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The reactivating and therapeutic efficacy of two newly developed oximes (K305, K307) was compared
with the oxime K203 and trimedoxime using in vivo methods The study determining percentage of
reactivation of tabun-inhibited acetylcholinesterase in the peripheral as well as central nervous system
(diaphragm, brain) in tabun-poisoned rats showed that the reactivating efficacy of both newly developed

Keywords: oximes is lower compared to the reactivating efficacy of the oxime K203 and trimedoxime. The
Tabun therapeutic efficacy of all oximes studied roughly corresponds to their reactivating efficacy. While the
Acetylcholinesterase ability of the oxime K305 to reduce acute toxicity of tabun in mice is approaching to the therapeutic
CR):tlsineS efficacy of trimedoxime, the ability of another novel bispyridinium oxime K307 to reduce acute toxicity of
Mice tabun is significantly lower compared to trimedoxime and the oxime K203. Thus, the reactivating and
therapeutic efficacy of both examined newly developed oximes does not prevail the effectiveness of the
oxime K203 and trimedoxime and, therefore, they are not suitable for their replacement of commonly

used oximes for the treatment of acute tabun poisoning.
© 2016 Published by Elsevier Sp. z 0.0. on behalf of Faculty of Health and Social Sciences, University of
South Bohemia in Ceske Budejovice.
Introduction agent poisonings include the administration of the antidotes that

Highly toxic organophosphorus compounds have been devel-
oped as chemical warfarre agents called nerve agents. They are
considered to be the most dangerous chemical warfare agents. The
most important representatives of nerve agents are tabun, sarin,
soman, cyclosarin and VX. Their acute toxic effects are based on the
phosphonylation of acetylcholinesterase (AChE, EC 3.1.1.7), leading
to the irreversible inhibition of its active site and subsequent
overstimulation of postsynaptic cholinergic receptors due to the
accumulation of the neurotransmitter acetylcholine in synapses of
the central and peripheral nervous systems. The overstimulation of
cholinergic receptors results in muscarinic and nicotinic signs and
symptoms including excitotoxicity, seizures and brain damage. The
death is usually caused by respiratory failure resulting from
bronchospasm, excessive bronchial secretion, paralysis of respira-
tory muscles, and depression of brain respiratory centers (Bajgar,
2004; Delfino et al., 2009). The medical countermeasures of nerve

* Corresponding author at: Trebesska 1575 Faculty of Military Health Sciences,
500 01 Hradec Kralove, Czech Republic.
E-mail address: kassa@pmfhk.cz (J. Kassa).

http://dx.doi.org/10.1016/j.jab.2016.09.008

are able to counteract the main acute toxic effects of nerve agents.
The standard antidotal treatment of nerve agent poisoning usually
includes an anticholinergic agent to block the overstimulation of
cholinergic receptors and an oxime to reactivate nerve agent-
inhibited AChE (Dawson, 1994; Taylor, 1996). The compounds with
nucleophilic oximate anion were discovered and considered to be
able to reactivate nerve agent-inhibited AChE by dephosphonylat-
ing the enzyme active site and restoring its activity. While a lot of
these reactivators are sufficiently effective to reactivate sarin or
VX-inhibited AChE, their ability to reactivate soman, cyclosarin or
tabun-inhibited AChE is generally low (Kassa, 2002; Bajgar, 2004).

Tabun (O-ethyl-N,N-dimethylphosphoramidocyanidate) is a
well known nerve agent that presents a serious threat to military
and civilian population. It differs from other highly toxic
organophosphorus compounds in its chemical structure. It was
found that commonly used antidotes are not able to sufficiently
prevent tabun-induced acute toxic effects. The toxic effects of
tabun are problematically antagonized due to the changes in
hydrogen bonding and the conformational changes of AChE-tabun
complex prior to an aging process in the AChE active site (Cabal and
Bajgar, 1999; Ekstrom et al., 2006).
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While the anticholinergic drug such as atropine is able to
counteract the effects of tabun at peripheral muscarinic choliner-
gic receptors (Bajgar, 2004 ), commonly used monopyridinium (e.g.
pralidoxime) and bispyridinium oximes (e.g. obidoxime, trime-
doxime, HI-6) are not able to sufficiently counteract the acute toxic
effects of tabun because of their low ability to reactivate tabun-
inhibited AChE (Jokanovic and Prostran, 2009; Jokanovic, 2012;
Wilhelm et al., 2014). Therefore, the antidotal treatment of acute
poisoning with tabun still remains a serious problem and the
development of new and more effective AChE reactivator is still
very important (Sharma et al., 2015).

