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MORE ON THE LAPLACIAN ESTRADA INDEX

Bo Zhou, Ivan Gutman

Let G be a graph with n vertices and let µ1, µ2, . . . , µn be its Laplacian
eigenvalues. In some recent works a quantity called Laplacian Estrada index

was considered, defined as LEE(G) =
n
∑

i=1

eµi . We now establish some further

properties of LEE, mainly upper and lower bounds in terms of the number
of vertices, number of edges, and the first Zagreb index.

1. INTRODUCTION

In this paper we are concerned with simple graphs. Let n and m be, respec-
tively, the number of vertices and edges of G. In what follows we say that G is an
(n, m)-graph.

The spectrum of the graph G, consisting of the numbers λ1, λ2, . . . , λn, is
the spectrum of its adjacency matrix [2]. The Laplacian spectrum of the graph G,

consisting of the numbers µ1, µ2, . . . , µn, is the spectrum of its Laplacian matrix
[9, 10]. In what follows we assume that the Laplacian eigenvalues are arranged in
non-increasing order.

The Estrada index of the graph G was defined in [3] as:

(1) EE(G) =

n
∑

i=1

eλi

motivated by its chemical applications, proposed earlier by Ernesto Estrada

[4–7]. The mathematical properties of the Estrada index have been studied in a
number of recent works [1, 3, 11, 13, 17].
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In full analogy with Eq. (1), the Laplacian Estrada index of a graph G was
defined in [8] as:

LEE(G) =

n
∑

i=1

eµi .

Independently of [8], another variant of the Laplacian Estrada index was put
forward in [16], defined as

LEE[16](G) =
n
∑

i=1

eµi−2m/n .

Evidently, LEE[16](G) = e−2m/n LEE(G), and therefore results obtained for LEE

can be immediately re-stated for LEE[16] and vice versa. As far as we could see,
the results communicated in [16] are not equivalent to those in this paper or to
those in our earlier works [8, 19]. In particular, our Proposition 3.2 improves the
bound (18) in [16, Theorem 12].

Some basic properties of the Laplacian Estrada index were determined in the
papers [8], [16], and [19]. We now establish some further properties, mainly upper
and lower bounds. At the outset we note that

LEE(G) =
∑

k≥0

1

k!

n
∑

i=1

µ k
i

where the standard notational convention that 00 = 1 is used.

2. PRELIMINARIES

Let Kn be the complete graph on n vertices. Let G1 ∪ G2 denote the the
vertex-disjoint union of the graphs G1 and G2 . Let G be the complement of the
graph G .

Recall that the first Zagreb index of the graph G, denoted by M1(G), is the
sum of the squares of the degrees of vertices of G; for details on this graph invariant
see [12] and the references cited therein.

For an (n, m)-graph G, if µ2 = · · · = µn−1 =
2m

n
, then µ1 =

2m

n
. If m > 0,

then µ1 ≥ 2m

n − 1
>

2m

n
. Thus, we have

Lemma 2.1. Let G be an (n, m)-graph. Then µ2 = · · · = µn−1 =
2m

n
if and only

if G = Kn .

Lemma 2.2 [18]. Let G be a graph on n vertices. Then µ1 = · · · = µn−1 if and

only if G = Kn or G = Kn.
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3. THE MAIN RESULTS

We first seek upper bounds for the Laplacian Estrada index.

Proposition 3.1. Let G be an (n, m)-graph. Then

LEE(G) ≤ n − 1 + 2m −
√

M1(G) + 2m + e
√

M1(G)+2m

with equality if and only if G = K2 ∪ Kn−2 or G = Kn .

Proof. Recall that
n
∑

i=1

µ 2
i = M1(G) + 2m. For an integer k ≥ 3,

( n
∑

i=1

µ 2
i

)k

≥
n
∑

i=1

µ 2k
i + k

∑

1≤i<j≤n

(

µ 2
i µ

2(k−1)
j + µ

2(k−1)
i µ 2

j

)

≥
n
∑

i=1

µ 2k
i + 2k

∑

1≤i<j≤n

µ k
i µ k

j ≥
( n
∑

i=1

µ k
i

)2

and then
n
∑

i=1

µ k
i ≤

( n
∑

i=1

µ 2
i

)k/2

= (M1(G) + 2m)
k/2

with equality if and only if at most one of µ1, µ2, . . . , µn is non-zero, or equivalently
G = K2 ∪ Kn−2 or G = Kn.

It is easily seen that

LEE(G) = n + 2m +
∑

k≥2

1

k!

n
∑

i=1

µ k
i ≤ n + 2m +

∑

k≥2

1

k!

