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A NOTE ON BOUNDEDNESS OF SOLUTIONS TO A

CLASS OF NON-AUTONOMOUS DIFFERENTIAL

EQUATIONS OF SECOND ORDER

Cemil Tunç

By defining some appropriate Liapunov functions, we discuss boundedness of
solutions to a class of non-autonomous and nonlinear differential equations
of second order. In this work, we prove some results established in the liter-
ature by Liapunov’s second method instead of the integral test. We give six
examples to illustrate the theoretical analysis in this work and effectiveness
of the method utilized here.

1. INTRODUCTION AND MAIN RESULTS

In 1972, Kroopnick [3] considered the following nonlinear differential equa-
tion of second order

(1) x′′ + a(t)b(x) = 0,

where a and b are continuous functions on <+ = [0,∞) and < = (−∞,∞), respec-
tively. It is assumed that the derivative a′(t) exists and is continuous. The author
showed boundedness of solutions of Eq. (1) with appropriate conditions on a(t)
and b(x). Namely, Kroopnick [3] proved the following theorem by the integral
test:

Theorem A. (Kroopnick [3, Theorem I]) If

a(t) > α > 0, a′(t) ≤ 0 on [T,∞), t ≥ T, b(x) continuous,

2000 Mathematics Subject Classification. 34C10, 34C11, 34D05.
Keywords and Phrases. Non-autonomous, differential equation, second order, boundedness.

361



362 Cemil Tunç

and

lim
x→±∞

B(x) =

∫ x

b(u)du =∞,

then all solutions of Eq. (1) are bounded as t→∞.

We write Eq. (1) in system form as

x′ = y,(2)

y′ = − a(t)b(x).

The first main problem of this paper is the following theorem.

Theorem 1. In addition to the basic assumptions imposed upon the functions a(t)
and b(x), we assume that there exists a positive constant α such that the following
assumptions hold:

a(t) > α, a′(t) ≤ 0 for all t ∈ <+,

B(x) =

∫ x

0

b(u)du is positive for all x 6= 0 and B(x)→∞ as |x| → ∞.

Then every solution of Eq. (1), together with its derivative, is bounded as t→∞.

Proof. Define a Liapunov function as

V (t, x, y) = a(t)

∫ x

0

b(s)ds+
1

2
y2.

It follows that
V (t, 0, 0) = 0.

In view of the assumptions of Theorem 1, firstly, we find that

V (t, x, y) ≥ α

∫ x

0

b(s)ds+
1

2
y2 > 0,

for all x 6= 0 and y 6= 0.

Secondly, since B(x) → ∞ as |x| → ∞, V (t, x, y) ≤ K implies |x| ≤ K1 and
|y| ≤ K2, where the constants K1 and K2 depend on the constant K. Thus, we only
need to show that V (t, x, y) is bounded along every trajectory of (2) as t→∞.

Along a trajectory of (2) the time derivative of the Liapunov function V (t, x, y)
gives that

d

dt
V (t, x, y) = a′(t)

∫ x

0

b(s)ds ≤ 0.

Integrating the last inequality on [0, ∞] (for a positive constant K) we obtain

V (t, x, y) ≤ V (0, x(0), y(0)) = K,

where (x(0), y(0)) is the initial point through which the trajectory starts at t ≥ 0.
Thus, it follows from the above discussion that V (t, x(t), y(t)) is bounded for all
t ≥ 0. This shows that every solution of Eq. (1), together with its derivative, is
bounded as t→∞. The proof of Theorem 1 is now completed. ¤
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Example 1. Consider the equation

x
′′ +

(

1 +
1

1 + t2

)

x
5 = 0,

which is a special case of Eq. (1).

We write this equation in system form as

x
′ = y,

y
′ = −

(

1 +
1

1 + t2

)

x
5
.

Hence, it follows

a(t) = 1 +
1

1 + t2
≥ 1 > 0, a′(t) = −

2t

(1 + t2)2
≤ 0, t ≥ 0,

b(x) = x
5
, x

6 = xb(x) > 0, (x 6= 0),

∫ x

0

b(s)ds =

∫ x

0

s
5ds =

x6

6
→∞ as |x| → ∞.

