indicator to
determine the best method.

1N 2
MSE = Nzl (Outputactual - Outputpredicted) (15)

1N
RMSE = \/NZ1 (Outputactual - Outputpredicted)z (16)

Fig. 4 shows RMSE between actual and predicted survival
expectancy after thoracic lung cancer surgery using neural
network from 1 to 35 hidden neurons. As it is seen in Fig. 4, the
optimum number of hidden neurons is 22. Neural network
architecture 16-22-1 was considered and it reached best perfor-
mance. Fig. 5 shows the amount of MSE for the training, validation
and testing the data using the best topology of neural network is
epoch five. For the optimum network performance at epochs, MSE
for training, validation and testing data are 0.1689, 0.1699 and
0.1718 in Fig. 5.

Table 1 shows various arrangement structures of inputs for four
ANFIS with five and one inputs.

The RMSE for training, validation, testing and total data for
three ANFIS with five and one features are exhibited in Table 2.

Table 2 shows that the least of the RMSE for total data is
0.306768 in model #2, that proves the {f5-f8-f9-f10-f11} {f12-f13-
f14-f15-f16} {f1-f2-f3-f4-f7} {f6} is the best proficiency between
ANFIS 5-1 models. The RMSE for training, testing and validation are
acquired 0.267037, 0.362269 and 0.402857 for this model.

Fig. 6 shows {f5-f8-f9-f10-f11} {f12-f13-f14-f15-f16} {f1-f2-f3-
f4-f7} {f6} is the best performance from ANFIS 5-1 models.

In the proposed ANFIS system a database of 470 records was
considered, In order to train and test the fuzzy neural network.
After calculating sixteen features were described above for 470
records, 328 records were considered for training ANFIS and 71
record were allocated to test and 71 record for validate the system.

After setting the network parameters to generate fis=grid
partition, optim.method = hybrid, linier, training fis epochs = 11, the
gbell membership function with two mf RMSE for all data Obtained
0.3068.

In order to model the proposed system without multi-layer
ANFIS topology and with one ANFIS, the number of promise

parameters is (2 = 3)!® = 2821109907456 using the gbell mem-
bership function and two linguistic variables, the number of

rules=2'®, conclusion parameters=17* (2‘6). This cannot be

performed for practical implementation of such a system, when
an out of memory error occurs. As a large number of variables

result rmse for neural network

0.65 T T T

0.6
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0.5

0.45

RMSe

0.4

0.35

0.3

T T T
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test H
& yalidaion

L L L

0.25 L L L
0 5 10 15

20 25 30 35

number of hiden neurons and best hiden neuron=22

Fig. 4. RMSE between actual and predicted survival expectancy after thoracic lung cancer surgery using a neural network for determine number of hidden neurons.
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Training,validation and test error curve
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Fig. 5. (a) Training, validation and test error curve (b) best performance for neural networks with validation data.

Table 1

Different states of three ANFIS with five inputs.
# ANFIS1 inputs ANFIS 2 inputs ANFIS 3 inputs ANFIS 4 inputs
1 f1 f2 f3 f4 7 f6 5 f8 f9 f10 f11 f12 f13 f14 f15 f16
2 5 8 f9 f10 f11 f12 13 f14 f15 f16 f1 f2 3 f4 f7 f6
3 f15 f16 f1 f2 f15 f4 7 f6 5 f8 f9 f10 f1 f12 f13 f14
4 f12 f13 f14 15 f12 f1 f2 f3 5 f8 f9 f10 f4 7 f6 f11
5 f4 7 f6 5 f4 f9 f10 f11 f12 f13 f14 f15 f16 f1 f2 3
6 15 f16 f1 f2 f15 f4 5 f8 f9 f10 f11 f12 f13 f14 f7 f6
7 f9 f10 f11 f12 f9 7 f6 f5 8 f10 f3 7 f6 f11 f1 2
8 7 f6 5 f8 7 f10 f11 f12 f13 f14 f15 f16 f1 f2 3 f4
9 f8 f9 f10 f11 8 f13 f14 15 f16 f1 f2 3 f4 7 f6 5
10 f3 5 8 f9 3 f4 7 6 f11 f12 f13 f14 f15 f16 f1 2
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Table 2
Comparison of RMSE for training, testing, validation and all data in different states
of four ANFIS with five and one features.