(

√

M1(G) + 2m
)k

= n + 2m − 1 −
√

M1(G) + 2m + e
√

M1(G)+2m

with equality if and only if G = K2 ∪ Kn−2 or G = Kn . �

Let n1 be the number of non-isolated vertices of G. Then 2m ≥ n1. Since
M1(G) ≤ (n1−1)2m, we have

√

M1(G) + 2m ≤
√

2mn1 ≤ 2m with equality if and
only if G = K2 ∪ Kn−2 or G = Kn. Thus

e2m − e
√

M1(G)+2m ≥
2
∑

k=0

(2m)k −
(

√

M1(G) + 2m
)k

k!

and then from Proposition 3.1 we arrive at a previously communicated bound [8]:

LEE(G) ≤ n − 1 + m − 2m2 +
1

2
M1(G) + e2m

in which equality is attained if and only if G = K2 ∪ Kn−2 or G = Kn.
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Recall that the Laplacian energy of an (n, m)-graph is defined in [14] as:

LE(G) =

n
∑

i=1

∣

∣

∣

∣

µi −
2m

n

∣

∣

∣

∣

.

Proposition 3.2. Let G be an (n, m)-graph. Then

LEE(G) ≤ e
2m
n

(

n − 1 − LE(G) + eLE(G)
)

with equality if and only if G = Kn.

Proof. Note that
n
∑

i=1

(

µi −
2m

n

)

= 0 and µ1 ≥ 2m

n
. Then

e
−

2m
n LEE(G) =

n
∑

i=1

e
µi −

2m
n = n +

∑

k≥2

1

k!

n
∑

i=1

(

µi −
2m

n

)k

≤ n +
∑

k≥2

1

k!

(

n
∑

i=1

∣

∣

∣

∣

µi −
2m

n

∣

∣

∣

∣

)k

= n +
∑

k≥2

1

k!
LE(G)k

= n − 1 − LE(G) + eLE(G)

with equality if and only if
n
∑

i=1

(

µi −
2m

n

)k

=

(

n
∑

i=1

∣

∣

∣
µi −

2m

n

∣

∣

∣

)k

holds for all integers

k ≥ 2, i. e., if and only if at most one of µi −
2m

n
for i = 1, 2, . . . , n, is positive

and all others are equal to zero, i. e., µ2 = · · · = µn−1 =
2m

n
. By Lemma 2.1, this

latter condition is equivalent to G = Kn . �

By a similar, but somewhat more detailed consideration we obtain

LEE(G) ≤ e
2m
n

(

n − 1 − LE(G) − 1

2
LE(G)2 +

1

2
M1(G) + m − 2m2

n
+ eLE(G)

)

with equality if and only if G = Kn .

We now deduce a few lower bounds for the Laplacian Estrada index.

Proposition 3.3. Let G be an (n, m)-graph with n ≥ 2. Then

LEE(G) ≥ 2 +
√

n(n − 1)e4m/n + 4 − 3n − 4m

with equality if and only if G = Kn.
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Proof. Observe that for k ≥ 2 ,
n
∑

i=1

(2µi)
k ≥ 4

n
∑

i=1

µ k
i with equality for all k ≥ 2 if

and only if µ1 = · · · = µn = 0 , i. e., G = Kn . Then

n
∑

i=1

e2µi =

n
∑

i=1

∑

k≥0

(2µi)
k

k!
= n + 4m +

∑

k≥2

n
∑

i=1

(2µi)
k

k!
≥ n + 4m + 4

∑

k≥2

n
∑

i=1

µ k
i

k!

= n + 4m + 4 [LEE(G) − n − 2m] = 4LEE(G) − 3n− 4m.

In [8] it was shown that 2
∑

1≤i<j≤n

eµieµj ≥ n(n − 1)e4m/n. Thus

LEE(G)2 =

n
∑

i=1

e2µi + 2
∑

1≤i<j≤n

eµieµj

≥ 4LEE − 3n − 4m + n(n − 1)e4m/n .

Note that n(n − 1)e4m/n + 4 − 3n − 4m ≥ n(n − 1)
(

1 +
4m

n

)

+ 4 − 3n − 4m =

(n − 2)(4m + n − 2) ≥ 0 . Therefore

LEE(G) ≥ 2 +
√

n(n − 1)e4m/n + 4 − 3n − 4m

with equality if and only if G = Kn . �

Since

LEE(G) ≥
2
∑

k=0

1

k!

n
∑

i=1

µ k
i = n + 3m +

1

2
M1(G)

the bound in Proposition 3.3 is an improvement of a bound in [8], namely of

LEE(G) ≥
√

n(n − 1)e4m/n + n + 8m + 2M1(G) .

Let G be an (n, m)-graph with n ≥ 4 . Let

F (G) = n(n − 1)e4m/n + 16 − 7n − 16m − 2M1(G) .

Then F (G) ≥ n(n − 1)
(

1 +
4m

n
+

8m2

n2

)

+ 16 − 7n − 16m− 2M1(G) = (n − 4)2 +

2
(

2(n−1)m−M1(G)
)

+8m
(

m − m

n
− 2
)

≥ 0 for m 6= 1, 2 . It is easily checked that

F (G) ≥ 0 for m = 1, 2. Indeed, if m = 1, then F (G) = n(n− 1)e4/n − 7n− 4, then

F (G) > 0 for n = 4, 5 by direct checking and F (G) ≥ n(n− 1)
(

1 +
4

n

)

− 7n− 4 =

n2−4n−8 > 0 for n ≥ 6. Similarly, if m = 2, then F (G) ≥ n(n−1)e8/n−7n−28 >

0. Thus, F (G) ≥ 0 in any case. By a similar, but somewhat more complicated
consideration, we conclude that (for n ≥ 4)

n
∑

i=1

e2µi ≥ n + 8m + 2M1(G) + 8

(

LEE(G) − n − 3m− 1

2
M1(G)

)
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and then

LEE(G) ≥ 4 +
√

n(n − 1)e4m/n + 16 − 7n− 16m − 2M1(G)

holds, with equality if and only if G = Kn .