Among recently developed oximes, the oxime K203 has been
considered to be promising reactivator of tabun-inhibited AChE.
However, the differences between the reactivating and therapeutic
efficacy of the oxime K203 and commonly used bispyridinium
oximes (obidoxime, trimedoxime) are not significant (Kassa et al.,
2008). Therefore, we are still searching for a more efficacious
oxime able to sufficiently reactivate tabun-inhibited AChE. For this
purpose, two novel oximes, K305 [1,5-bis(4-hydroxyiminomethyl-
pyridinium)-pentane dibromide] and K307 (1-[2-(hydroxyimino-
methyl) pyridinium-1-yl)-pent-1-yl]-4-(hydroxyiminomethyl)
pyridinium dibromide) (Fig. 1), were synthesized at our Depart-
ment of Toxicology and Military Pharmacy to improve the efficacy
of antidotal treatment in reactivating tabun-inhibited AChE and
eliminating tabun-induced acute toxicity. They were developed
based on the structure-activity relationship study and they were
chosen based on the data obtained from in vitro evaluation of their
ability to reactivate AChE inhibited by tabun (Winter et al., 2016).
The aim of this study was to compare the reactivating and
therapeutic efficacy of both newly developed oximes (K305, K307)
with the oxime K203 and trimedoxime against tabun using in vivo
methods.

Materials and methods
Animals

Male albino Wistar rats weighing 230-260g and NMRI male
mice weighing between 24 and 28 g were purchased from VELAZ,
Czech Republic. They were kept in climate- and access-controlled
rooms (22 +2°C and 50 +10% relative humidity) with the light
from 07:00 h to 19:00 h and were allowed access to standard food
and tap water ad libitum. The rats and mice were acclimatized in
the laboratory vivarium for 14 days before starting the experi-
ments, and they were divided into groups of 8 animals. Handling of
the experimental animals was done under the supervision of the
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Ethics Committee of the Faculty of Military Health Sciences, Czech
Republic.

Chemicals

Tabun was obtained from the Technical Institute in Brno (Czech
Republic) and was 94% pure. Its purity was assayed by acidimetric
titration. The basic solution of tabun (1 mg/1 mL) was prepared in
propyleneglycol three days before starting the experiments. Actual
solution of tabun was prepared from its basic solution with the
help of saline immediately before its administration. All oximes
(K305, K307, K203, trimedoxime) were synthesized at our
Department of Toxicology and Military Pharmacy of the Faculty
of Military Health Sciences (Czech Republic). Their purity was
analyzed using HPLC technique with UV detection (310 nm) and
they were more than 95% pure (Jun et al., 2007). All other drugs and
chemicals of analytical grade were obtained commercially (Sigma-
Aldrich) and used without further purification. The saline solution
(0.9% NaCl) was used as a vehicle. All substances were adminis-
tered intramuscularly (i.m.) at a volume of 1 mL/kg body weight (b.
w.) to rats and 10 mL/kg b.w. to mice.

In vivo experiments

Prior to the evaluation of reactivating and therapeutic efficacy
of the oximes, the acute toxicity of tested oximes was determined
in rats and mice by the assessment of their LDsq values and their
95% confidence limits using probit-logarithmical analysis of death
occuring within 24 h after i.m. administration of each oxime at five
different doses with eight animals per dose (Tallarida and Murray,
1987).