The above discussion shows that all the assumptions of Theorem 1 hold. Thus, we conclude

that all solutions of Eq. (1) are bounded as t→∞.

On the other hand, it is also seen that

V1(t, x, y) =

(

1 +
1

1 + t2

)

x6

6
+
1

2

for all x 6= 0 and y 6= 0, V1(t, 0, 0) = 0 and

d

dt
V1(t, x, y) = −

t

3(1 + t2)2
x6 ≤ 0.

The remainder of the proof can be completed by using the procedure in
Theorem 1.

In 1981, Kroopnick [4] considered the equation

(3) x′′ + c(t)f(x)x′ + a(t)b(x) = 0,

where a, c and f, b are continuous functions on <+ = [0,∞) and < = (−∞,∞),
respectively. It is assumed that the derivative a′(t) exists and is continuous. The
author presented two theorems, which include some sufficient conditions for all
solutions of Eq. (3) to be bounded as t→∞.

In [4], Kroopnick constructed the following theorems.

Theorem B. (Kroopnick [4, Theorem I]) Suppose that a(t) and c(t) are contin-
uous functions on [0,∞) and let b(x) and f(x) be continuous on (−∞,∞). Fur-
thermore, suppose that for some positive constant a0, a(t) ≥ a0, a

′(t) ≤ 0, c(t) ≥ 0

for 0 ≤ t < ∞, and f(x) > 0. Finally, if B(x) =
∫ x

0
b(u)du → ∞ as |x| → ∞,

then every solution of Eq. (3) exists on [0,∞) and |x(t)| and |x′(t)| are bounded as
t→∞.
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Theorem C. (Kroopnick [4, Theorem III]) The hypotheses are the same as
Theorem B except that a′(t) ≥ 0 ( 0 ≤ t <∞). Furthermore, if xb(x) ≥ 0 (x ∈ <),
then all solutions to Eq. (3) are bounded as t→∞.

Kroopnick [4] proved the above theorems by using the integral test.

We write Eq. (3) in system form as

(4)
x′ = y,

y′ = − c(t)f(x)y − a(t)b(x).

The second main problem of this paper is the following theorem.

Theorem 2. In addition to the basic assumptions imposed upon the functions a(t),
c(t), f(x) and b(x), we assume that there exists a positive constant a0 such that the
following assumptions hold:

a(t) ≥ a0, a
′(t) ≤ 0, c(t) ≥ 0 for all t ∈ <+, f(x) > 0 for all x ∈ <

and

B(x) =

∫ x

0

b(u)du is positive for all x 6= 0 and B(x)→∞ as |x| → ∞.

Then every solution of (3) exists on [0,∞) and |x(t)| and |x′(t)| are bounded as
t→∞.

Proof. We employ the Liapunov function

V (t, x, y) = a(t)

∫ x

0

b(s)ds+
1

2
y2

to prove Theorem 2 as in the proof of Theorem 1. Clearly, in view of the assump-
tions of Theorem 2, it follows that

d

dt
V (t, x, y) = a′(t)

∫ x

0

b(s)ds− c(t)f(x)y2 ≤ 0.

The rest of the proof is similar to that of Theorem 1. Therefore, we omit the details.
The proof of Theorem 2 is now completed. ¤

Example 2. Consider non-linear differential equation of second order:

x
′′ + t

2(1 + e
x)x′ +

(

1 +
1

1 + t2

)

x
5 = 0.

The above equation is a special case of Eq (3) and can be stated as the system

x
′ = y,

y
′ = −t2(1 + e

x)y −

(

1 +
1

1 + t2

)

x
5
.
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Hence, we have

c(t) = t
2 ≥ 0, t ≥ 0, f(x) = 1 + e

x
> 0.

By denoting Liapunov function as V1(t, x, y) we obtain

d

dt
V1(t, x, y) = −

t

3(1 + t2)2
x

6 − t
2(1 + e

x)y2 ≤ 0

When we take into account the above discussion and Example 1, it follows
that all the assumptions of Theorem 2 hold. Thus we conclude that all solutions
of the above equation are bounded as t→∞.

