
Applicable Analysis and Discrete Mathematics
available online at http://pefmath.etf.rs

Appl. Anal. Discrete Math. 11 (2017), 39–61.

DOI: https://doi.org/10.2298/AADM1701039K

ABSTRACT DEGENERATE FRACTIONAL

DIFFERENTIAL INCLUSIONS IN BANACH SPACES

Marko Kostić

In the paper under review, we investigate a class of abstract degenerate frac-
tional differential inclusions with Caputo derivatives. We consider subordi-
nated fractional resolvent families generated by multivalued linear operators,
which do have removable singularities at the origin. Semi-linear degenerate
fractional Cauchy problems are also considered in this context.

1. INTRODUCTION AND PRELIMINARIES

The main purpose of this paper is to consider a class of abstract degenerate
fractional differential inclusions with multivalued linear operators satisfying the
following condition

(QP): There exist finite numbers 0 < β ≤ 1, 0 < d ≤ 1, M > 0 and 0 < η′ < η′′ ≤ 1
such that

Ψd,πη′′/2 :=
{
λ ∈ C : |λ| ≤ d or λ ∈ Σπη′′/2

}
⊆ ρ(A)

and
‖R(λ : A)‖ ≤M

(
1 + |λ|

)−β
, λ ∈ Ψd,πη′′/2.

Thus we continue our previous research study [19], where we have recently
considered fractional resolvent families subordinated to infinitely differentible semi-
groups generated by the multivalued linear operators satisfying the following con-
dition (cf. Chapter III of the monograph [11] by A. Favini and A. Yagi for more
details):
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(P) There exist finite constants c, M > 0 and β ∈ (0, 1] such that

Ψ :=
{
λ ∈ C : <λ ≥ −c

(
|=λ|+ 1

)}
⊆ ρ(A)

and
‖R(λ : A)‖ ≤M

(
1 + |λ|

)−β
, λ ∈ Ψ.

In both cases, Yosida approximations cannot be essentially emloyed in the analysis
of abstract degenerate fractional differential inclusions under our consideration (cf.
[11, p. 52]). Furthermore, a great number of results presented in [11, Section
3.2-Section 3.5] and the recent papers [8]-[10] is not attainable in fractional case.

The most important novelty of this paper lies in the fact that the resolvent
set of a multivalued linear operator A satisfying (QP) can be strictly contained in
an acute angle. In connection with this, it should be observed that the established
results seem to be completely new even for non-degenerate fractional differential
equations with almost sectorial operators (cf. [7], [20], [25]-[26] and [33] for the ba-
sic source of information on the abstract differential equations with almost sectorial
linear operators satisfying (QP) with some number η′′ > 1).

Our abstract theoretical results can be applied in the analysis of a large
class of fractional differential inclusions involving the rotations of multivalued lin-
ear operators considered in [11, Chapter III, Chapter VI]. By [25, Proposition
3.6] ([21, Corollary 5.6]), fractional powers of almost sectorial operators (sectorial
multivalued linear operators) satisfy, under some assumptions, the condition (QP)
and can therefore be used for providing certain applications of our results, as well.
Concerning purely non-degenerate case, it should be noticed that we can apply our
results in the analysis of a large class of abstract time-relaxation equations with
differential operators acting in Hölder spaces ([32]) as well as in the analysis of
limit problems of fractional diffusion equations in complex systems on the so-called
dumbbell domains ([3], [33]). Suitable translations of generators of fractionally
integrated semigroups with corresponding growth order satisfy the condition (QP)
with η′′ = 1 and 0 < β < 1, as well (cf. [26, Example 3.3]).

The organization of paper is given as follows. In Section 2, we present a brief
overview of definitions and results from the theory of multivalued linear operators.
The main contributions of paper are contained in Section 3, where we transfer the
assertions of [11, Theorem 3.1, Theorem 3.3, Theorem 3.5; Proposition 3.4] from
semigroup case to fractional relaxation case (we have faced ourselves with some se-
rious difficulties concerning the fractional analogue of the assertion [11, Proposition
3.2], when we are no longer in a position to conclude that the operator Tη′,r+θ(z)
defined below is a bounded linear section of the operator (−A)θTη′,r(z)). Having
this done, it is almost straightforward to extend the results from [19] concern-
ing subordinated degenerate fractional resolvent families and semilinear fractional
Cauchy inclusion

(DFP)f,s,η :

{
Dη
t u(t) ∈ Au(t) + f(t, u(t)), t ∈ (0, T ],
u(0) = u0,
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where 0 < T < ∞, 0 < η < η′ and Dη
t denotes the Caputo fractional derivative

operator of order η ([2]); cf. Section 4 for more details.

We assume henceforth that (E, ‖ · ‖) is a complex Banach space. In the
case that X is also a complex Banach space, then we denote by L(E,X) the space
consisting of all continuous linear mappings from E into X; L(E) ≡ L(E,E). If A
is a closed linear operator acting on E, then the domain, kernel space and range
of A will be denoted by D(A), N(A) and R(A), respectively. Since no confusion
seems likely, we will identify A with its graph.

Given s ∈ R and α ∈ (0, π] in advance, set dse := inf{l ∈ Z : s ≤ l} and
Σα := {z ∈ C\{0} : | arg(z)| < α}. The Gamma function is denoted by Γ(·) and the
principal branch is always used to take the powers; the convolution like mapping ∗
is given by f ∗ g(t) :=

∫ t
0
f(t− s)g(s) ds. Set gζ(t) := tζ−1/Γ(ζ) and 0ζ := 0 (ζ > 0,

t > 0).

Suppose that 0 < τ ≤ ∞, m ∈ N and I = (0, τ). Then we define the Sobolev
space Wm,1(I : E) in the following way (see e.g. [2, p. 7]):

Wm,1(I : E) :=

{
f | ∃ϕ ∈ L1(I : E) ∃ck ∈ C (0 ≤ k ≤ m− 1)

f(t) =

m−1∑
k=0

ckgk+1(t) +
(
gm ∗ ϕ

)
(t) for a.e. t ∈ (0, τ)

}
.

Then we have ϕ(t) = f (m)(t) in distributional sense, and ck = f (k)(0) (0 ≤ k ≤
m− 1).

In the sequel, we will use the following special case of weighted AM-GM
inequality:

θt+ (1− θ)s ≥ tθs1−θ, t, s ≥ 0, θ ∈ (0, 1).(1.1)

We refer the reader to [5], [11], [22] and [30] for further information about
abstract degenerate differential equations with integer order derivatives. Concern-
ing fractional calculus and fractional differential equations, we recommend for the
reader [2], [6], [13]-[14] and [27]-[29].

In this paper, we deal with the Caputo fractional derivatives of order γ ∈
(0, 1). Let us recall that the Caputo fractional derivative Dγ

t u(t) is defined for
those functions u : [0, T ]→ E satisfying that u|(0,T ](·) ∈ C((0, T ] : E), u(·)−u(0) ∈
L1((0, T ) : E) and g1−γ ∗ (u(·)− u(0)) ∈W 1,1((0, T ) : E), by

Dγ
t u(t) =

d

dt

[
g1−γ ∗

(
u(·)− u(0)

)]
(t), t ∈ (0, T ].

The Wright function Φγ(z) is defined by

Φγ(z) :=

∞∑
n=0

(−z)n

n!Γ(1− γ − nγ)
, z ∈ C (γ ∈ (0, 1)).
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Let us recall that Φγ(t) ≥ 0, t ≥ 0 and that the following identity holds:

(a1)
∫∞

0
trΦγ(t) dt = Γ(1+r)

Γ(1+γr) , r > −1.