To evaluate the reactivating efficacy of the oximes, the rats were
administered i.m. with either atropine alone or atropine in
combination with one of the studied oximes. Atropine was
administered at a dose of 10mg/kg that is considered to be
sufficiently effective but safe. It corresponds to 2% of its LDsq value.
The oximes were administered at equitoxic doses corresponding to
5% of their LD5g values at 1 min after the rats received tabun i.m. at
adose of 160 pg/kg (LDsp). One minute time interval was chosen by
us to evaluate the maximal reactivating efficacy of all oximes
studied. The rats were decapitated at 60min after tabun
administration, totally exsanguinated and the tissues (diaphragm
and brain) were removed and immediately frozen at the
temperature —70°C. Within three days, they were homogenized
in Tris-HCI buffer (0.02 mol/L, pH 7.6, 1:10) to determine AChE
activity by standard spectrophotometric method (Ellman et al.,
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Fig. 1. Chemical structure of oximes.
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1961). Acetylthiocholine was used as a substrate (Tris-HCl buffer,
N=0.1mol/L, pH 7.6). Helios Alpha, the spectrophotometer was
used for determination of absorbancy at 436 nm. The AChE activity
was expressed as pkat/kg (wmol substrate hydrolyzed/kg wet
tissue within 1s). The untreated control values of diaphragm and
brain AChE activity were obtained from rats administered with
saline buffer (physiological solution — 0.9% NaCl) instead of tabun
and antidotes (saline control). The percentage of reactivation was
calculated using the AChE activity values: {1- [((saline control) —
(oxime +atropine))/((saline control) — (atropine control))]} x 100
(Clement et al., 1992). All experiments were perfomed in the same
part of the day (from 08:00h to 10.00h). The variability was
statistically evaluated by the standard deviation (SD) calculated for
each group. The differences between groups were calculated using
means + SD and the statistical significance was tested by one-way
ANOVA test with Scheffe’s post hoc test. The differences were
considered significant when 2a =0.05.

The therapeutic efficacy of atropine alone and atropine in
combination with one of tested oximes was determined as follows.
The LDsqg value of tabun and its 95% confidence limit in tabun-
poisoned mice was assessed using probit-logarithmical analysis of
death occuring within 24 h after i.m. administration of tabun at five
different doses with eight mice per dose (Tallarida and Murray,
1987). Then, tabun-poisoned mice were treated i. m. with atropine
alone or with atropine in combination with one of tested oximes.
Atropine was administered at a dose of 10 mg/kg that is considered
to be sufficiently effective but safe. It corresponds to 5% of its LDsq
value. The oximes were administered at equitoxic doses corre-
sponding to 5% of their LDsq values at 1 min after i. m. challenge of
tabun. One minute time interval was chosen by us to evaluate the
maximal therapeutic efficacy of all oximes studied. The LDsq values
of tabun and their 95% confidence limit in tabun-poisoned mice
treated with antidotes were assessed by the same method. The
efficacy of tested antidotes was expressed as protective ratio (LDsq
value of tabun in protected mice/LDsy value of tabun in
unprotected mice). Statistical significance was determined by
the use of one-way ANOVA test with Scheffe’s post hoc test and
differences were considered significant when 2o =0.05.

Results

The acute i. m. toxicity of tested oximes is summarized in
Table 1. The results clearly demonstrate that the acute toxicity of
both novel bispyridinium oximes K305 and K307 are similar and
rather high. In addition, their acute toxicity is markedly higher
than the acute toxicity of the oxime K203 and trimedoxime in rats
as well as mice.

The ability of oximes at the selected doses to reactivate tabun-
inhibited AChE in rat diaphragm and brain in vivo is shown in
Table 2. Both newly developed oximes (K305, K307) were able to
reactivate tabun-inhibited AChE in the diaphragm although their
reactivating efficacy was markedly lower compared to trimedox-
ime and the oxime K203. The ability of all bispyridinium oximes
studied to reactivate tabun-inhibited AChE in the brain is generally
much lower compared to the peripheral nervous system

Table 1
LDs values of oximes following i.m. administration in rats and mice.

OXIMES LDso (mg/kg) &+ 95% confidence limit

Rats Mice
K203 326.4 (285.4-373.2) 137.8 (116.2-163.3)
Trimedoxime 258.2 (220.4 — 267.2) 105.8 (93.3-112.2)
K305 34.9 (29.3 — 41.6) 20.6 (17.3-25.5)
K307 21.0 (18.9 — 25.6) 19.2 (16.2-23.6)

Table 2
Percentage of reactivation of tabun-inhibited AChE by oximes in rat diaphragm and
brain in vivo.

TREATMENT AChE activity (kat/kg)
Diaphragm Brain
Saline control 15.56 +£0.54 94.38 +3.42°
Atropine control 2.92 +1.03° 9.06 +£2.64°
Atropine + K203 7.58 +1.27%¢ 14.23 +£5.67°
(% reactivation®) (36.9) (6.1)
Atropine + trimedoxime 6.47 +0.95°¢ 15.13 +£4.19°
(% reactivation) (281) (7.1)
Atropine +K305 3.36+0.78¢ 9.20 £ 1.25¢
(% reactivation) (3.5) (0.2)
Atropine + K307 3.97 £1.20° 9.71 £ 1.19¢
(% reactivation) (8.3) (0.8)

# Means + SD, N=8.

b % reactivation was determined using the AChE activity values: {1- [((saline
control) — (oxime +atropine))/((saline control) — (atropine control))]} x 100.