Remark 1. Kroopnick [3, 4] proved Theorem A and Theorem B using the integral test,

without giving examples on the topic. Instead of this test, we use the Liapunov’s second

method to show boundedness of solutions of (1) and (2). Our conditions are the same as

that in Kroopnick [3, 4, Theorem I], and we also give two examples to show effectiveness

of the method used here. The procedure used in the proof of Theorem 1 and Theorem 2

is very clear and comprehensible, and the boundedness of solutions is obvious.

Theorem 3. Together with all the assumptions of Theorem 2 except a(t) ≥ a0 and
a′(t) ≤ 0, we assume that

a0 ≥ a(t) > 0 and a′(t) ≥ 0 for all t ∈ <+.

Then every solution of Eq. (3) exists on [0,∞) and |x(t)| and |x′(t)| are bounded
as t→∞.

Proof. Define the Liapunov function

V2(t, x, y) =

∫ x

0

b(s)ds+
1

2a(t)
y2

so that V2(t, 0, 0) = 0 and

V2(t, x, y) ≥

∫ x

0

b(s)ds+
1

2a0
y2 > 0,

for all x 6= 0 and y 6= 0.

The time derivative of Liapunov function V2(t, x, y) along (4) gives that

d

dt
V2(t, x, y) = −

c(t)

a(t)
f(x)y2 −

a′(t)

2a2(t)
y2 ≤ 0.

The rest of the proof is omitted. ¤

Example 3. Consider the following second order non-linear differential equation

x
′′ + (1− e

−t)(1 + e
x)x′ +

(

3−
1

1 + t2

)

x
5 = 0.
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This equation can be stated as the system

x
′ = y,

y
′ = −(1− e

−t)(1 + e
x)y −

(

3−
1

1 + t2

)

x
5
.

Hence we find the following

c(t) = 1− e
−t ≥ 0, a(t) = 3−

1

1 + t2
,

2 ≥ 3−
1

1 + t2
> 0, a0 = 2, a′(t) =

2t

(1 + t2)2
≥ 0, t ≥ 0.

On the other hand, it follows that

V3(t, x, y) =
1

6
x

6 +
1 + t2

4 + 6t2
y
2 ≥

1

6
(x6 + y

2) > 0

for all x 6= 0 and y 6= 0, V3(t, 0, 0) = 0 and

d

dt
V3(t, x, y) = −

1 + t2

2 + 3t2
(1− e

−t)(1 + e
x)y2 −

t

(2 + 3t2)2
y
2 ≤ 0.

In view of the discussion made above and that in Example 1 and Example 2, it follows

that all the assumptions of Theorem 3 hold. Therefore, we conclude that all solutions of

the above equation are bounded as t→∞.

Later, in 1987, Kroopnick [5] discussed under what conditions the solutions
to

(5) (m(t)x′)′ + a(t)b(x) = 0

are bounded, where a(t) and m(t) are ∈ C1[0,∞).

Kroopnick [5] established the following theorem and proved it by the inte-
gration test.

Theorem D. (Kroopnick [5, Theorem I]) Suppose that a(t) and m(t) are ∈
C1[0,∞) and, furthermore, suppose that a(t) ≥ a0 > 0 and m(t) ≥ m0 > 0
for some positive constants a0 and m0. Also, let m

′(t) ≤ 0, a′(t) ≤ 0, and let
b(x) ∈ C(−∞,∞). Finally, assume that if

lim
|x|→∞

B(x) =

∫ x

0

b(u)du =∞, then |x| and |x′| are bounded as t→∞.

Then (5) is equivalent to

m(t)x′′ +m′(t)x′ + a(t)b(x) = 0,

and it can be written in a system form as

(6)
x′ = y,

y′ = −
m′(t)

m(t)
y −

a(t)

m(t)
b(x).
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The fourth main problem of this paper is the following theorem.