Proposition 3.4. Let G be an (n, m)-graph. Then

LEE(G) ≥ 1 + 2m −
√

(n − 1)
(

M1(G) + 2m
)

+ (n − 1)e

√

(

M1(G)+2m
)

/(n−1)

with equality if and only if G = Kn or G = Kn .

Proof. We may assume that n > 1. We start with an inequality from [15, p. 26]:
for non-negative numbers a1, a2, . . . , ap and ` ≤ k with `, k 6= 0 ,

(

1

p

p
∑

i=1

a `
i

)1/`

≤
(

1

p

p
∑

i=1

a k
i

)1/k

.

Equality is attained if and only if a1 = a2 = · · · = ap . Then, for k ≥ 2 , p = n− 1 ,
` = 2 , and ai = µi with i = 1, 2, . . . , n − 1 , we have

n−1
∑

i=1

µ k
i ≥ (n − 1)

(

1

n − 1

n−1
∑

i=1

µ 2
i

)k/2

= (n − 1)

(

√

M1(G) + 2m

n − 1

)k

,

which is an equality for k = 2 whereas equality holds for k ≥ 3 if and only if
µ1 = µ2 = · · · = µn−1 . By Lemma 2.2, this is equivalent to G = Kn or G = Kn .

It is easily seen that

LEE(G) = n + 2m +
∑

k≥2

1

k!

n
∑

i=1

µ k
i

≥ n + 2m + (n − 1)
∑

k≥2

1

k!

(

√

M1(G) + 2m

n − 1

)k

= n + 2m + (n − 1)

(

−1 −
√

M1(G) + 2m

n − 1
+ e

√

M1(G)+2m

n−1

)

= 1 + 2m−
√

(n − 1) (M1(G) + 2m) + (n − 1)e

√

M1(G)+2m

n−1

with equality if and only if the lower bound for
n−1
∑

i=1

µ k
i above is attained for k =

3, 4, . . . , i. e., if and only if G = Kn or G = Kn . �

Proposition 3.5. Let G be an r-regular graph with n vertices. Then

(2) LEE(G) ≥ 1 + (n − 1)enr/(n−1)
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with equality if and only if G = Kn or G = Kn .

Proof. Note that the Laplacian spectrum of the graph G consists of r − λn, r −
λn−1, . . . , r − λ2, 0, where λ1 = r, λ2, . . . , λn are the ordinary eigenvalues of G,

arranged in non-increasing order. Then LEE(G) = 1 +
n
∑

i=2

er−λi and thus by the

arithmetic–geometric–mean inequality,

(

LEE(G) − 1
)

e−r =

n
∑

i=2

e−λi ≥ (n − 1)e
−

1
n−1

n
∑

i=2

λi

= (n − 1)er/(n−1)

from which we arrive at the inequality (2), with equality if and only if λ2 = · · · = λn,

that is, G = Kn or G = Kn . �

Let L(G) be the line graph of G . In [8] it was shown that if G is an r-regular
graph with n vertices then

LEE(L(G)) = LEE(G) +
n(r − 2)

2
e2r.

Proposition 3.6. Let G be an (n, m)-graph. If G is bipartite, then

LEE(G) = n − m + e2 EE
(

L(G)
)

.

Proof. It is known that
n
∏

i=1

(x − µi) = xn−m
m
∏

i=1

(x − 2 − γi) where γ1, γ2, . . . , γm

are the eigenvalues of L(G) (see [2]). Thus

LEE(G) =

n
∑

i=1

eµi = (n − m) +

m
∑

i=1

e2+γi = n − m + e2
m
∑

i=1

eγi

= n − m + e2 EE(L(G))

as desired. �
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7. E. Estrada, J. A. Rodŕıguez–Velázquez: Subgraph centrality in complex networks.

Phys. Rev., E 71 (2005), 056103.

8. G. H. Fath–Tabar, A. R. Ashrafi, I. Gutman: Note on Estrada and L-Estrada

indices of graphs. Bull. Acad. Serbe Sci. Arts (Cl. Math. Natur.), in press.

9. M. Fiedler: Algebraic connectivity of graphs. Czechoslovak Math. J., 23 (1973),

298–305.

10. R. Grone, R. Merris: The Laplacian spectrum of a graph II. SIAM J. Discr. Math.

7 (1994), 221–229.

11. I. Gutman: Lower bounds for Estrada index. Publ. Inst. Math. Beograd, 83 (2008),

1–7.

12. I. Gutman, K. C. Das: The first Zagreb index 30 years after. MATCH Commun.

Math. Comput. Chem., 50 (2004), 83–92.
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