For the theory of vector-valued Laplace transform, the reader may consult
[1], [34, Chapter 1], [14, Section 1.2] and [17]. In this paper, we follow the usually
considered approach from [1].

We will use the following lemma.

Lemma 1.1. Suppose that A is a closed MLO, as well as that the functions
f(·) and l(·) are Laplace transformable. If (f̃(λ), l̃(λ)) ∈ A, λ ∈ C for <λ >
max(abs(f), abs(l)), then Af(t) = l(t) for any t > 0 which is a point of continuity

of both functions f(t) and l(t). Here, f̃(λ) = L(f)(λ) =
∫ t

0
e−λtf(t) dt, λ > abs(f).

2. MULTIVALUED LINEAR OPERATORS

The monographs [4] and [11] contain the most important information con-
cerning multivalued linear operators and their applications to abstract degenerate
differential equations. Let us recall that a multivalued mapping A : E → P (E)
is said to be a multivalued linear operator (MLO in E, or simply, MLO) iff the
following two conditions hold:

(i) D(A) := {x ∈ X : Ax 6= ∅} is a linear subspace of E;

(ii) Ax+Ay ⊆ A(x+ y), x, y ∈ D(A) and λAx ⊆ A(λx), λ ∈ C, x ∈ D(A).

It is well known that, for every x, y ∈ D(A) and for every λ, η ∈ C with
|λ|+ |η| 6= 0, we have λAx+ ηAy = A(λx+ ηy). Morevoer, A0 is a linear manifold
in E and Ax = f +A0 for any x ∈ D(A) and f ∈ Ax. Define R(A) := {Ax : x ∈
D(A)}. The set A−10 := N(A) := {x ∈ D(A) : 0 ∈ Ax} is called the kernel of A.
The inverse A−1 is given by D(A−1) := R(A) and A−1y := {x ∈ D(A) : y ∈ Ax}.
It can be easily verified that A−1 is an MLO in E, as well as that N(A−1) = A0
and (A−1)−1 = A. If N(A) = {0}, i.e., if A−1 is single-valued, then A is said to be
injective.

Suppose that A, B are two MLOs in E. Then we define its sum A + B
by D(A + B) := D(A) ∩ D(B) and (A + B)x := Ax + Bx, x ∈ D(A + B). It is
again an MLO in E. The product of A and B is defined by D(BA) := {x ∈ D(A) :
D(B)∩Ax 6= ∅} and BAx := B(D(B)∩Ax). We have that BA is an MLO in E and
(BA)−1 = A−1B−1. The inclusion A ⊆ B means that D(A) ⊆ D(B) and Ax ⊆ Bx
for all x ∈ D(A). The scalar multiplication of an MLO A with the number z ∈ C,
zA for short, is defined by D(zA) := D(A) and (zA)(x) := zAx, x ∈ D(A).

Suppose now that a linear single-valued operator S : D(S) ⊆ E → E
has domain D(S) = D(A) and S ⊆ A, where A is an MLO in E. Then S is
called a section of A. In this case, the equalities Ax = Sx + A0, x ∈ D(A) and
R(A) = R(S) +A0 holds good.
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It is said that an MLO operator A is closed if for any nets (xτ ) in D(A)
and (yτ ) in E such that yτ ∈ Axτ for all τ ∈ I we have that the suppositions
limτ→∞ xτ = x and limτ→∞ yτ = y imply x ∈ D(A) and y ∈ Ax. If the MLO A
is not closed, then we can simply prove that its closure A, defined as usual, is a
closed MLO in E.

We need the following lemma.

Lemma 2.1. Suppose that A is a closed MLO in E, Ω is a locally compact and
separable metric space, as well as that µ is a locally finite Borel measure defined
on Ω. Let f : Ω→ E and g : Ω→ E be µ-integrable, and let g(x) ∈ Af(x), x ∈ Ω.
Then

∫
Ω
f dµ ∈ D(A) and

∫
Ω
g dµ ∈ A

∫
Ω
f dµ.

The resolvent set of an MLO A, ρ(A) for short, is defined as the union of
those complex numbers λ ∈ C satisfying that

(i) R(λ−A) = E, and

(ii) R(λ : A) ≡ (λ−A)−1 is a single-valued bounded operator on E.

It is not difficult to prove that ρ(A) is an open subset of C. As in single-valued
linear case, the operator λ 7→ R(λ : A) is called the resolvent of A (λ ∈ ρ(A)). If
ρ(A) 6= ∅, then A is closed and, for every λ ∈ ρ(A), we have A0 = N((λI −A)−1).

The following lemma will be of crucial importance in our further work ([11],
[15]).

Lemma 2.2.

(i) We have(
λ−A

)−1A ⊆ λ
(
λ−A

)−1 − I ⊆ A
(
λ−A

)−1
, λ ∈ ρ(A).

The operator (λ − A)−1A is single-valued on D(A) and (λ − A)−1Ax =
(λ−A)−1y, whenever y ∈ Ax and λ ∈ ρ(A).

(ii) Suppose that λ, µ ∈ ρ(A). Then the resolvent equation(
λ−A

)−1
x−

(
µ−A

)−1
x = (µ− λ)

(
λ−A

)−1(
µ−A

)−1
x, x ∈ E

holds. In particular, (λ−A)−1(µ−A)−1 = (µ−A)−1(λ−A
)−1

.

(iii) Let ∅ 6= Ω ⊆ ρ(A) be an open non-empty set. Then the mapping λ 7→ (λ −
A)−1 ∈ L(E), λ ∈ Ω is analytic and

dn−1

dλn−1

(
λ−A

)−1
= (−1)n−1(n− 1)!

(
λ−A

)−n ∈ L(E), n ∈ N.

Fractional powers. In this subsection, we assume that (−∞, 0] ⊆ ρ(A) as well
as that there exist finite numbers M ≥ 1 and β ∈ (0, 1] such that

‖R(λ : A)‖ ≤M
(
1 + |λ|

)−β
, λ ≤ 0.
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Then there exist two positive real constants c > 0 and M1 > 0 such that the
resolvent set of A contains an open region Ω = {λ ∈ C : |=λ| ≤ (2M1)−1(c −
<λ)β , <λ ≤ c} of complex plane around the nonpositive half-line (−∞, 0], and we
have the estimate ‖R(λ : A)‖ = O((1 + |λ|)−β), λ ∈ Ω. Let Γ′ be the upwards
oriented curve {ξ± i(2M1)−1(c− ξ)β : −∞ < ξ ≤ c}. Then we define the fractional
power

A−θ :=
1

2πi

∫
Γ′
λ−θ

(
λ−A

)−1
dλ ∈ L(E)

for θ > 1 − β. Set Aθ := (A−θ)−1 (θ > 1 − β). Then the semigroup properties
A−θ1A−θ2 = A−(θ1+θ2) and Aθ1Aθ2 = Aθ1+θ2 hold for θ1, θ2 > 1 − β (it is worth
noting here that the fractional power Aθ need not be injective and that the meaning
of Aθ is understood in the MLO sense for θ > 1− β).

We endow the vector space D(A) with the norm

‖ · ‖[D(A)] := inf
y∈A·

‖y‖.