¢ Significantly different from the saline control group at the level of 2c.=0.05.

d Significantly different from the atropine control group at the level of 2 =0.05.

(diaphragm). The percengate of reactivation of tabun-inhibited
AChE did not reach out for 10% regardless of the structure of
bispyridiniumu oximes. In addition, the central reactivating
efficacy of both newly developed oximes was lower compared
to the oxime K203 and trimedoxime. To compare the reactivating
efficacy of both newly developed oximes, the oxime K307 showed a
slightly higher reactivating efficacy compared to the oxime K305 in
the diaphragm as well as in the brain. However, the difference
between reactivating efficacy of both newly developed oximes was
not significant. Based on the statistical evaluation of the obtained
results, statistically significant differences between the activity of
AChE in tabun-poisoned rats treated with atropine alone and rats
treated with atropine in combination with one of tested oximes
were only found in diaphragm when trimedoxime or the oxime
K203 was used for the antidotal treatment of tabun poisoning.

A comparison of the therapeutic efficacy of newly developed
oximes (K305, K307) with the therapeutic efficacy of the oxime
K203 and trimedoxime at the doses selected for this study roughly
corresponds to the comparison of their reactivating efficacy
(Table 3). Awide spectrum of muscarinic (salivation) and niconitic
(tonic-clonic convulsions) clinical signs was observed in tabun-
poisoned mice within a few minutes regardless of type of antidotal
treatment. They usually died within 30-50 min after poisoning
with tabun. The therapeutic efficacy of atropine alone was
negligible while the antidotal treatment involving atropine and
one of the studied oxime brought a significant decrease in the
acute toxicity of tabun. The therapeutic efficacy of both newly
developed oximes was lower compared to the oxime K203 and
trimedoxime. To compare the therapeutic efficacy of both newly
developed oximes, the oxime K305 showed a higher therapeutic
efficacy in comparison with the oxime K307. While the therapeutic
efficacy of the oxime K305 was almost as high as the therapeutic

Table 3
The influence of the type of oxime on the potency of antidotal treatment to
eliminate acute lethal effects of tabun in mice.

Treatment LDsg (g/kg) = 95% confidence limit Protective ratio
- 208.0 (176.7-229.6) R
Atropine 232.1 (210.3-256.2) 112

K203 +atropine 395.8 (333.6-503.4)*" 1.76
Trimedoxime +atropine 339.7 (313.4-368.1)"" 1.63

K305 +atropine 316.4 (282.4-363.0)* 152

K307 + atropine 279.8 (256.9-310.6)* 135

@ Significantly different from the untreated group and the atropine group at the
level of 20t=0.05.

b Significantly different from the group treated by atropine in combination with
K307 at the level of 2a=0.05.
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efficacy of trirmedoxime, the therapeutic efficacy of the oxime
K307 was significantly lower compared to trimedoxime and the
oxime K203. On the other hand, the difference between
therapeutic efficacy of both newly developed oximes was not
significant.

Discussion

Generally, oximes are not equally effective against all nerve
agents. Their efficacy depends on many factors, especially on the
chemical structure of nerve agents and the rate of aging of enzyme-
inhibitor complex (Nurulain, 2011). It is known that nerve agent-
inhibited AChE undergoes a proces of aging that makes the
reactivation of nerve agent-inhibited AChE impossible. The aging
kinetics of different nerve agents is different, ranging from a few
minutes to many hours (Antonijevic and Stojiljkovic, 2007). Other
factors that influence the effectiveness of oxime therapy represent
the potency of nerve agents to inhibit AChE, their toxicokinetics,
reactivating efficacy of oximes and their pharmacokinetics, correct
dosing, evaluation for the persistent need of oxime therapy and
correct timing (Antonijevic and Stojiljkovic, 2007; Nurulain, 2011).

