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ABSTRACT - Herbivores face the dilemma that the level of feed intake is negatively related to factors that determine 
digestive efficiency, such as thoroughness of ingesta comminution by chewing, and retention of digesta in the digestive tract.
Ruminants have evolved particular adaptations to solve this dilemma. Most ruminants share the characteristic of “digesta 
washing”: fluid moves through their digestive tract faster than particles, thus effectively washing very fine particles, such as
bacteria, out of the digesta plug. As the forestomach is followed by auto-enzymatic digestion, this allows a continuous, increased 
harvest of microbes from the forestomach. True rumination only evolved twice, in the camelids and the true ruminants. These 
both evolved a density-dependent sorting mechanism based on physical separation of the digesta by the process of flotation and
sedimentation, ensuring that the process of rumination is applied to large particles. Differences in this sorting mechanism might 
facilitate a faster digesta processing in true ruminants as compared with camelids. The hallmark of ruminant digestive anatomy 
is the omasum, in which the fluid required for both digesta washing and the reticular separation mechanism is re-absorbed.
In ruminants of the tribe Bovini, the omasum has reached the largest size and this group has a particularly great forestomach 
fluid throughput. Increasing the degree of digesta washing even more should increase microbial harvest from the forestomach
and reduce the susceptibility to acidosis. At the same time, it should result in a metabolic state of the microbiome more 
tuned towards biomass production and less towards methanogenesis. Enhancing the forestomach fluid throughput by selective
breeding could represent a promising way to further advance the productivity of the ruminant digestive tract.
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Introduction

Domestic ruminants are special. In contrast to domestic 
pigs, camelids, or horses, they belong to a family (Bovidae) 
that comprises an enormous extant variety of more than 
100 species (Fritz et al., 2009b). This difference in species 
diversity between bovids on the one hand, and suids, 
camelids, or equids on the other hand, has been interpreted 
as a result of a displacement of previously more speciose 
large herbivore groups by ruminants (Janis et al., 1994). 
Ruminant species cover a large variety of ecological niches 
and hence display a large variety of morphophysiological 
adaptations (Hofmann, 1989; Kay, 1989; Woodall and 

Skinner, 1993; Beuchat, 1996; Cain et al., 2006; Zerbe et al., 
2012). On the one hand, certain production systems, in 
particular more extensive systems, sometimes might benefit 
from employing this existing variety of ruminant species to 
increase the overall efficiency of resource use (Arsenault 
and Owen-Smith, 2002; Odadi et al., 2011; Riginos et al., 
2012), but not always (Prins and Fritz, 2008). On the other 
hand, one could consider the variety of existing ruminant 
morphophysiologies as a pool from which one might choose 
certain traits as targets for selective breeding in domestic 
ruminant breeding programs (Clauss et al., 2010b). This 
short review is concerned with this latter option.

In particular, our approach focuses on digestive 
physiology. Evidently, any characteristic could be chosen 
as a target for selective breeding. For example, given the 
variety of dental traits (Archer and Sanson, 2002; Heywood, 
2010; Kaiser et al., 2010) and hypsodonty (Mendoza et al., 
2002; Damuth and Janis, 2011; Jordana et al., 2012) in 
ruminants, one could consider breeding domestic ruminants 
for more complex and higher-crowned teeth, if there 
was evidence that the production potential of domestic 
ruminants was constrained by the durability of their teeth. 
Given the variety of muzzle width (Gordon and Illius, 1988; 
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Janis and Ehrhardt, 1988; Tennant and MacLeod, 2014) in 
ruminants, one could consider breeding domestic ruminants 
for wider muzzles to enhance their foraging efficiency, if 
muzzle width was identified as a constraint. The focus we 
place herein on digestive physiology is, at the moment, a 
subjective one.