Then it is well known that (D(A), ‖ · ‖[D(A)]) is a Banach space and that the norm

‖ · ‖[D(A)] is equivalent with the graph norm ‖ · ‖+ ‖ · ‖[D(A)]. Similarly, (D(Aθ), ‖ ·
‖[D(Aθ)]) is a Banach space and we have the equivalence of norms ‖ · ‖[D(Aθ)] and
‖ · ‖+ ‖ · ‖[D(Aθ)] for θ > 1− β.

Suppose that θ ∈ (0, 1). Then the vector space

EθA :=

{
x ∈ E : sup

ξ>0
ξθ
∥∥∥ξ(ξ +A

)−1
x− x

∥∥∥ <∞}

equipped with the norm

‖ · ‖EθA := ‖ · ‖+ sup
ξ>0

ξθ
∥∥∥ξ(ξ +A

)−1 · −·
∥∥∥

forms a Banach space which is continuously embedded in E.

We refer the reader to [8], [21] and [23] for further information concerning
fractional powers of multivalued linear operators.

3. SUBORDINATED FRACTIONAL RESOLVENT FAMILIES

Suppose that the condition (QP) holds. For the beginning of our work, set
δ := min(π/2(η′′−η′)/η′, π/2). Then we define the operator family (Tη′,r(z))z∈Σδ ⊆
L(E) as follows (r ∈ R). Let δ′ ∈ (0, δ), let 0 < ε < δ′ be arbitrarily chosen, and
let

Tη′,r(z)x :=
1

2πi

∫
Γω

eλzλr
(
λη

′
−A

)−1
x dλ, x ∈ E, r ∈ R, z ∈ Σδ′−ε,
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where Γω is oriented counterclockwise and consists of Γ± := {tei((π/2)+δ′) : t ≥ ω}
and Γ0 := {ωeiζ : |ζ| ≤ (π/2) + δ′}. Observe that the Cauchy formula implies that
the definition of Tη′,r(z) is independent of ω > 0.

Arguing as in the proof of [1, Theorem 2.6.1], with ω = 1/|z|, we get that
for each δ′ ∈ (0, δ) and r ∈ R,

∥∥Tη′,r(z)∥∥ = O
(
|z|η

′β−r−1
)
, z ∈ Σδ′ ,(3.2)

as well as that

∞∫
0

e−λtTη′,r(t)x dt = λr
(
λη

′
−A

)−1
x, x ∈ E, λ > 0, provided η′β > r.(3.3)

The most important for us will be the operator family (Tη′,η′−1(t))t>0; in some
representation formulae, the operator family (Tη′,0(t))t>0 takes place, as well.

In fractional framework, the second inequality from [11, Proposition 3.2]
reads as follows:

Proposition 3.1. Suppose that 0 < θ < 1 and θ ≤ β. Then we have R(Tη′,η′−1(t)) ⊆
EθA, t > 0. Furthermore, for every θ ∈ (0, 1), there exists a constant Cθ > 0 such
that

sup
s>0

sθ
∥∥∥sR(s : A)Tη′,η′−1(t)x− Tη′,η′−1(t)x

∥∥∥ ≤ Cθtη′(β−θ−1)‖x‖, t > 0, x ∈ E.

Proof. Let t > 0 and s > 0 be fixed, and let ω > 0 be such that ωη < s. By
Lemma 2.2(ii) and a simple computation, we have that, for every x ∈ E,

sR(s : A)Tη′,η′−1(t)x− Tη′,η′−1(t)x

=
1

2πi

∫
Γω

eλt
λη

′
s

λη′ − s
R(s : A)x dλ− 1

2πi

∫
Γω

eλt
λ2η′−1

λη′ − s
R
(
λη

′
: A
)
x dλ.(3.4)

The usual contour argument shows that

1

2πi

∫
Γω

eλt
λη

′
s

λη′ − s
R(s : A)x dλ

=

∫ ∞
0

e−vtvη
′−1

[
e−iπ(η′−1)

e−iπη′vη′ − s
− eiπ(η′−1)

eiπη′vη′ − s

]
sR(s : A)x dv, x ∈ E.

It is clear that there exists a constant a > 0 such that |e±iπη′vη′ − s| ≥ a(vη
′
+ s),

v > 0. Using (1.1) and this fact, we get that there exists a constant Cθ,1 > 0,
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independent of s > 0, such that:

∥∥∥∥∥sθ
∫ ∞

0

e−vtvη
′−1

[
e−iπ(η′−1)

e−iπη′vη′ − s
− eiπ(η′−1)

eiπη′vη′ − s

]
sR(s : A)x dv

∥∥∥∥∥
≤ 2Ma−1‖x‖

∫ ∞
0

e−vtvη
′−1 s

1−β+θ

vη′ + s
dv

≤ Cθ,1‖x‖
∫ ∞

0

e−vtvη
′−1 s1−β+θ

vη′(β−θ)s1−β+θ
dv

= Cθ,1‖x‖Γ(η′(1− β − θ))tη
′(β−θ−1), t > 0.(3.5)

Now we will estimate the second term in (3.4) multiplied with sθ. It suffices to
consider the following two cases: s > t−η

′
and s < t−η

′
. Suppose first that s >

t−η
′
. Then there exists a constant b > 0 such that |λη′ − s| ≥ b(|λ|η′ + s), λ ∈

Γ1/t. Applying Cauchy theorem and (1.1), we get that there exist two constants
Cθ,2, Cθ,3 > 0, independent of s > 0, such that:

∥∥∥∥∥ 1

2πi

∫
Γω

eλt
λ2η′−1sθ

λη′ − s
R
(
λη

′
: A
)
x dλ

∥∥∥∥∥
=

∥∥∥∥∥ 1

2πi

∫
Γ1/t

eλt
λ2η′−1sθ

λη′ − s
R
(
λη

′
: A
)
x dλ

∥∥∥∥∥
≤ 1

2πb

∫
Γ1/t

e<(λ)t |λ|2η
′−1−η′βsθ

|λ|η′ + s
|dλ|

≤ Cθ,2
∫

Γ1/t

e<(λ)t |λ|2η
′−1−η′βsθ

|λ|η′(1−θ)sθ
|dλ|

= Cθ,2

∫
Γ1/t

e<(λ)t|λ|η
′(1+θ−β)−1 |dλ|

≤ Cθ,3tη
′(β−θ−1), t > 0,

where the last estimate follows from the computation contained in the proof of [1,
Theorem 2.6.1]. If s < t−η

′
, then the equation (3.4) continues to hold with the
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number ω replaced with 1/t therein. Then the residue theorem shows that

sθ

2πi

∫
Γω

eλt
λη

′
s

λη′ − s
R(s : A)x dλ

=

∫ ∞
0

e−vtsθvη
′−1

[
e−iπ(η′−1)

e−iπη′vη′ − s
− eiπ(η′−1)

eiπη′vη′ − s

]
sR(s : A)x dv

+ 2πisθResλ=s1/η′

[
eλtλη

′−1

λη′ − s
sR(s : A)x

]

=

∫ ∞
0

e−vtsθvη
′−1

[
e−iπ(η′−1)

e−iπη′vη′ − s
− eiπ(η′−1)

eiπη′vη′ − s

]
sR(s : A)x dv

+
sθ

η′
ets

1/η′

sR(s : A)x, x ∈ E.(3.6)

We can estimate the first summand in (3.6) and the term∥∥∥∥∥ 1

2πi

∫
Γω

eλt
λ2η′−1sθ

λη′ − s
R
(
λη

′
: A
)
x dλ

∥∥∥∥∥ =

∥∥∥∥∥ 1

2πi

∫
Γ1/t

eλt
λ2η′−1sθ

λη′ − s
R
(
λη

′
: A
)
x dλ

∥∥∥∥∥
as in the case that s > t−η

′
, with the same final estimate. For the second summand

in (3.6), we have the following estimates:∥∥∥sθets1/η′ sR(s : A)x/η′
∥∥∥ ≤M‖x‖s1+θ−βe1/η′ ≤M‖x‖t−η

′(1+θ−β)e/η′, t > 0.