According to the published results, currently used monopyr-
idinium and bispyridinium oximes seem to be relatively poor
reactivators of tabun-inhibited AChE. The values of their kinetic
parameters for the reactivation of tabun-inhibited AChE in vitro
showed that dissociation constants and rate constants are lower
compared to kinetic parameters describing the reactivation of
sarin, soman or cyclosarin-inhibited AChE by these oximes (Cabal
et al.,, 2004; Kassa and Cabal, 1999a,b,c). Generally, bispyridinium
oximes seem to be more effective to reactivate tabun-inhibited
AChE and to counteract tabun-induced acute toxicity than
monopyridinium oximes (Voicu et al., 2010). They have higher
affinity towards both intact and tabun-inhibited AChE and,
therefore, higher potency to reactivate tabun-inhibited AChE
compared to monopyridinium oximes (Kuca et al., 2006b). On
the other hand, bispyridinium oximes are less lipophilic than
monopyridinium oximes and, therefore, their penetration across
the blood-brain barrier is poor (Lorke et al., 2008; Zdarova
Karasova et al., 2010). For this reason, their ability to reactivate
tabun-inhibited AChE in the brain is lower compared to the
peripheral compartment (Kalasz et al., 2015; Lorke et al., 2008). In
addition, the ability of compounds with the oxime group in
position 4 to reactivate tabun-inhibited AChE is higher compared
to reactivators with the oxime group at different positions (Cabal
etal., 2004; Kuca et al., 2004), while the AChE reactivators with the
oxime group in position 2 are the best reactivators of cyclosarin-
inhibited AChE (Kuca et al., 2006a). On the other hand, the number
of oxime groups is not so important. The oxime K203 has only one
oxime group, but it is more effective in reactivation of tabun-
inhibited AChE than bispyridinium oximes with two oxime groups,
such as obidoxime (Kassa et al., 2008; Musilek et al., 2007). The
chain linking two quaternary nitrogens in bispyridinium oximes
also exerts a great influence on the reactivating efficacy, although
this part of the oxime molecule does not play any role in the
dephosphonylation process. The tri- or tetracarbon chain seems to
be the most suitable for the sufficient ability of oximes to reactivate
tabun-inhibited AChE (Kuca et al., 2006b; Worek et al., 1998).

To eliminate above mentioned limitations of the effects of AChE
reactivators against tabun, new analogues of bispyridinium oximes
were developed to extend their properties and increase their
ability to reactivate tabun-inhibited AChE (Berend et al., 2008; Kim
etal., 2005; Kovarik et al., 2013; Musilek et al., 2006). The design of
both newly developed oximes (K305, K307) was based on the data
obtained during the extensive work on oxime development and
from structure-activity relationship studies realized at our
Department of Toxicology and Military Pharmacy (Cabal et al.,

2004; Kuca et al., 2006b; Musilek et al., 2011). The oximes K305
and K307 were designed as bis-oxime reactivators with aliphatic
connecting linker that was formerly found to be beneficial for the
reactivation if compared to aliphatically linked monooximes
(Kassa et al., 2012). Their connecting linker was elongated to five
methylene units and the oximes were positioned as 4,4 (K305) or
2,4-moieties (K307). Both compounds proved to be effective
reactivators of tabun, cyclosarin or paraoxon-inhibited hAChE in
vitro comparable with trimedoxime, obidoxime or asoxime within
kinetic experiments (Winter et al., 2016).

Our results demonstrate that the ability of both newly
developed bispyridinium oximes (K305 and K307) administered
at the selected doses to reactivate tabun-inhibited AChE and
reduce tabun-induced acute toxicity is relatively low and it does
not achieve the reactivating and therapeutic efficacy of trimedox-
ime and the oxime K203. One reason for their weak effectiveness
can be their relatively high toxicity that is caused by the presence
of two oxime groups in their structure. Small safe dosage of both
oximes can explain their lower reactivating and therapeutic
efficacy compared to trimedoxime and the oxime K203. As the
reactivating and therapeutic efficacy of both examined newly
developed oximes does not prevail the effectiveness of the oxime
K203 and trimedoxime, they are not suitable for their replacement
of commonly used oximes for the treatment of acute tabun
poisoning. However, this fact is only relevant for the animal species
used in this study (rats and mice) because of remarkable species
differences in reactivating properties of oximes.

Conclusions

The development of new oxime structures realized according to
the described requirements (Kuca et al., 2006b; Voicu et al., 2015)
has not brought till now any significant progress in the potency of
current antidotal treatment to sufficiently reactivate tabun-
inhibited AChE and decrease tabun-induced acute lethal toxic
effects, probably due to conformational changes of AChE-tabun
complex in AChE active site that make the nucleophilic attack of
oximes very difficult (Cabal and Bajgar, 1999; Ekstrom et al., 2006).
Thus, it is necessary to create a new approach how to develop new
AChE reactivators enable to better enter into the active site of AChE
inhibited by tabun.
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