Basic ruminant digestive physiology

Herbivore digestive physiology can be conceptualized 
as the dilemma to maximize feed intake while also 
maximizing diet quality and diet digestibility (Hume, 2005). 
The level of feed intake is typically negatively related 
with digesta mean retention time (Müller et al., 2013), a 
major determinant of digestibility. The intake-retention 
time relationship can be modulated by gut capacity (Clauss 
et al., 2007) and the retention time-digestibility relationship 
can be modulated by particle size reduction (i.e., chewing 
efficiency; Clauss et al., 2009d).

The exceptional reduction of ingesta particle size that 
functional ruminants achieve is the hallmark of ruminant 
digestive physiology (Fritz et al., 2009a), which allows 
them to increase intake (as compared with non-ruminant 
foregut fermenters) without compromising digestibility 
(Schwarm et al., 2009; Clauss et al., 2015). This increased 
chewing efficiency is not achieved by a particular dental 
design, but by a density-depending sorting mechanism in 
the forestomach, which separates the small particles from 
the large ones that are then regurgitated to be masticated 
again (i.e., rumination) (Lechner-Doll et al., 1991). Although 
merycism (i.e., regurgitation and re-mastication) and the 
presence of comparatively fine digesta particles have 
been reported in non-ruminant foregut fermenters such as 
kangaroos (Schwarm et al., 2013; Vendl et al., 2017) and 
proboscic monkeys (Nasalis larvatus) (Matsuda et al., 
2011; Matsuda et al., 2014), true rumination linked to a 
sorting mechanism and with a physiologically fixed motor 
sequence (Gordon, 1968) only evolved twice, in the camelids 
and the taxonomic ruminants. While there appears to be 
no functional difference in the forestomach particle sorting 
mechanism between these two functional ruminant groups 
(Dittmann et al., 2015b), a major difference between them 
is the generally lower metabolism and lower feed intake in 
camelids (Dittmann et al., 2014). This may be linked to a 
less efficient morphophysiological design of their sorting 
mechanism (Dittmann et al., 2014; Dittmann et al., 2015b; 
Pérez et al., 2016); however, conclusive physiological 
studies are lacking.

In taxonomic ruminants, the particle sorting mechanism 
is based on a flotation-sedimentation mechanism in the 

reticulum (Sutherland, 1988; Baumont and Deswysen, 
1991), for which a high moisture content is an important 
prerogative (Clauss et al., 2009b; Hummel et al., 2009; 
Clauss et al., 2017). The sorting mechanism automatically 
leads to the outflow of the fluid from the reticulum together 
with small particles. This fluid could represent a burden on 
the enzyme-secreting function of the abomasum and small 
intestine (that would have to compensate for the dilution 
effect with increased secretion rates). The omasum has 
been interpreted as the organ that reabsorbs this fluid and 
hence facilitates an efficient sorting mechanism and a great 
fluid throughput linked to high feed intake (Clauss and 
Rössner, 2014).

With this great fluid throughput, the ruminant 
forestomach displays a similar characteristic to most 
other foregut fermenters (with the exception of primates): 
a relatively faster movement of fluid vs. particles, (i.e., 
a “washing” or “flushing” of the forestomach contents;
Müller et al., 2011). It has been claimed that an important 
effect of such a “digesta washing” is the efficient harvest 
of microbes from the forestomach (Hummel et al., 2008b; 
Müller et al., 2011; Hummel et al., 2015).

Comparative ruminant digestive 
morphophysiology

Although morphological differences of the digestive 
tract between ruminant species had been known for a 
long time (Garrod, 1877; Neuville and Derscheid, 1929; 
Langer, 1973), it was the seminal, comparative works of 
Hofmann (1973; 1988; 1989) and, to a less well-known 
extent, of Kay (1989), that placed these differences in a 
comprehensive ecological framework. This framework 
suggested convergences between feeding types (browser, 
intermediate feeder, grazer). Many of the resulting 
hypotheses were later corroborated by statistical evaluations 
(Pérez-Barbería et al., 2004; Clauss et al., 2008a; Meier et al., 
2016). However, in many cases, correlations of investigated 
characteristics with the percentage of grass in the natural 
diet included substantial scatter, though being significant. 
The major challenge in these studies was not the statistical 
evaluation, but the development of an explanatory concept 
of biological validity.