The proof of the theorem is thereby complete. �
Let Γ′ be the integral contour used in the definition of fractional power

(−A)θ, θ > 1− β. Denote by Φ the open region on the right of Γ′.

For the sequel, we need the following useful lemma.

Lemma 3.2.

(i) Suppose that 1− β < θ ≤ 1. Then there exists a constant Cθ > 0 such that

∥∥∥λR(λ : A
)
x− x

∥∥∥ ≤ Cθ|λ|(1−β−θ)‖x‖[D((−A)θ)], λ ∈ Ση′′π/2, x ∈ D
(
(−A)θ

)
.

(3.7)

(ii) Suppose that 1− β < θ < 1. Then there exists a constant Cθ > 0 such that∥∥∥λR(λ : A
)
x− x

∥∥∥ ≤ Cθ|λ|(1−β−θ)‖x‖EθA , λ ∈ Ση′′π/2, x ∈ EθA.(3.8)

Proof. Suppose first that θ = 1. Then Lemma 2.2(i) implies that for any (x, y) ∈ A
one has ∥∥λR(λ : A

)
x− x

∥∥ =
∥∥R(λ : A

)
y
∥∥ ≤M(1 + |λ|

)−β
, λ ∈ Ση′′π/2.
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Taking the infimum, we immediately obtain (3.7). Let 1 − β < θ < 1. Then
the function λ 7→ H(λ) := λ(β+θ−1)[λR(λ : A)x − x], λ ∈ Ση′′π/2 is continuous

on Ση′′π/2, holomorphic on Ση′′π/2 and ‖H(λ)‖ ≤ M |λ|(β+θ−1)[M |λ|1−β + 1]‖x‖,
λ ∈ Ση′′π/2, x ∈ E. Let R1 > 0 be sufficiently large, obeying the properties that

|z + λ| ≥ 1 for z ∈ Γ,′ λ = Re±iπη
′′/2 and −λ = −Re±iπη′′/2 ∈ Φ (R ≥ R1). Put

ΓR,± := {Re±iπη′′/2 : R ≥ R1}. Then it is clear that there exists a constant a > 0
such that a−1(|z|+ |λ|) ≥ |z+λ|, z ∈ Γ′, λ ∈ ΓR,±. By the Phragmén-Lindelöf type
theorem [1, Theorem 3.9.8, p. 179], it suffices to show that the estimates (3.7) and
(3.8) hold for λ ∈ ΓR,±, with an appropriately chosen constant Cθ > 0 independent
of λ ∈ Ση′′π/2 and x ∈ D((−A)θ)) (x ∈ EθA). Suppose first that x ∈ D((−A)θ) and

y ∈ (−A)θx is arbitrarily chosen. Then x = (−A)−θy = 1
2πi

∫
Γ′ z
−θR

(
z : −A)y dz

and it is not difficult to prove with the help of Lemma 2.2(ii) and the residue
theorem that

λη
′
R
(
λη

′
: A
)
x− x =

(−1)

2πi

∫
Γ′

z1−θ

z + λ
R
(
z : −A

)
y dz + (−λ)−θy, λ ∈ ΓR,±.

(3.9)

Keeping in mind the parametrization of Γ′, (3.9) and the fact that y was arbitrary,
we get that, for every λ ∈ ΓR,±, the following holds:∥∥∥λR(λ : A

)
x− x

∥∥∥− |λ|−θ‖x‖[D((−A)θ)]

≤ a‖x‖[D((−A)θ)]

∫ c

−∞

|v|1−θ−β

|v|+ |λ|

(
1 + β2(4M2)−1(c− v)2β−2

)1/2

dv.(3.10)

For the estimation of this integral, we divide the path of integration into three
segments: (−∞, 0], [0, c/2] and [c/2, c]. We have(∫ 0

−∞
+

∫ c/2

0

)
|v|1−θ−β

|v|+ |λ|

(
1 + β2(4M2)−1(c− v)2β−2

)1/2

dv

≤ 2
(

1 + β2(4M2)−1(c/2)2β−2
)1/2

∫ ∞
0

v1−θ−β

v + |λ|
dv

= 2
(

1 + β2(4M2)−1(c/2)2β−2
)1/2

|λ|1−θ−β
∫ ∞

0

v1−θ−β

v + 1
dv

= 2
(

1 + β2(4M2)−1(c/2)2β−2
)1/2

|λ|1−θ−β (−π)

sinπ(θ + β)
, λ ∈ ΓR,±.

The integral over segment [c/2, c] can be majorized by using the following conse-
quence of the inequality (1.1):

|v|1−θ−β

|v|+ |λ|
≤ C ′θ

|v|1−θ−β

|v|2−θ−β |λ|θ+β−1
, λ ∈ ΓR,±, v ∈ [c/2, c],

giving the same final estimate as above. This completes the proof of (i). In order to
prove (ii), fix an element x ∈ EθA. Let us observe that there exists a finite constant
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cθ > 0, independent of x ∈ EθA, such that, for every λ ∈ ΓR,±,

cθ|λ|1−β−θ‖x‖EθA ≥

∥∥∥∥∥(|λ| − λ)(λ−A)−1
[(
|λ| − A

)−1

x− x

]∥∥∥∥∥
=

∥∥∥∥∥
(

1− |λ|
λ

)[(
|λ| − A

)−1

x− x

]
+
(
λ−A

)−1

x

+

[(
1− |λ|

λ

)
x−

(
|λ| − A

)−1

x

]∥∥∥∥∥,
where the last equality follows from Lemma 2.2(ii) and a simple computation. This
implies that, for every λ ∈ ΓR,±,∣∣∣∣∣1− |λ|λ

∣∣∣∣∣
∥∥∥∥∥(|λ| − A)−1

x− x

∥∥∥∥∥
≤cθ|λ|1−β−θ‖x‖EθA +

∥∥∥∥∥(λ−A)−1

x

∥∥∥∥∥+

∥∥∥∥∥
[(

1− |λ|
λ

)
x−

(
|λ| − A

)−1

x

]∥∥∥∥∥
≤cθ|λ|(1−β−θ)‖x‖EθA +M |λ|−β‖x‖

+

∥∥∥∥∥
(

1− |λ|
λ

)
x−

(
|λ| − A

)−1
(

1− |λ|
λ

)
x

∥∥∥∥∥+

∥∥∥∥∥(|λ| − A)−1

x

∥∥∥∥∥
≤cθ|λ|1−β−θ‖x‖EθA +M |λ|−β‖x‖+ 2|λ|−θ‖x‖EθA +M |λ|−β‖x‖.

Taking into account this estimate, the proof of (ii) is completed through a routine
argument. �

Remark 3.3. ([8])

(i) The operator (−A)n, defined as fractional power, coincides with the usually
considered power (−A)n (n ∈ N).

(ii) The space [D(A)] is continuously embedded in [D((−A)θ)] provided that
β > 1/2 and 1− β < θ < β.

