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SOME CHARACTERIZATIONS OF INNER PRODUCT

SPACES VIA SOME GEOMETRICAL INEQUALITIES

Marinescu Dan Ştefan, Monea Mihai∗ , Mortici Cristinel

In this paper, we explore some geometrical inequalities. We present versions
for inner product spaces and we prove that this inequalities can characterize
the inner product spaces.

1. INTRODUCTION

It is known that any inner product space is also a normed space, but the reverse
is not necessary true. More, the reverse implication represented, more time, one of
the important problems of mathematical analysis. In 1935, Fréchet [6] solved this
problem and obtained the first characterization of inner product spaces.

Proposition 1.1. (Fréchet) A complex normed space (X, ‖·‖) is an inner product
space if and only if

‖x+ y + z‖2 + ‖x‖2 + ‖y‖2 + ‖z‖2 = ‖x+ y‖2 + ‖y + z‖2 + ‖z + y‖2 ,

for all x, y, z ∈ X.

In the same year, Jordan and von Neumann presented a new result [8], known
as the parallelogram law. This result had a decisive impact on the development of
this research direction.
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Proposition 1.2. (Jordan-von Neumann) A complex normed space (X, ‖·‖) is
an inner product space if and only if

‖x+ y‖2 + ‖x− y‖2 = 2 ‖x‖2 + 2 ‖y‖2 ,

for all x, y ∈ X.

Later, many mathematicians have obtained other such kind of characteriza-
tions. Some recent examples are included in the references [11] or [12].

Hence, transforming Jordan’s result, a new idea appears: the characteriza-
tions of inner product space in terms of inequalities. In this direction, the first
known result, due to Schoenberg [14], is contained in the following proposition.

Proposition 1.3. Let (X, ‖·‖) be a normed space. The norm ‖·‖ is deduced by an
inner product if and only if

‖x+ y‖2 + ‖x− y‖2 ≈ 2 ‖x‖2 + 2 ‖y‖2 ,

for all x, y ∈ X, where the symbol ”≈” denotes exactly one and only one of the
symbol ”≤” or ”≥”.

Today, its known more results. The references [7] or [13] contain some recent
examples. In this context, the aim of our paper is to present new characterizations
of the inner product space involving inequalities. We mention that our main results
have a starting point some geometrical inequalities, proposed in various journals of
elementary mathematics.

In the second section we recall some results included in the references [2] or
[15] and we present and prove similar version for the inner product space (Theo-
rem 2.1, 2.2 and 2.3). The proof of the initial results are connected, fact that is
maintained for its analogues on the inner product space results.

The third section is reserved for new characterizations of the inner product
space (Theorem 3.1, 3.2 and 3.3). These theorems shows that some results from
elementary mathematics are more important than they seem at first view.

2. SOME GEOMETRICAL INEQUALITIES

In [2], Ballieu proved that, for any triangle ABC, the following inequality is
true:

(1) sin
A

2
≤ a

b+ c
.

The equality holds if and only if b = c.
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By using geometrical interpretation of some relation from normed or inner
product space (for example see [1]). the inequality (1) for inner product space is
following:

Theorem 2.1. Let X a real or complex normed space and x, y, z ∈ X such that
x+ y + z = 0. Then

(2) (‖y‖+ ‖z‖)
√
‖x‖2 − (‖y‖ − ‖z‖)2 ≤ 2 ‖x‖ ·

√
‖y‖ · ‖z‖.

The equality holds when ‖y‖ = ‖z‖ or there exists λ ≥ 0 such that y = λz.

Proof. We have

(‖y‖+ ‖z‖) ·
√
‖x‖2 − (‖y‖ − ‖z‖)2 ≤ 2 ‖x‖ ·

√
‖y‖ · ‖z‖

⇔ (‖y‖+ ‖z‖)2 ·
(
‖x‖2 − (‖y‖ − ‖z‖)2

)
≤ 4 ‖x‖2 · ‖y‖ · ‖z‖

⇔ (‖y‖+ ‖z‖)2 ‖x‖2 − (‖y‖+ ‖z‖)2
(‖y‖ − ‖z‖)2 ≤ 4 ‖x‖2 · ‖y‖ · ‖z‖

⇔ 0 ≤ (‖y‖+ ‖z‖)2
(‖y‖ − ‖z‖)2 − (‖y‖ − ‖z‖)2 ‖x‖2

⇔ 0 ≤ (‖y‖ − ‖z‖)2
(

(‖y‖+ ‖z‖)2 − ‖x‖2
)
.

The last inequality is true due the fact that

‖x‖ = ‖−y − z‖ = ‖y + z‖ ≤ ‖y‖+ ‖z‖ .