Explanatory approach I: fibre content of forages

In the initial concept, Hofmann (1989) considered the 
major difference between grass and browse to be the general 
fibre concentration, with lower values in browse. However, 
empirical data on the fibre concentration in rumen contents 
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in specimens of different feeding types did not support this 
hypothesis (Woodall, 1992). Instead, the proportions of 
different fibre types (hemicellulose, cellulose, lignin) were 
demonstrated to differ between grass and browse forages, 
as well as the fermentation behaviour of these forages 
(Hummel et al., 2006). This in turn links to hypotheses of 
grazers requiring longer digesta retention times and hence 
a larger rumen (Clauss et al., 2003; Clauss et al., 2010a). 
However, many other differences between grazers and 
browsers cannot be logically linked to fibre characteristics. 
For example, there is no logical concept why a high-fibre 
diet should be linked to small salivary glands or why a 
low-fibre diet should be linked to a more voluminous large 
intestine, as proposed in Hofmann (1989).

Explanatory approach II: various characteristics of 
forages and different niche characteristics

Various differences between forages might be linked to 
differences characterising the anatomy and physiology of 
browsers and grazers. Among these properties of forages 
might be their growth form, their spatial arrangement, 
the heterogeneity of their harvestable units, their physical 
resistance to mastication, and their content of phytoliths 
and secondary plant compounds (reviewed in Clauss et al., 
2008b). Corresponding adaptations of ruminants include 
those related to oral and dental processing (Archer and 
Sanson, 2002; Clauss et al., 2008a; Heywood, 2010; Kaiser 
et al., 2010; Meier et al., 2016) or behavioural foraging 
strategies (Searle and Shipley, 2008). Other components of 
observed differences that had also been originally linked to 
the feeding type differences, such as the length of intestinal 
sections (Hofmann, 1989), were probably best explained by 
concepts completely unrelated to feeding types (Woodall 
and Skinner, 1993).

Explanatory approach III: a cohesive set of observations

Evident relationships between plant properties and the 
oral and dental processing apparatus notwithstanding, the 
observed differences between species in the anatomy and 
physiology of the forestomach and related structures still 
begged for a coherent explanation. In terms of anatomy, 
these included drastic differences in salivary gland size 
(Hofmann et al., 2008), intraruminal papillae distribution 
(Clauss et al., 2009c), height of the reticular crests (Clauss 
et al., 2010a), or omasum size (Clauss et al., 2006a). In terms 
of physiology, these related mainly to distinct differences 
in the relative retention times of fluids and particles in the 
reticulorumen (Hummel et al., 2005; Clauss et al., 2006b; 

Dittmann et al., 2015a). In the analyses of the adaptive 
values of these characteristics, we recently introduced the 
terms “moose-type” and “cattle-type” ruminants. Moose-
type species are characterised by a low throughput of 
relatively viscous fluid (produced by large salivary glands) 
and a corresponding lack of stratification of rumen contents 
and intraruminal papillae gradient, low reticular crests, and 
small omasa. Cattle-type ruminants are characterised by a 
high throughput of a non-viscous fluid (produced by small 
salivary glands) and corresponding well-stratified rumen 
contents and an intraruminal papillae gradient, higher 
reticular crests, and larger omasa (to absorb the higher 
amount of fluid passing through the reticulorumen; cattle-
type) (Clauss et al., 2010b). We chose this terminology to 
avoid circular reasoning when comparing the botanical 
composition of the diet (“browser-grazer diet”) with the 
adaptations of the species (“browser-grazer anatomy/
physiology”).

Explanatory approach IIIa: maximizing stratification?