Now we are ready to prove the following generalization of [11, Theorem 3.5]
for degenerate fractional differential equations.

Theorem 3.4. Let δ′ ∈ (0, δ).

(i) Suppose that 1− β < θ ≤ 1. Then there exists a constant Cθ,δ′ > 0 such that

∥∥Tη′,η′−1(z)x− x
∥∥ ≤ Cθ,δ′ |z|η′(β+θ−1)‖x‖[D((−A)θ)], z ∈ Σδ′ , x ∈ D

(
(−A)θ

)
.

(3.11)

(ii) Suppose that 1− β < θ < 1. Then there exists a constant Cθ,δ′ > 0 such that∥∥Tη′,η′−1(z)x− x
∥∥ ≤ Cθ,δ′ |z|η′(β+θ−1)‖x‖EθA , z ∈ Σδ′ , x ∈ EθA.
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Proof. Let δ′′ ∈ (δ′, δ), and let 0 < ε < δ − δ′′ be arbitrarily chosen. Then it is
clear that

Tη′,η′−1(z)x− x =
1

2πi

∫
Γ1/|z|

eλz

λ

[
λη

′
R
(
λη

′
: A)x− x

]
dλ, z ∈ Σδ′−ε, x ∈ E.

Now the result follows from Lemma 3.2 and the computation contained in the proof
of [1, Theorem 2.6.1]. �

Suppose now that θ > 1− β. Then it is clear that there exists a sufficiently
small number t0 > 0 such that, for every t ∈ (0, t0] and λ ∈ Γ1/t, we have λη

′ ∈ Φ.
Making use of Lemma 2.2(ii) and Fubini theorem, we get that, for every t ∈ (0, t0],

(
−A
)−θ

Tη′,η′−1(t)x =
(−1)

(2πi)2

∫
Γ1/t

eλtλη
′−1
(
λη

′
−A

)−1

[∫
Γ′

dz

zθ(λη′ − z)

]
dλ

+
1

(2πi)2

∫
Γ1/t

eλtλη
′−1
(
λη

′
−A

)−1

[∫
Γ′

(z −A)−1x

zθ(λη′ − z)
dz

]
dλ.

Applying the residue theorem on the first integral and Fubini theorem on the second
one, we get from the above and definition of (−A)−θ that, for every t ∈ (0, t0],

(
−A
)−θ

Tη′,η′−1(t)x =
1

2πi

∫
Γ1/t

eλtλη
′−1−η′θ(λη′ −A)−1

x dλ+
(
−A
)−θ

x

+
1

2πi

∫
Γ′
z1−θ(z −A)−1

[∫
Γ1/t

eλt

λ(λη′ − z)
dλ

]
dz

:= I1(t) +
(
−A
)−θ

x+ I3(t).

Making use of dominated convergence theorem, we immediately obtain that I1(t)→
0 as t→ 0 + . Let 1 > ζ > 2− θ − β. Then (1.1) implies∫

Γ1/t

|dλ|
|λ||λη′ − z|

≤ a
∫

Γ1/t

|dλ|
|λ||λ|η′ + |z|

≤ a
∫

Γ1/t

|dλ|
|λ||λ|η′(1−ζ)|z|ζ

,(3.12)

where a > 0 is a constant independent of t ∈ (0, t0], λ ∈ Γ1/t and z ∈ Γ′. Taking
into account (3.12), we may apply dominated convergence theorem in order to see
that I3(t)→ 0 as t→ 0 + . Keeping in mind Theorem 3.4(ii) and the commutation
of operators (−A)−θ and Tη′,η′−1(t), we obtain from the above that the following
holds:

(CS) Tη′,η′−1(t)x → x, t → 0+ for any x ∈ E belonging to the space D((−A)θ)
with θ > 1− β (x ∈ EθA with 1 > θ > 1− β).
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4. SUBORDINATION PRINCIPLES

In this section, we investigate degenerate fractional resolvent families that
are subordinated to (Tη′,η′−1(t))t>0. For the simplicity of notation, set Tη′(t) :=
Tη′,η′−1(t), t > 0.

Henceforth, we assume that 0 < γ < 1. Set η := γη′ and, for every ν >
−1− η′(β − 1),

T νη′,γ(t)x := t−γ
∫ ∞

0

sνΦγ
(
st−γ

)
Tη′(s)x ds, t > 0, x ∈ E and T 0

η′,γ(0) := I.

Since

T νη′,γ(t)x = tγν
∫ ∞

0

sνΦγ(s)Tη′
(
stγ
)
x ds, t > 0, x ∈ E,(4.13)

the estimate (3.2) and (a1) together imply that the integral which defines the
operator T νη′,γ(t) is absolutely convergent as well as that∥∥T νη′,γ(t)

∥∥ = O
(
tγ(ν+η′(β−1))

)
, t > 0.

Due to Proposition 3.1, we have that, for every θ ∈ (0, 1), there exists a constant
Cθ > 0 such that, for every ν > −1− η′(β − θ − 1),

sup
s>0

sθ
∥∥∥sR(s : A)T νη′,γ(t)x− T νη′,γ(t)x

∥∥∥ ≤ Cθtγ(ν+η′(β−θ−1)), t > 0.

Taking into account (4.13) and (a1), we get that, for every ν > −1− η′(β − 1),

T νη′,γ(t)

tγν
x− Γ(1 + ν)

Γ(1 + γν)
x =

∫ ∞
0

sνΦγ(s)
[
Tη′
(
stγ
)
x− x

]
ds, t > 0, x ∈ E.(4.14)

Keeping in mind (a1), (4.14) and (CS), we can apply the dominated con-
vergence theorem in order to see that:

(B1)
T ν
η′,γ(t)

tγν x→ Γ(1+ν)
Γ(1+γν)x, t→ 0+ provided that θ > 1− β and x ∈ D((−A)θ), or

that 1 > θ > 1− β and x ∈ EθA (ν > −1− η′(β − 1)).

Using the proof of [2, Theorem 3.1] and (3.3), we get that:

(B2)
∫∞

0
e−λtT 0

η′,γ(t)x dt = λγ−1
∫∞

0
e−λ

γtTη′(t)x dt = λη−1(λη − A)−1x, <λ > 0,
x ∈ E.

Further on, applying Theorem 3.4, (a1) and (4.14), we obtain that:

(B3) ‖T
ν
η′,γ(t)

tγν x − Γ(1+ν)
Γ(1+γν)x‖ = O(tη(β+θ−1)‖x‖[D((−A)θ)]), t > 0, provided 1 > θ >

1 − β, x ∈ D((−A)θ) and ‖T
ν
η′,γ
tγν x −

Γ(1+ν)
Γ(1+γν)x‖ = O(tη(β+θ−1)‖x‖EθA), t > 0,

provided 1 > θ > 1− β, x ∈ EθA (ν > −1− η′(β − 1)).
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Set ξ := min((1/γ−1)π/2, π). By the proof of [2, Theorem 3.3(i)-(ii)], we have that,
for every ν > −1− η′(β − 1), the mapping t 7→ T νη′,γ(t)x, t > 0 can be analytically
extended to the sector Σξ (we will denote this extension by the same symbol) and
that, for every θ ∈ (0, 1), ε ∈ (0, ξ) and ν > −1− η′(β − 1),

(B4) ‖T νη′,γ(z)‖ = O(|z|γ(ν+η′(β−1))), z ∈ Σξ−ε,

as well as that, for every θ ∈ (0, 1), ε ∈ (0, ξ) and ν > −1− η′(β − θ − 1),

(B5) sups>0 s
θ
∥∥∥sR(s : A)T νη′,γ(z)x− T νη′,γ(z)x

∥∥∥ = O(|z|γ(ν+η′(β−θ−1))), z ∈ Σξ−ε.