Theorem 4. In addition to the basic assumptions imposed upon the functions
m(t), a(t) and b(x), we assume that there exist positive constants a0 and m0 such
that the following assumptions hold:

a(t) ≥ a0, a
′(t) ≤ 0, m0 ≥ m(t) > 0, m′(t) ≥ 0 for all t ∈ <+,

B(x) =

∫ x

0

b(u)du is positive for all x 6= 0 and B(x)→∞ as |x| → ∞.

Then every solution of Eq. (5), together with its derivative, is bounded as t→∞.

Proof. Define the Liapunov function

V4(t, x, y) =
a(t)

m(t)

∫ x

0

b(s)ds+
1

2
y2.

so that V4(t, 0, 0) = 0 and

V4(t, x, y) ≥
a0

m0

∫ x

0

b(s)ds+
1

2
y2 > 0,

for all x 6= 0 and y 6= 0.

The time derivative of Liapunov function V4(t, x, y) along (6) gives that

d

dt
V4(t, x, y) =

a′(t)m(t)− a(t)m′(t)

m2(t)

∫ x

0

b(s)ds−
m′(t)

m(t)
y2 ≤ 0.

The rest of the proof is similar to that of Theorem 1 and its details are
ommited. ¤

Example 4. Consider the following second order non-linear differential equation

(

3−
1

1 + t2

)

x
′′ +

2t

(1 + t2)2
x
′ +

(

3 +
1

1 + t2

)

x
5 = 0.

This equation can be stated as system

x
′ = y,

y
′ = −

2t

(1 + t2)(2 + 3t2)
y −

4 + 3t2

2 + 3t2
x

5
.

Hence, it follows that

m(t) = 3−
1

1 + t2
, m0 = 3 ≥ 3−

1

1 + t2
> 0, m′(t) =

2t

(1 + t2)2
≥ 0,

a(t) = 3 +
1

1 + t2
≥ 3, a0 = 3, a′(t) = −

2t

(1 + t2)2
≤ 0, t ≥ 0.
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We also notice that

V5(t, x, y) =
4 + 3t2

6(2 + 3t2)
x

6 +
1

2
y
2 ≥

4 + 3t2

6(4 + 3t2)
x

6 +
1

2
y
2 ≥

1

6
x

6 +
1

2
y
2
> 0

for all x 6= 0 and y 6= 0, V5(t, 0, 0) = 0 and

d

dt
V5(t, x, y) = −

2t

(2 + 3t2)2
x

6 −
2t

(1 + t2)(2 + 3t2)
y
2 ≤ 0.

Integrating the last inequality on [0,∞), one can conclude that V5(t, x(t), y(t)) is bounded

for all t ≥ 0. This shows that every solution of the above equation, together with its

derivative, is bounded as t → ∞. In view of the discussion made above, it also follows

that all the assumptions of Theorem 4 hold.

Remark 2. The assumptions of Theorem 3 and Theorem 4 are the same as that in

Kroopnick [4, Theorem I] and Kroopnick [5, Theorem III] except a0 ≥ a(t) > 0 and

m0 ≥ m(t) > 0 instead of a(t) ≥ a0 > 0 and m(t) ≥ m0 > 0, respectively.

In 1995, Kroopnick [6] first presented a boundedness theorem for the equation

(7) x′′ + c(t, x, x′) + a(t)b(x) = e(t),

where c(t, x, x′), a(t), b(x) and e(t) are continuous on <+ ×<×<, <+, < and <+,
respectively. It is also assumed that the derivative a′(t) exists and is continuous.

Instead of Eq. (7), we consider it as a system

(8)
x′ = y,

y′ = − c(t, x, y)− a(t)b(x) + e(t).

Kroopnick [6] proved the following theorem.

Theorem E. (Kroopnick [6, Theorem I]) Given the differential equation (7),
suppose that c(t, x, y) is continuous on <+ × < × <, c(t, x, y)y ≥ 0 and e(t) is

continuous on <+ with
∫ ∞

0
|e(t)| dt < ∞. Furthermore, if a(t) > a0 > 0 for some

constant a0 and continuous on <
+, a′(t) ≤ 0, b(x) is continuous on <, and

B(x) =

∫ x

0

b(u)du approaches ∞ as |x| → ∞,

then all solutions of Eq. (7) as well as their derivatives are bounded as t→∞.

