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TWIN DOMINATION AND TWIN IRREDUNDANCE IN

DIGRAPHS

S. Arumugam, Karam Ebadi, L. Sathikala

Let D = (V,A) be a digraph. A subset S of V is called a twin dominating set
of D if for every vertex v ∈ V −S, there exist vertices u1, u2 ∈ S ( u1 and u2

may coincide) such that (v, u1) and (u2, v) are arcs in D. The minimum car-
dinality of a twin dominating set in D is called the twin domination number
of D and is denoted by γ∗(D). In this paper we present several basic results
on these and other related parameters.

1. INTRODUCTION

Throughout this paper D = (V,A) is a finite, directed graph with neither
loops nor multiple arcs (but pairs of opposite arcs are allowed) and G = (V,E) is a
finite, undirected graph with neither loops nor multiple edges. The order |V | and
the size |E| of G are denoted by n and m respectively. For basic terminology on
graphs and digraphs, we refer to Chartrand and Lesniak [3].

Let D = (V,A) be a digraph. For any vertex u ∈ V, the sets O(u) = {v :
(u, v) ∈ A} and I(u) = {v : (v, u) ∈ A} are called the outset and inset of u. The
indegree and outdegree of u are defined by id(u) = |I(u)| and od(u) = |O(u)|.
The minimum indegree, the minimum outdegree, the maximum indegree and the
maximum outdegree of D are denoted by δ−, δ+, ∆− and ∆+ respectively.

Let G = (V,E) be a graph. A subset S of V is called a dominating set of
G if every vertex in V − S is adjacent to at least one vertex in S. The minimum
cardinality of a dominating set of G is called the domination number of G and is
denoted by γ(G) or simply γ.
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Although domination and other related concepts have been extensively stud-
ied for undirected graphs, the respective analogues on digraphs have not received
much attention. Fu [7] studied the following natural analogue of domination in
directed graphs. The out-domination number of a directed graph D = (V,A) is
the minimum cardinality of a subset S of V such that every vertex of V − S is
an out-neighbor of some vertex in S. The in-domination number is defined ana-
logusly. Arumugam et al. [1] introduced the concepts of total and connected
out-domination in digraphs.

A survey of results on domination in directed graphs by Ghoshal, Laskar
and Pillone is given in Chapter 15 of Haynes et al. [8], but most of the results
in this survey deal with the concepts of kernels and solutions in digraphs and on
domination in tournaments. Chartrand et al. [4] introduced the concept of twin
domination in digraphs.

Definition 1.1. [4] Let D = (V,A) be a digraph. A subset S of V is called a twin

dominating set of D if for every vertex v ∈ V − S, there exist vertices u1, u2 ∈ S
(u1 and u2 may coincide) such that (v, u1) and (u2, v) are arcs in D. The minimum

cardinality of a twin dominating set in D is called the twin domination number of

D and is denoted by γ∗(D).

If G = (V,E) is a graph and if G∗ is the symmetric digraph obtained from G
by replacing each edge uv ∈ E by a pair of symmetric arcs (u, v) and (v, u), then a
subset S of V is a dominating set of G if and only if S is a twin dominating set of
the digraph G∗. Thus twin domination in digraphs includes domination in graphs
as a special case.

In this paper we present in the second section some results on twin domination
and in the third section some results on twin domination in oriented graphs.

2. MAIN RESULTS

We first give two sharp upper bounds for the twin domination number of a
digraph.

We observe that for the directed path Pn with n ≥ 2 vertices, γ∗(Pn) =
⌈

n+ 1

2

⌉

and for a directed cycle Cn with n ≥ 3 vertices, γ∗(Cn) =
⌈

n

2

⌉

.

Proposition 2.1. Let ℓ(D) denote the length of a longest directed path in D. Then

γ∗(D) ≤ n−
⌊

ℓ(D)

2

⌋

and the bound is sharp.

Proof. Let P = (v0, v1, v2, . . . , vk) be a longest path in D with k = ℓ(D). Let S be
a minimum twin dominating set of P. Clearly S1 = S ∪ (V (D) − V (P )) is a twin

dominating set of D and hence γ∗(D) ≤ |S1| = n−
⌊

ℓ(D)

2

⌋

. The bound is attained

trivially for directed paths, also for any digraph D obtained from a directed path
P by attaching at least one in-edge at every vertex of D.
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The proof of the following proposition is similar.