The equality holds if (‖y‖+ ‖z‖)2
= 0 or (‖y‖+ ‖z‖)2−‖x‖2 = 0, also y = z or or

there exists λ ≥ 0 such that y = λz. Now the proof is complete.

We remark that, under the condition y, z ∈ X\ {0} , the inequality (2) be-
comes √

‖x‖2 − (‖y‖ − ‖z‖)2

2 ·
√
‖y‖ · ‖z‖

≤ ‖x‖
‖y‖+ ‖z‖

,

also a closer form to Ballieu inequality.

Based to (1), it can prove the following inequality, known as the cevian in-
equality. We recall that, for any triangle ABC and for any point D ∈ (BC) such

that
BD

BC
= t, we have

(3) AD ≥ (tb+ (1− t) c) cos
A

2
.

If t =
1

2
, we obtain

(4) 2ma ≥ (b+ c) cos
A

2
,
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also an inequality that involves the median of the triangle.

The following theorem extend these two inequalities for the case of the inner
product space.

Theorem 2.2 Let X a real or complex inner product space. Then:

a) For any x, y ∈ X and t ∈ [0, 1] , we have

(t ‖x‖+ (1− t) ‖y‖) ·
√

(‖x‖+ ‖y‖)2 − ‖x− y‖2(5)

≤ 2 ‖tx+ (1− t) y‖ ·
√
‖x‖ · ‖y‖;

b) For any x, y ∈ X, we have

(6) (‖x‖+ ‖y‖) ·
√

(‖x‖+ ‖y‖)2 − ‖x− y‖2 ≤ 2 · ‖x+ y‖ ·
√
‖x‖ · ‖y‖.

Proof. a) We use the equality

(7) ‖tx+ (1− t) y‖2 = t ‖x‖2 + (1− t) ‖y‖2 − t (1− t) ‖x− y‖2 .

The most general form of (7) can be found in [12]. We apply Theorem 2.1 for
tx+ (1− t) y, −tx and − (1− t) y and we obtain

(‖tx‖+ ‖(1− t) y‖) ·
√
‖tx+ (1− t) y‖2 − (‖tx‖ − ‖(1− t) y‖)2

(8)

≤ 2 ‖tx+ (1− t) y‖ ·
√
‖tx‖ · ‖(1− t) y‖

Hence

‖tx+ (1− t) y‖2 − (‖tx‖ − ‖(1− t) y‖)2

= t ‖x‖2 + (1− t) ‖y‖2 − t (1− t) ‖x− y‖2 − t2 ‖x‖2 − (1− t)2 ‖y‖2

+ 2t (1− t) ‖x‖ ‖y‖

= t (1− t) ‖x‖2 + t (1− t) ‖y‖2 + 2t (1− t) ‖x‖ ‖y‖

− t (1− t) ‖x− y‖2

= t (1− t)
((
‖x‖2 + ‖y‖2

)
− ‖x− y‖2

)
,

then (8) becomes

(‖tx‖+ ‖(1− t) y‖) ·
√
t (1− t)

((
‖x‖2 + ‖y‖2

)
− ‖x− y‖2

)
≤ 2 ‖tx+ (1− t) y‖ ·

√
t ‖x‖ · (1− t) ‖y‖.

Now, we obtain the conclusion after the simplify with
√
t (1− t).

b) We choose t =
1

2
in (5) and we obtain (6) .



428 Marinescu Dan Ştefan, Monea Mihai, Mortici Cristinel

Based to the previous elementary results, Tsintsifas [15] proved that the
following inequality

(9)
(b+ c)

2

4bc
≤ ma

wa
,

holds for any triangle.

Further, we consider an inner product space X and x, y ∈ X. If we accept that

(0, x, y) represents a triangle, then
x+ y

2
denotes the ”midpoint” of the ”segment”

xy and
‖y‖
‖x+ y‖

· x +
‖y‖
‖x+ y‖

· y denotes the point where the ”bisector” of the

”angle” xOy bisects the ”line” xy. Then (9) becomes:

Theorem 2.3. Let X a real or complex inner product space. Then

(10) (‖x‖+ ‖y‖) · ‖‖y‖ · x+ ‖x‖ · y ‖ ≤ 2 ‖x‖ · ‖y‖ · ‖x+ y‖ ,

for any x, y ∈ X.

Proof. The inequality is trivial if x = 0 or y = 0. We can assume that x, y ∈ X\ {0} .
We denote

t =
‖y‖

‖x‖+ ‖y‖
.