Kroopnick [6] proved Theorem 5 by means of the integral test.

The fifth main problem of this paper is the following theorem.

Theorem 5. In addition to the basic assumptions imposed upon the functions a(t),
b(x), c(t, x, y) and e(t), we assume that there exists a positive constant a0 such that
the following assumptions hold:

a(t) ≥ a0, a
′(t) ≤ 0, c(t, x, y)y ≥ 0 for all t ∈ <+, x, y ∈ <,
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B(x) =

∫ x

0

b(u)du is positive for all x 6= 0 and B(x)→∞ as |x| → ∞

and
∫ ∞

0

|e(t)| dt <∞.

Then all solutions of Eq. (7) as well as their derivatives are bounded as t→∞.

Proof. Define the Liapunov function

V (t, x, y) = a(t)

∫ x

0

b(s)ds+
1

2
y2.

In view of the fact that a(t) ≥ a0 > 0, we arrive at

V (t, x, y) ≥ a0

∫ x

0

b(s)ds+
1

2
y2 > 0,

for all x 6= 0 and y 6= 0.

The time derivative of V (t, x, y) along a solution (x, y) = (x(t), y(t)) of (8)
gives that

d

dt
V (t, x, y) = a′(t)

∫ x

0

b(s)ds− c(t, x, y)y + e(t)y

≤ |e(t)| |y| ≤ |e(t)| + |e(t)| y2

≤ |e(t)| + 2 |e(t)| V (t, x, y).

Integrating the last inequality on [0, ∞], for a positive constant K3, we obtain

V (t, x(t), y(t)) ≤ V (0, x(0), y(0)) +

∫ t

0

|e(s)| ds+ 2

∫ t

0

|e(s)| V (s, x(s), y(s))ds.

Using the convergence of the integral
∫ t

0
|e(s)| ds and the Gronwall-Reid-

Bellman inequality (see Gronwall [1] and Mitrinovic [2]), we can conclude
that V (t, x(t), y(t)) is bounded for all t ≥ 0. This shows that every solution of Eq.
(7), together with its derivative, is bounded as t→∞. The proof of Theorem 5 is
now completed. ¤

Example 5. Consider equation

x
′′ + (1 + t

2 + x
2 + x

′2)x′ +

(

1 +
1

1 + t2

)

x
5 =

1

1 + t2
.

This equation can be written as the system

x
′ = y,

y
′ = −(1 + t

2 + x
2 + y

2)y −

(

1 +
1

1 + t2

)

x
5 +

1

1 + t2
.
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Hence, it follows that

c(t, x, y)y = (1 + t
2 + x

2 + y
2)y2 ≥ 0, t ≥ 0,

e(t) =
1

1 + t2
,

∫ ∞

0

|e(t)| dt =

∫ ∞

0

1

1 + t2
dt =

π

2
<∞.

Utilizing the function V1(t, x, y), it also follows that

d

dt
V1(t, x, y) = −

t

3(1 + t2)2
x

6 − (1 + t
2 + x

2 + y
2)y2 +

y

1 + t2

≤
y

1 + t2
≤

1

1 + t2
+

y2

1 + t2

≤
y

1 + t2
≤

1

1 + t2
+

1

1 + t2
V1(t, x, y).

Integrating the last inequality on [0, ∞], using the Gronwall-Reid-Bellman inequality (see

Gronwall [1] andMitrinovic [2]) and taking into account the above discussion and that

in Example 1, it follows that all the assumptions of Theorem 5 hold. Thus, we conclude

that all solutions of the above equation are bounded as t→∞.

Kroopnick [6] presented a boundedness theorem for the equation

(9) x′′ + c(t, x, x′) + a(t, x) = e(t),

where c(t, x, x′), a(t, x) and e(t) are continuous on <+ × < × <, <+ × < and <+,

respectively. It is also assumed that the derivative x
∂

∂t
a(t, x) exists and is conti-

nuous.