Proposition 2.2. Let c(D) denote the length of a longest directed cycle in D. Then

γ∗(D) ≤ n−
⌊

c(D)

2

⌋

and the bound is sharp.

Proposition 2.3. Let T be a tournament of order n ≥ 2. Then γ∗(T ) = 2 if and

only if there exist u, v ∈ V such that O(u)− {v} = I(v) − {u}.

Proof. Suppose γ∗(T ) = 2 and let S = {u, v} be a twin dominating set of T. Let
w ∈ V − {u, v}. If w is out-dominated by u, then it is in-dominated by v and vice
versa. Hence O(u)−{v} = I(v)−{u}. Conversely, if O(u)−{v} = I(v)−{u}, then
{u, v} is a twin dominating set of T and hence γ∗(T ) = 2.

Corollary 2.4. If T is a transitive tournament, then γ∗(T ) = 2.

Observation 2.5. Since any tournament T of order n contains a directed hamil-

tonian path, it follows that γ∗(T ) ≤
⌈

n+ 1

2

⌉

.

Theorem 2.6. Let T be a tournament of order n ≥ 3. If there exists u ∈ V (T )
such that od(u) = 0 or id(u) = 0, then γ∗(T ) ≤ ⌈log2 (n− 1)⌉+ 1.

Proof. Without loss of generality we assume that od(u) = 0. Then u in-dominates
the set V (T )−{u} and u belongs to every twin dominating set of T. Let T1 be the

subtournament obtained by deleting u from T. Since
∑

v∈V (T1)

od(v) =
(n− 1)(n− 2)

2
,

it follows that there exists a vertex u1 in T1 with od(u1) ≥
⌈

n− 2

2

⌉

. Now, let

T2 = T1−O[u1] and let u2 be a vertex of T2 which out-dominates at least
⌈ |V (T2)|

2

⌉

vertices of T2.

By continuing this process we obtain an out-dominating set S of T1 with
|S| ≤ ⌈log2 (n− 1)⌉ . Now S∪{u} is a twin dominating set of T and hence γ∗(T ) ≤
⌈log2(n− 1)⌉+ 1.

We observe that if S is a twin dominating set of a digraph D, then any
superset of S is also a twin dominating set, so that twin domination in digraphs
is a superhereditary property. Hence a twin dominating set S is a minimal twin
dominating set if and only if S−{u} is not a twin dominating set for all u ∈ S. The
following theorem gives a necessary and sufficient condition for a twin dominating
set to be minimal.

Theorem 2.7. A twin dominating set S of a digraph D is a minimal twin dom-

inating set if and only if for each vertex u ∈ S, there exists v ∈ V such that

O[v] ∩ S = {u} or I[v] ∩ S = {u}.

Proof. Suppose S is a minimal twin dominating set of D and let u ∈ S. Then
S−{u} is not a twin dominating set of D and hence there exists v ∈ V − (S−{u})
such that v is not out-dominated or in-dominated by any vertex in S−{u}. Hence
O[v] ∩ S = {u} or I[v] ∩ S = {u}. The converse is obvious.



278 S. Arumugam, Karam Ebadi, L. Sathikala

Definition 2.8. Let D = (V,A) be a directed graph, S ⊆ V and u ∈ S. A vertex

v ∈ V is called an out-private neighbor of u with respect to S if O[v] ∩ S = {u}
and v is called an in-private neighbor of u with respect to S if I[v] ∩ S = {u}. The
set of all out-private neighbors of u with respect to S is denoted by pn+[u, S] and
the set of all in-private neighbors of u with respect to S is denoted by pn−[u, S].
The set of all private neighbors of u with respect to S is denoted by pn[u, S] =
pn+[u, S] ∪ pn−[u, S].

It follows from Theorem 2.7 that a twin dominating set S is a minimal twin
dominating set if and only if pn[u, S] 6= ∅ for all u ∈ S. This motivates the following
definition.

Definition 2.9. Let D = (V,A) be a directed graph. A subset S of V is called a

twin irredundant set if pn[u, S] 6= ∅ for all u ∈ S.