A first hypothesis developed to explain these patterns 
was based on the finding that rumen contents of a browser 
did not seem to stratify in vivo as previously reported 
for grazers (Clauss et al., 2001) and that, in captivity, 
browsing ruminants had larger faecal particles (i.e. a lesser 
particle size reduction efficiency) than grazing ruminants 
(Clauss et al., 2002). We note that both findings have been
corrected since (Hummel et al., 2008a; Clauss et al., 2009a; 
Clauss et al., 2009b). Based on those early observations, a 
theory was developed that linked the throughput of great 
amounts of a low-viscosity fluid in cattle-type ruminants 
to adaptations whose ultimate objective was considered to 
be the enhancement of the natural tendency of grass forage 
to stratify in the rumen, thus facilitating a more efficient 
selective particle retention, size reduction via rumination, and 
hence digestibility (Clauss et al., 2003; Clauss et al., 2008b). 
When this theory was tested experimentally, however, results 
indicated that the particle retention and sorting mechanism 
did not differ fundamentally between a moose-type and a 
cattle-type species, even though differences in rumen content 
stratification, rumen fluid viscosity, and the relative rumen 
fluid throughput could be demonstrated (Lechner et al., 
2010; Clauss et al., 2011; Lauper et al., 2013).

Explanatory approach IIIb: optimizing microbial harvest

Since then, our explanatory focus for the observed 
differences in fluid throughput and stratification has been 
on an optimization of digesta washing and hence harvest 
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of microbes from the forestomach. This idea was first 
proposed by Hummel et al. (2008b) and has been elaborated 
since (Clauss et al., 2010b; Müller et al., 2011; Dittmann 
et al., 2015a). Hummel et al. (2015) demonstrated with an 
example calculation that because of the digesta washing 
effect, cattle-type ruminants could have a 10% higher 
microbial efficiency, quantified as the amount of microbial 
nitrogen produced in the rumen per unit of fermented 
organic matter.

The concept suggests that moose-type ruminants 
have adopted a strategy of defending themselves against 
secondary plant compounds by salivary tannin-binding 
proteins, which render the saliva comparatively viscous. 
Because the production of these proteins becomes the 
limiting step in saliva release, they have large salivary 
glands; yet, they do not achieve great amounts of saliva 
output. Lower amounts of saliva in combination with a high 
saliva viscosity reduce the tendency of rumen contents to 
stratify. Therefore, they lead to a homogenous intraruminal 
papillae formation pattern, make lower reticular crests 
understandable (to avoid complete emptying during 
reticular contractions that would cause a slow refilling of 
the reticulum because of the small amount of viscous saliva 
available), and do not require considerable omasal tissue 
for re-absorption (Clauss et al., 2010b).

Such moose-type ruminants are typically browsers. 
However, among the cattle-type ruminants, there is no clear 
association between the degree by which their characteristics 
are expressed and the percentage of grass in their natural 
diet (Codron and Clauss, 2010). In other words, the most 
extreme grazers are not necessarily the most extreme 
cattle-type ruminants. This was exemplified by Clauss 
and Hofmann (2014) listing a series of species from the 
taxonomic group of cattle, which have the most prominent 
cattle-type characteristics, yet consume higher amounts of 
browse (i.e., more “intermediate-type” diets) than strict 
grazers. This seeming contradiction could be resolved if 
the focus is no longer placed on adaptations to properties of 
the respective forages (grass or browse). Rather, we think 
that it is more promising to put the focus on an optimization 
of microbial harvest, which may be beneficial on any kind 
of forage. This new concept considers the different cattle-
type ruminants as different stages in an evolution towards 
optimized microbial harvest from the forestomach.