# RMSE train RMSE test RMSE valid RMSE all
1 0.275007 0.517481 6.80345 2.6619

2 0.267037 0.362269 0.402857 0.306768
3 0.275976 8.6047 2.93205 3.54075
4 0.274822 19.6154 3.81331 7.77004
5 0.285803 3.35755 0.57471 1.34533
6 0.271773 63.7432 0.473719 24.7767
7 0.283403 0.805178 4.10769 1.64419
8 0.275315 11.9491 6.15746 5.22969
9 0.280856 0.538154 0.598568 0.391052
10 0.284871 0.30507 3.29699 1.30873

affects the design of the system using the ANFIS method, multi-
layer architecture topology of SUB-ANFIS (MLA-ANFIS) must
necessarily be used.

A comparison of the promise and conclusion parameters in the
first and final layers of the multi-layer architecture topology in the
SUB-ANFIS (MLA-ANFIS) models is given as (Iraji, 2017); In the best
5-1 ANFIS model for the first layer, the promise parameters are; the

number of rules is: 2° + 25 + 25 + 2! and the conclusion parameters
are: 6(25) + 6(25> + 6(25) + 2(21); the number of promise

parameters in the second layer are (2« 3)*; the number of rules

is 2% and the conclusion parameters are 5(2%).

We train extreme learning machine (ELM-base) structure after
infix hidden neurons=22 and activation function = sig. Also, we set
the number of parameters =100 in ELM (poly kernel) and ELM (lin
kernel), the kernel matrix parameters to [0.1, 1000.1000] in the
ELM (RBF kernel), ELM (wave kernel).

Because eradicate an over-learning phenomenon, we imple-
ment all methods 10 runs with randomly selected training,
validation and testing data for each simulation on the same data
set.

Table 3 shows the average of confusion matrix according to the
predicted and actual data using neural networks, best ANFIS
topology 5-3-1, regression, ELM (base), ELM(RBF kernel), ELM
(wave kernel), ELM (poly kernel) and ELM (lin kernel) to prediction
of survival expectancy after thoracic lung cancer surgery.

Average of correct classification index and average RMSE for 10
runs between methods are compared in Table 4 using the proposed
methods. Average of correct classification index calculate 88.79,
87.62, 84.94, 86.55, 85.36, 85.21, 85.11 and 84.98 after applying
ELM (wave kernel), ANFIS topology, regression, neural network,
ELM (base), ELM (RBF kernel), ELM(poly kernel) and ELM (lin
kernel) methods.

result rmse for anfis 5-3 models

70 T T T T T T T T Ea—
test
—&— validaion
60— _| | — 8 total
50— —
401~ .
Jo)
17}
=
T
30— —

1 2 3 4 5
number model anfis topology

6 7 8 9 10

Fig. 6. Comparison between RMSE of ANFIS 5-3-1 models for training, testing, validation and all data.

Table 3

Comparison of average of confusion matrix for 10 runs between the methods.
Method ™™ FN FP TP
ELM(wave kernel) 57.1 39.8 12.9 360.2
Best ANFIS-5-5-5-1 28.8 17 41.2 383
Regression 0.5 13 69.5 398.7
Neural Network 18.2 114 51.8 388.6
ELM(base kernel) 3.5 23 66.5 397.7
ELM(RBF kernel) 12 0.7 68.8 399.3
ELM(poly kernel) 0 0 70 400

Table 4
Comparison of average of correct classification index and average of RMSE for 10
runs between the methods.

Method RMSE correct classification index
ELM(wave kernel) 0.33463 88.78724

Best ANFIS-5-5-5-1 0.3418 87.61699

Regression 0.34288 84.93619

Neural Network 0.3554 86.55318

ELM(base kernel) 0.38261 85.36169

ELM(RBF kernel) 0.38455 85.21275

ELM(poly kernel) 0.3859 85.1064

ELM(lin kernel) 0.38756 84.97873
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dev% for total data with ...
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Fig. 7. Comparison of deviation of predicted survival expectancy after thoracic lung cancer surgery by the proposed methods.

According to Table 4 the Average of RMSE compute 0.334, 0.341,
0.342, 0.355, 0.382,0.384, 0.385 and 0.387 exerting ELM (wave
kernel), ANFIS topology, regression, neural network, ELM (base),
ELM(RBF kernel), ELM (poly kernel) and ELM (lin kernel) methods.
Comparison average of correct classification index and average of
RMSE for 10 runs between methods proves that the ELM (wave
kernel), ANFIS topology systems have the best performance than
the other methods.

Fig. 7 shows the deviations of predicted survival expectancy
after thoracic lung cancer surgery from actual (dev%) by proposed
methods.