It follows from Theorem 2.7 that every minimal twin dominating set is a twin
irredundant set. We observe that any subset of a twin irredundant set is a twin
irredundant set and hence a twin irredundant set is maximal if and only if S ∪ {u}
is not a twin irredundant set for all u ∈ V − S.

Definition 2.10. The minimum cardinality of a maximal twin irredundant set in

D is called the twin irredundance number of D and is denoted by ir∗(D). The maxi-

mum cardinality of a twin irredundant set in D is called the upper twin irredundance

number of D and is denoted IR∗(D).

Proposition 2.11. A twin dominating set S is a minimal twin dominating set if

and only if it is twin dominating and twin irredundant.

Proof. It follows from the definition that a minimal twin dominating set is twin
irredundant. Conversely, suppose a set S is both twin dominating and twin irre-
dundant. Let v ∈ S. Since S is twin irredundant, pn+[v, S] 6= ∅ or pn−[v, S] 6= ∅.
Now any vertex w ∈ pn+[v, S] ∪ pn−[v, S] is not twin dominated by any vertex in
S − {v}. Hence S − {v} is not a twin dominating set, so that S is a minimal twin
dominating set.

Proposition 2.12. Every minimal twin dominating set in a digraph D is a maxi-

mal twin irredundant set of D.

Proof. It follows from Theorem 2.7 that S is twin irredundant. If S is not a
maximal twin irredundant set, then there exists a vertex u ∈ V − S such that
S ∪ {u} is twin irredundant. Hence pn+[u, S ∪ {u}] 6= ∅ or pn−[u, S ∪ {u}] 6= ∅.
Then any vertex w ∈ pn+[u, S ∪ {u}] ∪ pn−[u, S ∪ {u}] is not twin dominated by
S, which is a contradiction.

Corollary 2.13. For any digraph D, ir∗(D) ≤ γ∗(D) ≤ Γ∗(D) ≤ IR∗(D).

In the study of domination in graphs, the concepts of maximal independent
set, minimal dominating set and maximal irredundant set lead to the following
inequality chain, known as the domination chain of parameters:

ir(G) ≤ γ(G) ≤ i(G) ≤ β0(G) ≤ Γ(G) ≤ IR(G).
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This inequality chain was first established by Cockayne et al. [6]. This chain of
inequalities has become one of the major focal points in domination theory. In the
case of digraphs, the concept of twin domination and twin irredundance lead to an
inequality chain of four parameters given in Corollary 2.13. In this context we pose
the following problem.

Problem 2.14. Define the concept of twin independence satisfying the condition

that a twin independent set S is maximal twin independent if and only if S is

twin-independent and twin dominating.

The following result is the analogue of a theorem by Bollobás and Cock-
ayne appearing in [2].

Theorem 2.15. For any digraph D,

γ∗(D)

2
< ir∗(D) ≤ γ∗(D) ≤ 2ir∗(D)− 1.

Proof. Let ir∗(D) = k and let S = {v1, v2, . . . , vk} be a twin irredundant set of
D. Since S is twin irredundant, pn+[vi, S] ∪ pn−[vi, S] 6= ∅, for 1 ≤ i ≤ k. Let
S′ = {u1, u2, . . . , uk} where ui ∈ pn+[vi, S]∪ pn−[vi, S]. The possibility of ui being
equal to vi is not excluded. Clearly |S ∪ S′| ≤ 2k = 2ir∗(D).

We claim that the set S′′ = S ∪ S′ is a twin dominating set of D. If not,
there exists w ∈ V − S′′ which is not twin dominated by S′′. Hence pn+[w, S ∪
{w}] ∪ pn−[w, S ∪ {w}] 6= ∅. Further since ui ∈ pn+[vi, S] ∪ pn−[vi, S], we have
pn+[ui, S ∪ {w}] ∪ pn−[ui, S ∪ {w}] 6= ∅. Thus S ∪ {w} is a twin irredundant set,
which is a contradiction. Therefore, S′′ is a twin dominating set and since S is a
maximal twin irredundant set, it follows that S′′ is not a minimal twin dominating

set. Therefore, γ∗(D) ≤ 2ir∗(D)− 1 and
γ∗(D)

2
< ir∗(D).

Theorem 2.16. For any digraph D, IR∗(D) ≤ n− δ, where δ = min{δ+, δ−}.