Digesta washing, microbial harvest, microbial 
metabolism

A variety of in vitro assays (Isaacson et al., 1975; 
Meng et al., 1999; Fondevila and Pérez-Espés, 2008) and 

in vivo experiments with domestic ruminants (Harrison et al., 
1975; Wiedmeier et al., 1987b; Froetschel et al., 1989; 
Bird et al., 1993) support the concept that an increased fluid
throughput through the rumen, in other words, an increase 
in the relative passage of fluid (as compared with particles) 
or an enhanced “digesta washing”, increases the microbial 
yield from the rumen system (Figure 1). This is probably due 
to an increased microbial flow to the lower digestive tract. 
Additionally, the metabolic state of the ruminal microflora 
is most likely tuned to faster growth rates probably fuelled 
by a higher digestive capacity of the microbes, with the 
majority of microbial cells in the growth and reproductive 
stages (Isaacson et al., 1975; Hummel et al., 2015). Such a 
shift in microbial metabolism (Shi et al., 2014) might also 
lead to a decrease in methane yield (Isaacson et al., 1975; 
Van Nevel and Demeyer, 1979). This shift might occur 
because of an effect similar to the “partitioning factor” 
of feeds, that is, the degree by which they trigger energy 
transfer into microbial growth or into short-chain fatty acid 
and hence also CH4 production (Blümmel et al., 1997; Moss 
and Newbold, 2000). A higher fluid throughput due to a
higher saliva production should also be protective against 
acidosis. Carefully designed experiments are warranted 
to test the effect of differentially increasing rumen fluid 
throughput, by infusion of artificial saliva via fistula 
(Rogers et al., 1979), or by pharmacologically enhancing 
saliva production (Wiedmeier et al., 1987a; Wiedmeier et al., 
1987b; Froetschel et al., 1989; Bird et al., 1993), not only 
on measures of digestive efficiency, pH, and microbial and 
methane yield, but also on the metabolic state (Shi et al., 
2014) of the microbiome itself.

Figure 1 - In vitro experiment on the effect on increasing dilution 
rate (i.e., fluid throughput) on measures of microbial
activity – volatile fatty acids (VFA), methane (CH4), 
carbon dioxide (CO2), and cell numbers. Note the 
decrease in methane and the increase in microbial biomass 
(cell numbers). Data from Isaacson et al. (1975). 
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Selective breeding for digesta washing?

It has been suggested that domestic ruminants could 
be selected for increased digestive efficiency, based on 
phenotypic characteristics of the way digesta moves 
through their digestive tract (Hegarty, 2004). Ruminants 
can actually be bred to differ in the mean retention time 
of digesta (Thompson et al., 1989; Smuts et al., 1995; 
Goopy et al., 2014). Variation in ruminal digesta retention 
time is currently considered the most likely explanation for 
the inherited differences in methane emissions (Pinares-
Patiño et al., 2013). Frothy bloat in cattle is associated with 
decreased saliva production (Gurnsey et al., 1980) and 
decreased ruminal fluid passage rates (Okine et al., 1989).
A report of a successful breeding program to reduce bloat 
susceptibility (Morris et al., 1997) therefore suggests that 
increased saliva flows can be achieved. Given the evidence 
from wild ruminants that not only retention time in general, 
but the difference between fluid and particle retention in 
the rumen is a species-specific and hence genetic/heritable 
characteristic, selective breeding for this measure would 
theoretically be feasible, if appropriate proxies could be 
found to evaluate phenotypes.

Conclusions

The diversity of ruminant species can be considered 
a catalogue of genetically fixed, morphophysiological
characteristics that could, in theory, be exploited in domestic 
species by selective breeding. Some characteristics of that 
catalogue have most likely been selected indirectly during 
the process of breeding for phenotypes of high production 
value. For example, although reticulorumen volume is 
not a direct selection criterion, a particularly voluminous 
reticulorumen most likely results as an effect of breeding 
for phenotypes with a high intake capacity for a high 
milk yield. Other characteristics, such as those related 
to dental anatomy and durability, could be interesting in 
respect to intentions to prolong domestic ruminant lifespan. 
We propose that the characteristic of pronounced digesta 
washing and the associated microbial harvest and change 
of the microbial metabolism could represent a target for 
selective breeding that could further improve the efficiency
of domestic ruminants.
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