Remark 4.1. The angle of analyticity ξ of operator family (T νη′,γ(t))t>0 is not
optimal and can be improved by using the consideration from the proof of [16,
Theorem 3.10]. We will not go into further details concerning this question here.

Owing to (B4)-(B5), the Cauchy integral formula and an elementary argu-
mentation, we can deduce that, for every θ ∈ (0, 1), ε ∈ (0, ξ), ν > −1− η′(β − 1)
and n ∈ N,

(B4)’ ‖(dn/dzn)T νη′,γ(z)‖ = O(|z|γ(ν+η′(β−1))−n), z ∈ Σξ−ε,

as well as that, for every θ ∈ (0, 1), ε ∈ (0, ξ), ν > −1− η′(β − θ − 1) and n ∈ N,

(B5)’ sups>0 s
θ
∥∥∥sR(s : A)(dn/dzn)T νη′,γ(z)x− (dn/dzn)T νη′,γ(z)x

∥∥∥
= O(|z|γ(ν+η′(β−θ−1))−n), z ∈ Σξ−ε.

Since
∫∞

0
z−γ(1+ν)sνΦγ(sz−γ) ds = Γ(1+r)

Γ(1+γr) , r > −1, we have

T νη′,γ(z)

zγν
x− Γ(1 + ν)

Γ(1 + γν)
x =

∫ ∞
0

sνΦγ
(
seiϕ

)[
Tη′
(
s|z|γ

)
x− x

]
ds,

where ϕ = −γ arg(z). Keeping in mind this identity and the foregoing argumenta-
tion, we can prove the following extension of properties (B1), (B3):

(B1)’ Suppose that ε ∈ (0, ξ) and δ = ξ− ε. Then limz→0,z∈Σδ

T ν
η′,γ(z)

zγν x = Γ(1+ν)
Γ(1+γν)x,

provided that θ > 1−β and x ∈ D((−A)θ), or that 1 > θ > 1−β and x ∈ EθA
(ν > −β).

(B3)’ Suppose that ε ∈ (0, ξ), δ = ξ − ε and ν > −1− η′(β − 1). Then ‖T
ν
η′,γ(z)

zγν x−
Γ(1+ν)

Γ(1+γν)x‖ = O(|z|η(β+θ−1)‖x‖[D((−A)θ)]), z ∈ Σδ, provided 1 > θ > 1 − β,

x ∈ D((−A)θ), and ‖T
ν
η′,γ(z)

zγν x − Γ(1+ν)
Γ(1+γν)x‖ = O(|z|η(β+θ−1)‖x‖EθA), z ∈ Σδ,

provided 1 > θ > 1− β, x ∈ EθA.

For our further work, we need to single out the following operator families:

Sη(z) := T 0
η′,γ(z), z ∈ Σξ and Pη(z) := z1−η d

dz

∫ z

0

gη(z − s)Sη(s) ds, z ∈ Σξ.
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Clearly, Sη(z) and Pη(z) depend analytically on the parameter z in the uniform
operator topology. It is not difficult to prove that, for every ε ∈ (0, ξ), we have∥∥Sη(z)

∥∥+
∥∥Pη(z)

∥∥ = O
(
|z|η(β−1)

)
, z ∈ Σξ−ε,(4.15)

as well as that ‖(d/dz)Pη(z)‖ = O(|z|η(β−1)−1), z ∈ Σξ−ε. Using this fact, we
can simply prove that, for every R > 0, the mappings z 7→ Sη(z) ∈ L(E), z ∈
Σξ−ε \BR and z 7→ Pη(z) ∈ L(E), z ∈ Σξ−ε \BR are uniformly continuous. Almost
immediately from definition of Pη(·), we have that:

Sη(z)x =
(
g1−η ∗

[
·η−1Pγ(·)x

])
(z), z ∈ Σξ, x ∈ E.

Taking the Laplace transform, we get that∫ ∞
0

e−λttη−1Pη(t)x dt =
(
λη −A

)−1
x, λ > 0, x ∈ E.(4.16)

On the other hand, employing the identity [2, (3.10)] we deduce that∫ ∞
0

e−λtt−γ−1Φγ
(
st−γ

)
dt =

1

γs
e−λ

γs, s > 0, λ > 0.

Making use of this equality and (3.3) with r = 0, we get that

∫ ∞
0

∫ ∞
0

γsTη′,0(s)x
[
e−λtt−γ−1Φγ

(
st−γ

)
dt
]
ds =

(
λη −A

)−1
x, λ > 0, x ∈ E.

(4.17)

By (4.16)-(4.17) and the uniqueness theorem for the Laplace transform, we obtain
the following representation formula

Pγ(t)x = t−η
∫ ∞

0

γsΦγ
(
st−γ

)
Tη′,0(s)x ds, t > 0, x ∈ E,(4.18)

which continue to hold on subsectors of Σξ.

Applying (B2), Lemma 1.1 and Lemma 2.2(i), it is very simple to prove the
expected inclusion ((gη ∗ Sη)(t),Sη(t)x − x) ∈ A, t > 0, x ∈ E. By the closedness
of A, we get that(

d

dt
(gη ∗ Sη)(t),

d

dt
Sη(t)x

)
∈ A, t > 0, x ∈ E.(4.19)

Similarly, we can prove that(
d

dt
(gη′ ∗ Tη′)(t),

d

dt
Tη′(t)x

)
∈ A, t > 0, x ∈ E.(4.20)
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On the other hand, differentiating (4.13) we get

d

dz
Sη(z)x = γzγ−1

∫ ∞
0

sΦγ(s)T ′η′
(
szγ
)
x ds, z ∈ Σξ, x ∈ E.(4.21)

Keeping in mind (4.21) and Lemma 2.1, it readily follows that

d

dz
Sη(z)x ∈ A

[
γzγ−1

∫ ∞
0

sΦγ(s)
d

ds

(
gη′ ∗ Tη′

)(
szγ
)
x ds

]
, z ∈ Σξ, x ∈ E.

(4.22)

Due to (4.19)- (4.21) and Lemma 2.1, we have

d

dt

(
gη ∗ Sη

)
(t)x = A−1 d

dt
Sη(t)x

= A−1

[
γtγ−1

∫ ∞
0

sΦγ(s)T ′η′
(
stγ
)
x ds

]

= γtγ−1

∫ ∞
0

sΦγ(s)
d

ds

(
gη′ ∗ Tη′

)(
stγ
)
x ds, t > 0, x ∈ E.

Using this equality, the uniqueness theorem for analytic functions and the fact
that the mapping z 7→ γzγ−1

∫∞
0
sΦγ(s) dds (gη′ ∗ Tη′)(szγ) ds, z ∈ Σξ is strongly

analytic, we may conclude that the term appearing in brackets of (4.22) is equal to
d
dz (gη ∗ Sη)(z)x, z ∈ Σξ, x ∈ E. Hence,

d

dz
Sη(z)x ∈ zη−1APη(z)x, z ∈ Σξ, x ∈ E.