Proof. The result is trivial if δ = 0. Hence we assume that δ > 0 and there exists
v ∈ V (D) with od(v) = δ. Let S be a twin irredundant set in D. Suppose that v
has k out-neighbors in S. Then v has δ − k out-neighbors in V − S. If k = 0, then
|V − S| ≥ δ, so that |S| ≤ n − δ, as required. If k > 0, then each out-neighbor of
v in S must have an out-private neighbor in V − S and these k vertices must be
distinct. Thus |V − S| ≥ (δ − k) + k = δ.

3. TWIN DOMINATION IN ORIENTED GRAPHS

For the two orientations D1 and D2 of the cycle C4 given in Figure 1, we
have γ∗(D1) = 2 and γ∗(D2) = 4.
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Figure 1. Two orientations of C4 with twin domination numbers 2 and 4

Thus two distinct orientations of a graph can have distinct twin domina-
tion numbers. Motivated by this observation Chartrand et al. [4] introduced
the following concept of orientable twin domination number dom∗(G) and upper
orientable twin domination number DOM∗(G) of a graph G, which are defined by

dom∗(G) = min{γ∗(D) : D is an orientation of G},

and

DOM∗(G) = max{γ∗(D) : D is an orientation of G}.

Theorem 3.1. Let G be a nontrivial connected graph of order n. Then DOM∗(G) =
n if and only if G is bipartite.

Proof. Let DOM∗(G) = n. Then there exists an orientation D of G such that
γ∗(D) = n. Clearly od(v) = 0 or id(v) = 0 for all v ∈ V. Now, let C = (v1, v2, . . . ,
vk, v1) be a cycle of length k in D and let od(v1) = 0. Then it follows that od(vi) = 0
if i is odd and id(vi) = 0 if i is even. Now, since od(v1) = 0, we have id(vk) = 0 and
thus k is even. Hence G is bipartite. Conversely, assume that G is a bipartite graph
with bipartition X and Y. Let D be the orientation of G obtained by directing all
edges of G from X to Y. Then X ∪ Y is the unique minimum twin dominating set
for D and hence DOM∗(G) = n.

Corollary 3.2. A nontrivial connected bipartite graph G admits an orientation D
such that Γ∗(D) = IR∗(D).

Theorem 3.3. For any two integers r, s with r ≤ s,

dom∗(Kr,s) =















2 if r = s = 1 or r = 2,
s if r = 1 and s ≥ 2,
3 if r = 3,
4 if r ≥ 4.

Proof. Let V1 = {v1, v2, . . . , vr} and V2 = {u1, u2, . . . , us} be the bipartition of
G = Kr,s. The result is obvious if r = 1 or 2. We consider two cases.

Case i. r = 3.

Let D1 be an orientation of G such that od(v1) = 0 and id(v2) = 0. Then
V1 = {v1, v2, v3} is a twin dominating set of D1, so that dom∗(G) ≤ γ∗(D1) ≤ 3.

Now, let D be any orientation of G and let S be a twin dominating of D. If
S ∩ V1 = ∅, then S = V2. If S ∩ V2 = ∅, then S = V1. If S ∩ V1 6= ∅ and S ∩ V2 6= ∅,
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then |S ∩ V1| ≥ 2 and |S ∩ V2| ≥ 2. In all cases |S| ≥ 3 and hence dom∗(G) ≥ 3.
Thus dom∗(G) = 3.

Case ii. r ≥ 4.

Let D1 be an orientation of G such that od(v1) = 0, id(v2) = 0, u1 ∈ O(vi),
u2 ∈ I(vi), 3 ≤ i ≤ r. Clearly S = {v1, v2, u1, u2} is a twin dominating set of D1,
so that dom∗(G) ≤ γ∗(D1) = 4. Further γ∗(D) ≥ 4 for any orientation D of G and
hence dom∗(G) = 4.

We now proceed to determine the upper and lower orientable twin domination
numbers of several classes of graphs such as complete bipartite graphs, paths, cycles,
wheels and complete graphs.

It follows from Theorem 3.1 that DOM∗(Pn) = n, and DOM∗(Cn) = n if n
is even. Also DOM∗(Cn) = n− 1 if n is odd.

Theorem 3.4. For the path Pn = (v1, v2, v3, . . . , vn), we have dom
∗(Pn) =

⌈

n+ 1

2

⌉

.