By applying (7), we obtain∥∥∥∥ ‖y‖
‖x‖+ ‖y‖

· x+
‖x‖

‖x‖+ ‖y‖
· y
∥∥∥∥2

=
‖y‖

‖x‖+ ‖y‖
· ‖x‖2 +

‖x‖
‖x‖+ ‖y‖

· ‖y‖2

− ‖x‖ · ‖y‖
(‖x‖+ ‖y‖)2 · ‖x− y‖

2
,

which is equivalent with

‖ ‖y‖ · x+ ‖x‖ · y ‖2 = ‖x‖ · ‖y‖ · (‖x‖+ ‖y‖)2 − ‖x‖ · ‖y‖ · ‖x− y‖2 .

We obtain

‖ ‖y‖ · x+ ‖x‖ · y ‖ =
√
‖x‖ · ‖y‖ ·

√
(‖x‖+ ‖y‖)2 − ‖x− y‖2.

Now, we apply (6) and we have

(‖x‖+ ‖y‖) · ‖‖y‖ · x+ ‖x‖ · y ‖

= (‖x‖+ ‖y‖) ·
√
‖x‖ · ‖y‖ ·

√
(‖x‖+ ‖y‖)2 − ‖x− y‖2

≤ 2 · ‖x+ y‖ ·
√
‖x‖ · ‖y‖ ·

√
‖x‖ · ‖y‖

= 2 · ‖x‖ · ‖y‖ · ‖x+ y‖

and the proof is complete.
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An interesting fact is that the inequality (10) is connected with another know
inequality, respectively Dunkl-William inequality (see [4]). They proved that

(11)

∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥ ≤ 2 ‖x− y‖
‖x‖+ ‖y‖

hold for any x, y ∈ X\ {0} , where X represent a real or complex inner space. This
connection is more general because the following theorem proved the equivalence
between these two inequalities hold for any normed space.

Theorem 2.4. Let X a real or complex normed space. The inequalities ( 10) and
( 11) are equivalents.

Proof. First, we apply (10) for x and −y and we obtain

(‖x‖+ ‖y‖) · ‖‖y‖x− ‖x‖ y‖ ≤ 2 ‖x‖ · ‖y‖ · ‖x− y‖ .

This is equivalent with

‖‖y‖ · x− ‖x‖ · y ‖
‖x‖ · ‖y‖

≤ 2 ‖x− y‖
‖x‖+ ‖y‖

and we find (11). A similar reasoning led us from (11) to (10).

We conclude this section with a consequence of the previous results. We
obtain a short solution for the inequality Dadipour-Moslehian from [3].

Corrolary 2.5. (Dadipour-Moslehian) Let X a real or complex inner product
space. Let x, y ∈ X\ {0} . Then:

a) For any t ∈ conv
{

‖y‖
‖x‖+ ‖y‖

,
1

2

}
, we have

‖tx+ (1− t) y‖ ≤ 2t (1− t) ‖x+ y‖ ;

b) For any s ∈ [0, 1] , we have∥∥∥∥ x

‖x‖s
+

y

‖y‖s
∥∥∥∥ ≤ 2 ‖x+ y‖

‖x‖s + ‖y‖s
.

Proof. a) Let the function f : [0, 1]→ R, defined for any s ∈ [0, 1] by

f (s) = ‖sx+ (1− s) y‖ − 2s (1− s) ‖x+ y‖ .

This is a convex function as a sum of two convex functions. Moreover, f

(
1

2

)
= 0.
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Denote u =
‖y‖

‖x‖+ ‖y‖
. Let t ∈ conv

{
u,

1

2

}
. Then there exists α ∈ [0, 1]

such that t = αu+ (1− α)
1

2
. Then

f (t) = f

(
αu+ (1− α)

1

2

)
≤ αf (u) + (1− α) f

(
1

2

)
= α (‖ux+ (1− u) y‖ − 2u (1− u) ‖x+ y‖)

≤ α ·
∥∥∥∥ ‖y‖
‖x‖+ ‖y‖

· x+
‖x‖

‖x‖+ ‖y‖
· y
∥∥∥∥− 2 · ‖x‖ · ‖y‖

(‖x‖+ ‖y‖)2 · ‖x+ y‖

= α · (‖x‖+ ‖y‖) · ‖‖y‖ · x+ ‖x‖ · y ‖ − 2 ‖x‖ · ‖y‖ · ‖x+ y‖
(‖x‖+ ‖y‖)2

≤ 0,

due to (10).

b) The case ‖x‖ = ‖y‖ goes to equality. We assume that ‖x‖ 6= ‖y‖ and
define the function

g : [0, 1]→ R, g (s) =
‖y‖s

‖x‖s + ‖y‖s
.