We write Eq. (9) in system form as

(10)
x′ = y,

y′ = − c(t, x, y)− a(t, x) + e(t).

Utilizing the integration test, Kroopnick [6] proved the following theorem.

Theorem F. (Kroopnick [6, Theorem II]) Given equation in (9) and suppose
that c(t, x, y) is continuous on <+×<×<, c(t, x, y)y > 0 and a(t, x) is continuous

on <+ ×< with x
∂

∂t
a(t, x) ≤ 0. Furthermore, if

∫ ±∞

0
a(t, u)du =∞ uniformly in t

and e(t) is continuous on <+ with
∫ ∞

0
|e(t)| dt <∞, then all solutions to equation

(9) as well as their derivatives are bounded as t→∞.

The last main problem of this paper is the following theorem.

Theorem 6. In addition to the basic assumptions imposed upon the functions
c(t, x, y) and a(t, x), we assume that the following assumptions hold:

∫ x

0

a(t, u)du is positive for all t and x 6= 0,
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and approaches ∞ uniformly in t as |x| → ∞,

x
∂

∂t
a(t, x) ≤ 0 for all t ∈ <+ and x ∈ <,

c(t, x, y)y > 0 for all t ∈ <+ and x, y ∈ <, and

∫ ∞

0

|e(t)| dt <∞.

Then, all solutions to equation (9) as well as their derivatives are bounded as t→∞.

Proof. Define the Liapunov function

V6(t, x, y) =

∫ x

0

a(t, s)ds+
1

2
y2

so that V6(t, 0, 0) = 0 and

V6(t, x, y) =

∫ x

0

a(t, s)ds+
1

2
y2 > 0

for all x 6= 0 and y 6= 0.

Under the assumptions of Theorem 6, the time derivative of the Liapunov
function V6(t, x, y) along (10) gives that

d

dt
V6(t, x, y) =

∫ x

0

∂

∂t
a(t, s)ds− c(t, x, y)y + e(t)y ≤ |e(t)| |y| .

The rest of the proof is similar to that of Theorem 5. ¤

Example 6. Consider the equation

x
′′ +

1 + t2 + x2 + x′2

x′
+ (1 + e

−t)x5 =
cos t

1 + t2
, (x′ 6= 0).

This equation can be written in system form as

x
′ = y,

y
′ = −

1 + t2 + x2 + y2

y
− (1 + e

−t)x5 +
cos t

1 + t2
, (y 6= 0).

Hence, we get

c(t, x, y)y = 1 + t
2 + x

2 + y
2
> 0,

x
∫

0

a(t, s)ds =
1

6
(1 + e

−t)x6 →∞ as |x| → ∞,

x
∂

∂t
a(t, x) = −e−t

x
6 ≤ 0, e(t) =

cos t

1 + t2
, |e(t)| ≤

1

1 + t2
,

∞
∫

0

|e(t)| dt ≤
π

2
<∞.

Subject to the above discussion, it follows that all the assumptions of Theorem 6 hold.
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It also follows that

V7(t, x, y) = (1 + e
−t)

x6

6
+

1

2
y
2
> 0

for all x 6= 0 and y 6= 0, V7(t, 0, 0) = 0 and

d

dt
V7(t, x, y) = −

1

6
e
−t
x

6 − (1 + t
2 + x

2 + y
2) +

cos t

1 + t2
y

≤
1

1 + t2
+

y2

1 + t2
≤

1

1 + t2
+

1

1 + t2
V7(t, x, y).

Integrating the last inequality on [0, ∞] and using the Gronwall-Reid-Bellman inequality

(see Gronwall [1] and Mitrinović [2]), one can conclude that all solutions of the above

equation are bounded as t→∞.

Remark 3. Theorem 5 and Theorem 6 was proved in [6] via the integral test. The

conditions of Theorem 5 and Theorem 6 are the same as that in Kroopnick [6, Theorem

I, Theorem II].
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