In this paper performance measures namely sensitivity,
specificity, geometric mean calculated for prediction evaluation
(Table 5). Survival people after thoracic lung cancer surgery are
positive and dead people are negative. According bellow equations
Specificity is the ratio of positives, that correctly recognized and
Specificity is the ratio of negatives that correctly recognized. In
mathematics, the geometric mean is a type of mean or average that
it is defined as the m™ root of the product of m numbers (Eq. (19)).

Sensitivity =TP/(TP + FN) (17)

Specificity =TN/(FP +TN)

Where;
True positive = count of records that correctly recognized
False positive = count of records that incorrectly recognized
True negative = count of records that correctly rejected

(18)

Table 5
Performance comparison of proposed the methods for measures (sensitivity,
specificity, geometric mean).

Method Sensitivity Specificity Geometric mean
ELM(wave kernel) 90.05 81.5714 85.7059

Best ANFIS-5-5-5-1 95.75 41.1429 62.7649
Regression 99.675 0.7143 8.4378

Neural Network 97.15 26 50.2583
ELM(base kernel) 99.425 5 22.2963

ELM(RBF kernel) 99.825 1.7143 13.0816
ELM(poly kernel) 100 0 0
ELM(lin kernel) 99.725 0.7143 8.4399

False negative = count of records that incorrectly rejected

Geometric mean = {/X1X3 ...Xm

Referring to Table 5 it can be observed that ELM (wave kernel) is
a better classifier than the other methods with g-means(85.7059),
sensitivity (90.05) and specificity (81.5714) and Best Anfis-5-5-5-1
method is a secondary top method with g-means(62.7649),
sensitivity (95.75) and specificity (41.1429); whereas that specific-
ity of ELM (rbf kernel) is higher, but Specificity and g-mean gave a
poor value (13.0816).

(19)

Conclusion

The aim of this research was to create a solution to use soft
computing techniques namely neural network, ANFIS topology,
regression, extreme learning machine (ELM base), ELM (RBF
kernel), ELM (wave kernel), ELM (poly kernel), ELM (lin kernel) for
problem prediction the post-operative survival expectancy in
thoracic lung cancer surgery. Forasmuch as input features were
more than normal capacity of ANFIS inputs due to hardware and
software limitations; we have examined a multi-layer model of
ANFIS topology for this purpose and have defined RMSE and
correct classification indicators. The advantage of the used
approach was the design of a system with all sixteen input
features using the multi-layer ANFIS. Different combinations of
input variables were created in this topology. We have imple-
mented all proposed methods 10 runs on the thoracic surgery data
set from UCI datasets. From the total number of data, 70% were
randomly chosen to train, 15% for validation and 15% for testing.

Our results show that the amounts of the RMSE=0.33463,
correct classification indicator=88.78724 and g-means (85.7059)
with sensitivity (90.05) and specificity (81.5714) for ELM (wave
kernel) to predict one-year mortality of patients undergoing lung
cancer resection surgery is better than the others proposed
algorithm, whereas that Zieba’s et al. (2014) g-means was (65.73)
with sensitivity (60.00) and specificity (72.00) using the same data
set and the performed calculations in experimental results in
Tables 3-5 prove this claim. We have shown that our approach can
be successfully to solve problem prediction of the post-operative
survival expectancy in thoracic lung cancer surgery and the quality
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of the proposed method by comparing with other solutions is
higher.

For future work, we could change the number and type of
membership function input linguistic variables in multi-layer
ANFIS topology and better results would probably be achieved. It
could also be considered, using genetic algorithms to determine
the ELM structure weights accurately, the number of hidden
neurons and ELM structure parameters could be specified more
precisely. Study other than one-year survival period after lung
cancer surgery could have done in future works. Factors associated
with lung cancer survival after surgical resection are multiple and
complex. Many of them were not included in this study, and these
prognostic variables comprise: neoadjuvant therapy, biomarkers,
anatomopathological findings, and genomic analysis of the tumor
are limitations of this study. Since models accuracy is not 100%,
these systems can only be used for a population-based decision-
taking, but not to decide on an individual patient.

The temporal and possibly regional validity of a score requires
constant re-evaluation of the risk adjustment system. Thus, an
adequate score to evaluate a group of surgical patients at a certain
moment could overestimate or underestimate the expected risk of
another group in the future, when the standards of quality demand
better results. That is why modelling to predict risk must be an
iterative process over time to adapt the system to new require-
ments and quality levels. The data are very basic role in learning of
intelligent systems and we can increase the accuracy of the
proposed system by training new data from other health centres of
different parts of the world.
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