Proof. If D1 is the directed path on n vertices, then γ∗(D1) =
⌈

n+ 1

2

⌉

and hence

dom∗(Pn) ≤
⌈

n+ 1

2

⌉

. We now prove by induction on n, that γ∗(D) ≥
⌈

n+ 1

2

⌉

for

every orientation D of Pn. If n = 2, then γ∗(D) = 2 ≥
⌈

n+ 1

2

⌉

. We assume that

the result is true for any path with less than n vertices and let D be an orientation
of Pn. If od(vi) = 0 or id(vi) = 0 for all vi, 1 ≤ i ≤ n then the inequality is trivial.
Suppose there exists vi, (1 < i < n) such that id(vi) = 1 and od(vi) = 1. Then
D− {vi} = D1 ∪D2 where |D1| = n1 < n and |D2| = n2 < n and n1 + n2 = n− 1.
Let S1 be a twin dominating set of D1 and S2 be a twin dominating set of D2.
Clearly vi−1 ∈ S1 and vi+1 ∈ S2 and hence S = S1 ∪ S2 is a twin dominating set

of D. Also by induction hypothesis, |S1| ≥
⌈

n1 + 1

2

⌉

and |S2| ≥
⌈

n2 + 1

2

⌉

. Hence

|S| ≥
⌈

n1 + n2 + 2

2

⌉

≥
⌈

n+ 1

2

⌉

. So γ∗(D) ≥
⌈

n+ 1

2

⌉

for every orientation D of Pn

and hence dom∗(Pn) =
⌈

n+ 1

2

⌉

.

Theorem 3.5. For every integer n ≥ 3, dom∗(Cn) =
⌈

n

2

⌉

.

Proof. If D1 is the directed cycle on n vertices, then γ∗(D1) =
⌈

n

2

⌉

and hence

dom∗(Cn) ≤
⌈

n

2

⌉

. Further for any orientationD of Cn, any twin dominating set S of

D contains either vi or vi+1 for any i, and hence |S| ≥
⌈

n

2

⌉

. Thus dom∗(Cn) =
⌈

n

2

⌉

.

Theorem 3.6. For n ≥ 4,

dom∗(Wn) =











⌈

n− 1

3

⌉

if n = 5,

⌈

n− 1

3

⌉

+ 1 otherwise.
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Proof. Let Wn = w + Cn−1 and Cn−1 = (v1, v2, . . . , vn−1, v1). Let D1 be an
orientation of Wn such that od(w) = 0 and id(vi) = 0 if i ≡ 1(mod 3). Clearly

γ∗(D1) =
⌈

n− 1

3

⌉

+ 1 and hence dom∗(Wn) ≤
⌈

n− 1

3

⌉

+ 1. Now, let D be any

orientation of Wn. Let S be a twin dominating set of D with |S| = γ∗(D). If w /∈ S,

then |S| ≥
⌈

n− 1

2

⌉

≥
⌈

n− 1

3

⌉

+ 1. If w ∈ S, then S − {w} is a dominating set of

Cn−1 and hence |S−{w}| ≥
⌈

n− 1

3

⌉

. Thus dom∗(Wn) ≥ |S| ≥
⌈

n− 1

3

⌉

+1. Hence

dom∗(Wn) =
⌈

n− 1

3

⌉

+ 1.

Theorem 3.7. For n ≥ 4,

DOM∗(Wn) =

{

n− 1 if n is odd or n = 4,
n− 2 if n is even and n ≥ 6.

Proof. If n is odd, let D1 be an orientation of Wn such that id(vi) = 0 if i is odd
and od(vi) = 0 if i is even. Clearly γ∗(D1) = n− 1 and hence DOM∗(Wn) ≥ n− 1.
Hence it follows from Theorem 3.1 that DOM∗(Wn) = n− 1.

Now suppose n is even and n ≥ 6, let D1 be an orientation of Wn such
that id(vi) = 0 if i is odd, id(vi) = 0 if i is even and i 6= n − 2, and id(vn−2) =
1, od(vn−2) = 2. Clearly γ∗(D1) ≥ n− 2 and hence DOM∗(Wn) ≥ n− 2.