Suppose now that (x, y) ∈ A. Then Sη(z)y ∈ ASη(z)x and Pη(z)y ∈ APη(z)x
(z ∈ Σξ). Further on, performing the Laplace transform, we can simply prove
with the help of Lemma 2.2(i) that Sη(t)x − x = (gη ∗ Sη)(t)y, t > 0. Hence,
(d/dt)Sη(t)x = (d/dt)(gη ∗ Sη)(t)y, t > 0 and, by the uniqueness theorem for
analytic functions, (d/dz)Sη(z)x = (d/dz)(gη∗Sη)(z)y, z ∈ Σξ. Therefore, Sη(z)x−
x =

∫ z
0
λη−1Pη(λ)y dλ, z ∈ Σξ and

d

dz
Sη(z)x ∈ zη−1Pη(z)y, z ∈ Σξ,

which clearly implies in combination with (4.15) that the mapping t 7→ d
dtSη(t)x,

t > 0 is locally integrable. Furthermore, the identity (g1−η ∗ [Sη(·)x − x])(t) =∫ t
0
Sη(s)y ds, t ≥ 0 almost immediately implies that Dη

t Sη(t)x = Sη(t)y ∈ ASη(t)x,
t > 0. As observed in [19], this result is not optimal. Let 1 > θ > 1−β, and let x ∈
D((−A)θ)∩EθA. Then the mapping t 7→ F (t) := (g1−η∗[Sη(·)x−x])(t) is continuous
for t ≥ 0 and can be analytically extended from the positive real axis to the sector
Σξ, with the estimate ‖F (z)‖ = O(|z|η(β+θ−2)+1) on any proper subsector of Σξ (see
(B3)’). By the Cauchy integral formula, we deduce that ‖F ′(z)‖ = O(|z|η(β+θ−2))
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on proper subsectors of Σξ and, consequently, the Caputo fractional derivative
Dη
t Sη(t)x is well-defined. Since Sη(t)x − x ∈ A(gη ∗ Sη)(t)x, t > 0, Lemma 2.1

yields that F (t) ∈ A(g1 ∗ Sη)(t)x, t ≥ 0. By the closedness of A, we get that
Dη
t Sη(t)x = F ′(t) ∈ ASη(t)x, t > 0.

Suppose now that 1 > θ > 1− β. Then, for every x ∈ D((−A)θ) ∩ EθA, the
mapping z 7→ d

dzSη(z)x = d
dz [Sη(z)x−x] is bounded by |z|η(β+θ−1)−1 on subsectors

of Σξ; this follows from the Cauchy integral formula and the property (B3)’ with
ν = 0. Therefore, the mapping t 7→ d

dtSη(t)x, t > 0 is locally integrable for any
x ∈ D((−A)θ) ∩ EθA.

The following definition has been recently introduced in [19].

Definition 4.2. Let T ∈ (0,∞) and f ∈ L1((0, T ) : E). Consider the following
abstract degenerate fractional inclusion:

(DFP)f,η :

{
Dη
t u(t) ∈ Au(t) + f(t), t ∈ (0, T ],
u(0) = u0.

(i) By a mild solution of (DFP)f,η, we mean a function

u(t) = Sη(t)u0 +

∫ t

0

(
t− s

)η−1Pη(t− s)f(s) ds, t ∈ (0, T ].

(ii) By a classical solution of (DFP)f,η, we mean any function u ∈ C([0, T ] : E)
satisfying that the function Dη

t u(t) is well-defined and belongs to the space
C((0, T ] : E), as well as that u(0) = u0 and Dη

t u(t) − f(t) ∈ Au(t) for
t ∈ (0, T ].

A mild solution u(t) of problem (DFP)f,η is automatically continuous on
(0, T ]. If x ∈ D

(
(−A)θ

)
∩EθA, where 1 > θ > 1−β, then the function u(t) = Sη(t)x

is a classical solution of (DFP)f,η, with f ≡ 0. The same holds if x ∈ D(A).

The following extension of [19, Theorem 3.1] holds true:

Theorem 4.3. Suppose that T ∈ (0,∞), 1 ≥ θ > 1 − β and x ∈ D((−A)θ), resp.
1 > θ > 1− β and x ∈ EθA, as well as that there exist constants σ > η(1− β) and
M ≥ 1 such that

‖f(t)− f(s)‖ ≤M |t− s|σ, 0 < t, s ≤ T.(4.23)

Let 1 ≥ θ > 1− β, resp. 1 > θ > 1− β, and let

f ∈ L∞
(

(0, T ) :
[
D
(
(−A)θ

)])
, resp. f ∈ L∞

(
(0, T ) : EθA

)
.

Then there exists a unique classical solution of problem (DFP)f,η.

Proof. We will only provide the most relevant points of proof provided that 1 ≥
θ > 1− β and x ∈ D((−A)θ). Let δ′ ∈ (0, δ) be fixed. Then (3.11) and the Cauchy
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integral formula together imply:∥∥(d/dz)Tη′(z)x
∥∥

=
∥∥(d/dz)[Tη′(z)x− x]

∥∥
≤ Cθ,δ′ |z|η

′(β+θ−1)−1‖x‖[D((−A)θ)], z ∈ Σδ′ , x ∈ D
(
(−A)θ

)
.

Using (4.21) and this estimate, it readily follows that there exists a constant Cθ > 0
such that, for every 0 < s ≤ T and 0 < ω ≤ T,∥∥∥∥∥S′γ(ω)f(s)

∥∥∥∥∥ ≤ Cθ∥∥f(s)
∥∥

[D((−A)θ)]
ωη(β+θ−1)−1.

The remaining part of proof follows by repeating literally the argumentation con-
tained in the proof of [19, Theorem 3.1]. �

Semilinear degenerate Cauchy inclusions. In this subsection, we will present
the most important details concerning the existence and uniqueness of mild solu-
tions of the following semilinear degenerate fractional Cauchy inclusion:

(DFP)f,s,η :

{
Dη
t u(t) ∈ Au(t) + f(t, u(t)), t ∈ (0, T ],
u(0) = u0,

where T ∈ (0,∞) (cf. [12], [19] and references cited there for further information
on the subject). Let us recall ([33], [19]) that a mild solution u(t) := u(t;u0) of
problem (DFP)f,s,η is any function u ∈ C((0, T ] : E) such that

u(t) = Sη(t)u0 +

∫ t

0

(
t− s

)η−1Pη(t− s)f(s, u(s)) ds, t ∈ (0, T ].(4.24)

As in linear case, a classical solution of (DFP)f is any function u ∈ C([0, T ] :
E) satisfying that the function Dη

t u(t) is well-defined and belongs to the space
C((0, T ] : E), as well as that u(0) = u0 and Dη

t u(t) − f(t, u(t)) ∈ Au(t) for
t ∈ (0, T ]. Conditions under which (4.24) defines a classical solution of problem
(DFP)f will not be explored in this paper.

The first thing we would like to observe is that the assertions of [33, Theorem
5.1, Corollary 5.1, Remark 5.1], [18, Theorem 2.1] and [20, Theorem 3.1] can be
simply reformulated in our framework. As explained in [19], this is not the case
with the assertions of [33, Theorem 5.2, Theorem 5.4].