This function is continuous and monotone. Then

g ([0, 1]) = conv {g (0) , g (1)} = conv

{
‖y‖

‖x‖+ ‖y‖
,

1

2

}
,

also
‖y‖s

‖x‖s + ‖y‖s
∈ conv

{
‖y‖

‖x‖+ ‖y‖
,

1

2

}
,

for any s ∈ [0, 1] . Now, we apply the previous assertion for t =
‖y‖s

‖x‖s + ‖y‖s
and

we obtain ∥∥∥∥ ‖y‖s

‖x‖s + ‖y‖s
· x+

‖x‖s

‖x‖s + ‖y‖s
· y
∥∥∥∥ ≤ 2 · ‖x‖s ‖y‖s

(‖x‖s + ‖y‖s)2 · ‖x+ y‖

⇔ ‖‖y‖s · x+ ‖x‖s · y ‖ ≤ 2 · ‖x‖
s ‖y‖s

‖x‖s + ‖y‖s
· ‖x+ y‖

⇔ ‖‖y‖s · x+ ‖x‖s · y ‖
‖x‖s · ‖y‖s

≤ 2 ‖x+ y‖
‖x‖s + ‖y‖s

and the conclusion follows now.
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3. SOME NEW CHARACTERIZATIONS OF INNER PRODUCT
SPACE

Some of the inequalities proved in the previous section are more important
because its characterize the inner product space, also represent some conditions
that a normed space to be an inner produc space. We start with the inequality
(10) and we present two proof for the following theorem.

Theorem 3.1. Let X a real or complex normed space. If the inequality ( 10) holds,
for any x, y ∈ X, then X is an inner product space.

First proof. In [9], Kirk proved that a real or complex normed space is an inner
product space if and only if the inequality (11) holds. In this context, our proof is
consequences of Theorem 2.4.

Second proof. In [10], Lorch proved that a real or complex normed space X is an
inner product space if and only if∥∥αx+ α−1y

∥∥ ≥ ‖x+ y‖ ,

for any x, y ∈ X with ‖x‖ = ‖y‖ and α > 0.

Now, let x, y ∈ X with ‖x‖ = ‖y‖ and α > 0. We apply (10) for αx and α−1y
and we obtain(

‖αx‖+
∥∥α−1y

∥∥) · ∥∥∥∥α−1y
∥∥αx+ ‖αx‖α−1y

∥∥ ≤ 2 ‖αx‖ ·
∥∥α−1y

∥∥ · ∥∥αx+ α−1y
∥∥

⇔
(
α ‖x‖+ α−1 ‖y‖

)
· ‖‖y‖x+ ‖x‖ y‖ ≤ 2 ‖x‖ · ‖y‖ ·

∥∥αx+ α−1y
∥∥

⇔
(
α+ α−1

)
‖x‖ · ‖x‖ ‖x+ y‖ ≤ 2 ‖x‖2 ·

∥∥αx+ α−1y
∥∥

⇔
(
α+ α−1

)
‖x+ y‖ ≤ 2 ·

∥∥αx+ α−1y
∥∥ .

Hence 2 ≤ α+ α−1, we obtain

2 ‖x+ y‖ ≤
(
α+ α−1

)
‖x+ y‖ ≤ 2 ·

∥∥αx+ α−1y
∥∥ ,

also Lorch’s inequality. Now, the second proof is complete.

In the same mode, we will see that the inequlities (5) and (6) characterize
the inner product space.

Theorem 3.2. Let X a real or complex normed space. If the inequality ( 6) holds,
for any x, y ∈ X, then X is an inner product space.

Proof. Our proof is based on the Day’s results [5]. He proved that a real or complex
normed space X is an inner product space if and only if

‖x+ y‖2 + ‖x− y‖2 ≥ 4,



432 Marinescu Dan Ştefan, Monea Mihai, Mortici Cristinel

for any x, y ∈ X with ‖x‖ = ‖y‖ = 1.

Now, let x, y ∈ X, such that ‖x‖ = ‖y‖ = 1. Then (6) becames

2 ·
√

4− ‖x− y‖2 ≤ 2 · ‖x+ y‖
⇔ 4− ‖x− y‖2 ≤ ‖x+ y‖2 ,

also Day’s inequality. Now the conclusion follows.

Theorem 3.3. Let X a real or complex normed space. If the inequality ( 5) holds
then X is an inner product space.

Proof. Theorem 2.2 shows that (5) implies (6). Now the conclusion follows due to
the previous theorem.

We conclude saying that the results from in this paper prove the beauty of the
mathematics. In fact, more elementary results conceal deeper results from higher
mathematics. Some of these have been discovered, while others are waiting to be
discovered.
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