Now, let D be any orientation of Wn. We claim that γ∗(D) ≤ n − 2. Since
Cn−1 is an odd cycle we may assume without loss of generality that v1 has indegree
and outdegree 1 in Cn−1. Now γ∗(D − {v1, v2, vn−1}) ≤ n− 4. If S1 is a minimum
twin dominating set of D1, then S = S1 ∪ {v2, vn−1} is a twin dominating set of D
and |S| ≤ n− 2. Hence DOM∗(Wn) = n− 2.

Theorem 3.8. For r ≥ 1,

dom∗(Kr,r,r) =

{

2 if r = 1 or 2,
3 otherwise

and DOM∗(Kr,r,r) = 2r.

Proof. Let V1 = {v1, v2, . . . , vr}, V2 = {u1, u2, . . . , ur} and V3 = {w1, w2, . . . , wr}
be the partite sets of G = Kr,r,r. The result is obvious if r = 1 or 2. Suppose
r ≥ 3. Let D1 be an orientation of G such that I(v1) = V2 ∪ V3, O(u1) = V1 ∪ V3,
O(w1) = V2 − {u1} and I(w1) = (V1 − {v1}) ∪ {u1}. Then {u1, v1, w1} is a twin
dominating set of D1 and hence dom∗(G) ≤ γ∗(D1) = 3. Further γ∗(D) ≥ 3 for
any arbitrary orientation D of G and hence dom∗(G) = 3.

We now proceed to prove that DOM∗(G) = 2r. Let D1 be an orientation of G
such that O(vi) = V2 ∪ V3 and O(ui) = V3 for all i, 1 ≤ i ≤ r. Clearly V1 ∪ V3 is the
unique minimum twin dominating set ofD1, so that DOM∗(G) ≥ γ∗(D1) = 2r. Now
let D be an arbitrary orientation of G. Since each of the r triangles (ui, vi, wi, ui)
contains at least one vertex with both outdegree and indegree at least 1, it follows
that γ∗(D) ≤ 2r and hence DOM∗(G) = 2r.
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Observation 3.9. It follows from Corollary 2.4 and Observation 2.5 that

dom∗(Kn) = 2 and DOM∗(Kn) ≤
⌈

n+ 1

2

⌉

.

Theorem 3.10. For 2 ≤ n ≤ 7, we have DOM∗(Kn) =
⌈

n+ 1

2

⌉

.

Proof. Let Ti be the orientation ofKi, 2 ≤ i ≤ 7, given in Figure 2, where an arrow
between two disjoint subsets A and B indicates that all edges with one end x in A
and the other end y in B are given the orientation (x, y). We first prove the result
for n = 7. It follows from Observation 2.5 that γ∗(T7) ≤ 4. Now let S be any twin
dominating set of T7. Let C1 = {v1, v2, v3} and C2 = {v5, v6, v7}. Since no vertex of
C1 is out-dominated by a vertex of V (T7)−C1 and no vertex of C2 is in-dominated
by a vertex of V (T7) − C2, we have S ∩ V (C1) 6= ∅ and S ∩ V (C2) 6= ∅. Without
loss of generality we assume that v1, v5 ∈ S. If |S| = 3, then S is of the form
{v1, v2, v5} or {v1, v5, v6} or {v1, v4, v5} and it can be easily verified that none of
these sets is a twin dominating set of T7. Thus |S| ≥ 4 and hence γ∗(T7) ≥ 4. Thus
DOM∗(K7) ≥ 4 and so DOM∗(K7) = 4. The proof is similar for n = 2, 3, 4, 5 or 6.
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Figure 2. Tournaments with DOM∗ =
⌈n+ 1
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, 2 ≤ n ≤ 7

Conjecture 3.11. DOM∗(Kn) =
⌈

n+ 1

2

⌉

for all n ≥ 8.

Since the n-dimensional hypercube Qn is hamiltonian when n ≥ 2, it follows
that γ∗(Qn) ≤ 2n−1. In this context we propose the following conjecture.

Conjecture 3.12. For every positive integer n ≥ 2, dom∗(Qn) = 2n−1.

Remark 3.13. For any digraph D = (V,A), the vertex set V is trivially a twin dominating
set and hence every digraph admits a partition of V into twin dominating sets. Hence
as in graphs we can define the twin domatic number of a digraph D to be the maximum
order of a partition of V into twin dominating sets. The study of this parameter is open.
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Further one can investigate the effect of the removal of a vertex or an edge on the twin
domination number.
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