The situation is slightly different with the assertion of [33, Theorem 5.3],
where the authors have considered the existence of mild solutions of semilinear
degenerate fractional Cauchy inclusion (DFP)f,s,η, provided that the resolvent of
A is compact. The operator familiy (Sη(t))t>0 is then subordinated to a semigroup
(T (t))t>0 which do have a removable singularity at zero, and the compactness of
operators Sη(t) and Pη(t) for t > 0 (cf. [33, Lemma 3.1, Theorem 3.5]) has been
proved by following a method based on the use of semigroup property of (T (t))t>0.
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In purely fractional case, we can argue as follows. Recall that the set consisting of
all compact operators on E is a closed linear subspace of L(E) forming a two-sided
ideal in L(E). Since (3.3) and (B2) hold in the uniform operator topology, we can
apply Lemma 2.2(iii), the Post-Widder inversion formula [1, Theorem 1.7.7] and
the formulae [2, (2.16)-(2.17)] in order to see that the operator Tη′,r(t) is compact
for η′β > r, t > 0 and that the operator Sη(t) is compact for t > 0. Applying
(4.18), we obtain that the operator Pη(t) is compact for t > 0, as well. Now we
can reformulate [33, Theorem 5.3] by using the following approximation in Step 3
of its proof:

Γηε,δ(t) := Sη(t) +

∫ t−ε

0

(
t− s

)2γ−1
∫ ∞
δ

γτΦγ(τ)Tη′,0
(
τ(t− s)γ

)
dτ ds,

for t ∈ (0, T ], δ > 0, 0 < ε < t and u ∈ Ωr; cf. [33] for the notion. Assuming the
validity of a condition like [33, (H2)], we can prove the estimate∥∥∥∥∥Sη(t)u0 +

∫ t

0

(
t− s

)η−1Pη(t− s)f(s, u(s)) ds− Γηε,δ(t)

∥∥∥∥∥
≤ Const.

(∫ t−ε

0

(
t− s

)q[βη+γ−1]
ds

)1/q ∥∥mr‖Lp(0,T )

∫ ∞
0

τη
′βΦγ(τ) dτ

+ Const.

(∫ t

t−ε

(
t− s

)q[βη+γ−1]
ds

)1/q ∥∥mr‖Lp(0,T )

∫ ∞
0

τη
′βΦγ(τ) dτ

for p > 1 and q = p/p− 1. Now it is quite simple to reformulate [33, Theorem 5.3]
in our context.

In [26, Theorem 3.1, Theorem 3.2], F. Periago has considered semilinear
Cauchy inclusions of first order associated with the use of almost sectorial operators.
In [19], we have extended these results to degenerate differential inclusions of first
order and remark what can be done in fractional relaxation case. Here we would like
to observe that it is not clear how we can prove an extension of [19, Theorem 4.3]
in the case that the operator family (Sη(t))t>0 is not subordinated to a degenerate
semigroup.

Before we provide some illustrative applications of our results to abstract
(non-)degenerate fractional differential equations, it would be worthwhile to men-
tion that some of theorems considered in this subsection require the condition
β > 1/2, which seems to be restrictive in degenerate case (cf. [19] for more de-
tails).

Example 4.4.

(i) ([32]) Suppose that α ∈ (0, 1), m ∈ N, Ω is a bounded domain in Rn with
boundary of class C4m and E := Cα(Ω). Let us consider the operator A :
D(A) ⊆ Cα(Ω)→ Cα(Ω) given by

Au(x) :=
∑
|β|≤2m

aβ(x)Dβu(x) for all x ∈ Ω
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with domain D(A) := {u ∈ C2m+α(Ω) : Dβu|∂Ω = 0 for all |β| ≤ m − 1}.
Here, β ∈ Nn0 , |β| =

∑n
i=1 βj , D

β =
∏n
i=1( 1

i
∂
∂xi

)βi , and we assume that

aβ : Ω→ C satisfy the following:

(i) aβ(x) ∈ R for all x ∈ Ω and |β| = 2m.

(ii) aβ ∈ Cα(Ω) for all |β| ≤ 2m, and

(iii) there is a constant M > 0 such that

M−1|ξ|2m ≤
∑
|β|=2m

aβ(x)ξβ ≤M |ξ|2m for all ξ ∈ Rn and x ∈ Ω.

Then it is well known that there exists a sufficiently large number σ > 0 such
that the operator −Aσ ≡ −(A+ σ) satisfies Σω ∪ {0} ⊆ ρ(−Aσ) with some
ω ∈ (π2 , π) and ∥∥R(λ : −Aσ)

∥∥ = O
(
|λ| α2m−1

)
, λ ∈ Σω.(4.25)

Let us recall that A is not densely defined and that the exponent α
2m − 1 in

(4.25) is sharp. Define Aσ,δ := ei(π/2±δ)Aσ. Suppose that ω − (π/2) < δ <
ω − η(π/2), 1 ≥ θ > α/2m, u0 ∈ D((−Aσ,δ)θ), σ > ηα/2m, (4.23) holds and
f ∈ L∞((0, T ) : [D((−A)θ)]). Then the condition (QP) holds for each number
η′′ ∈ (η, 1) such that ω − (π/2) < δ < ω − η′′(π/2). Applying Theorem 4.3,
we obtain that the abstract fractional Cauchy problem{

Dη
t u(t, x) = Aσ,δu(t, x) + f(t, x), t ∈ (0, T ],
u(0) = u0,

has a unique classical solution, which is analytically extendable to the sector

Σϑ provided that f(t, x) ≡ 0 (ϑ ≡ min(( (2/π)(ω−δ)
η − 1)π/2, π)).

(ii) ([11]) Consider now the following modification of inhomogeneous fractional
Poisson heat equation in the space Lp(Ω):

(P )δη :

 Dη
t [m(x)v(t, x)] = e±iδ(∆− b)v(t, x) + f(t, x), t ≥ 0, x ∈ Ω;

v(t, x) = 0, (t, x) ∈ [0,∞)× ∂Ω,
m(x)v(0, x) = u0(x), x ∈ Ω,

where Ω is a bounded domain in Rn, b > 0, m(x) ≥ 0 a.e. x ∈ Ω, m ∈ L∞(Ω),
1 < p < ∞ and 0 < η < 1. Let the operator A := ∆ − b act on E with the
Dirichlet boundary conditions, and let B be the multiplication operator by
the function m(x). As it has been proved in [11, Example 3.6], there exist an
appropriate angle ω ∈ (π2 , π) and a number d > 0 such that the multivalued

linear operator A := AB−1 satisfies Ψd,ω = {λ ∈ C : |λ| ≤ d or λ ∈ Σω} ⊆
ρ(A) and ‖R(λ : A)‖ ≤M(1+ |λ|)−1/p, λ ∈ Ψd,ω; here it is worth noting that
the validity of additional condition [11, (3.42)] on the function m(x) enables
us to get the better exponent β in (QP), provided that p > 2. Henceforth
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we consider the general case. Suppose, as in the part (i), that ω − (π/2) <
δ < ω − η(π/2), 1 ≥ θ > 1 − 1/p, u0 ∈ D((−e±iδA)θ), σ > η(1 − 1/p),
(4.23) holds and f ∈ L∞((0, T ) : [D((−e±iδA)θ)]). Then Theorem 4.3 implies
that the abstract Cauchy problem (P )δη has a unique solution t 7→ v(t, ·),
t ∈ (0, T ], i.e., any function v(t, ·) satisfying that Bv(t, ·) ∈ C([0, T ] : E),
the Caputo fractional derivative Dη

tBv(t, ·) is well-defined and belongs to the
space C((0, T ] : E), Bv(t, ·) ∈ C((0, T ] : E), m(x)v(0, x) = u0(x), x ∈ Ω and
(P )δη holds identically.
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