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ON THE BOUNDEDNESS OF THE V-CONJUGATION
OPERATOR ON HARDY SPACES

Nacima MEMIC
(Received 20 December, 2012 )

Abstract. In this work we prove that the V-conjugation operator is of type
(H',H'). We provide an example that shows that the L'-norm of the V-
conjugate function is not equivalent to the H'-norm of the original function
on any Vilenkin group.

1. Introduction

The V-conjugate function was studied in the works of P. Simon [1], [3] and [2].
In [1, Theorem 4] it has been proved that the V-conjugation operator is of type
(H',L'). On the same paper it was speculated that the L'-norm of the V-conjugate
function is equivalent to the H'-norm of the original function. In this paper we
establish that these two norms are not equivalent on any Vilenkin group. Besides,
we prove that the V-conjugate function of any element from H' also belongs to the
space H', on which the boundedness remains valid.

Let (mog,m1,...,My,...) be a bounded sequence of integers not less than 2.
Let G := [[2yZym,, where Z,,, denotes the discrete group of order m,, with

addition mod m,,. Each element from G can be represented as a sequence (),
where x,, € {0,1,...,m, — 1}, for every integer n > 0. Addition in G is obtained
coordinatewise.
The topology on G is generated by the subgroups:
I, :={z = (2:); € G,z; =0 for i <n},
and their translations
I,(y) :={z = (z;); € G,z; = y; for i <n}.

The basis (ey,), is formed by elements e, = (0;,,);-

Define the sequence (M), as follows: My =1 and M,,+1 = m, M,.

If |I,,| denotes the normalized product measure of I,, then it can be easily seen
that |I,,| = Mt

The generalized Rademacher functions are defined by

2rizy
ro(z) :=e ™ ,neNU{0},ze€G,
For every nonnegative integer n, there exists a unique sequence (n;); so that

o0
=0
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and the system of Vilenkin functions by

P () = Hr"i (x),n e NU{0},z € G.
i=0
The Fourier coefficients, the partial sums of the Fourier series and the Dirichlet
kernels are respectively defined as follows

n—1 n—1
f0 = [ $@ia@de. S5 =Y fRv D=y i
k=0 k=0
It can be easily seen that

Suf(y) = / Doy — 2)f (z)da,

and
Dy, (z) = M1, (2).
The Hardy space H' (see [1]) consists of integrable functions f for which the
two quadratic variations

o0
2 1
a(f) = (IFOF + D 158,12 = S, )2,
n=0
oo Mp—1
. 1
QU =(FOF + 3 > 1G4, f = Sine, f1°)?
n=0 j=1
belong to L.
Quadratic variation and conditional quadratic variation were also used in [4] and
[5].
In this work we introduce a new quadratic variation

Q@) =(fOP+Y  sup [Saf@+ sen) = Sar, f(@))2.

n—0 5€10,...,mp—1}
The V-conjugate function as defined in [1] and [3], has the form

oo

F=Y"f*LyDu,,
k=0
where f is an integrable function and
Ak ) mk—l )
b= Xe 3
j=1 =D+l

Ap = [2571) i my > 2, and Ay = 1, if my, = 2.
Using the expressions of Lj, given in [3], we have
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where (x # 0, mi, = 1(2)).
For my = 0(2), (mg > 2), (zr # 0), we have

peon (<20 1= (1))

my,
Ly(z) =1+ 7 Tk

When my, = 2, we have Li(z) = —(—=1)%*, (x € G).
For my, = 1(2)), s € {1, ..., my — 1}, we write

. sm +si ST ST
. 1c08— + sin— . c08—
I 1 i(—1)° My mi (=17 T my
rk(ser) =1+ sm ST = sm ' sm-
sin— stn— sin— stn—
mg mg mg mg
If s € {2,...,my — 1} is even, then
s s
1—cos— sm22—
mg m _
Ly (sex) =1 s =2 =7 7 = itan Py
sin— 2sitn——cos —— k
mg 2my, 2my,

o, ST
1+ cos— cos Y s
m
Li(ser) = —i ko — 2 ko = —icot —
sin— 281N ——Cc05 —— 2my,
mg 2 k ka

Notice that

(f % LiDa) () = / (&) (LeDas )y — x)dz = My, / (@) Ly — x)dz

I (y)

mE_1

M;, Z / f(z)Li(y — x)dx =

I=0 (y—w)e(s-entIisr)

mg—1 mMg—1

= MY L) [ f-ndt= 3 Luseak).
J=0 te(s-ep+Ipt1)
where a¥(y) = M;, Ik fly —t)dt.
te(s-ep+IKy1)
Notice that if s is odd then

—Ly(ser) = icot % =1tan (g — 2:;) =itan (mk — SW) = Ly((mr — s)ex).

This is clearly also valid when s is even. Therefore,
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ZLk (sex)a ZLk (sex)a ZLk (sex (a —amk <) ZLk (sex) a —ak )
s=1

Novv7 if my, is even we have

Lk(sek) =1+ L : ;.r;k
Stn—-
mg
(ieos( ™) 4 sin( )1~ (-1)7
=1— m
. TS
SN ——
mg

Then, for s even Li(ser) =1, and for s odd we get

. T8 . TS
2 COS — 4+ sln —

TS
Ly(sep) =1 —2—"h - T — 1 _ 9jcot —.
TS M
sin
my,
s
Set s = 2 cot T
my
Notice that
s mg — S
—vs = 2cot(m — = ) = 2cot 7“ i ) ="7V-s-
my my

The notation C' will be used for an absolute positive constant that may vary in
different contexts.

2. Main Results

Theorem 2.1. Let~G be a bounded Vilenkin group. There exists a sequence (fn)n €
LY(G) satisfying || full1 = 1 for every n € N, and || fo|l1 — o0 as n — .

Proof. Let

m;cfl
fn(y) = Z fk(y)(l{ykzl}_l{ykzo})+ Z fk(y) Z (_1>]1{yk:j}a
0<k<n,myodd 0<k<n,mpeven 7=0

where the functions f*(y) are recursively constructed from the formulae

fFly) = fro1 (),

mp,
Lk(ek)
if my, is odd, 3
) = fra (),
if my, is even and k > 2,
0 mo
fly)= Lo(yo — 1) — Lo(yo)’

for mg odd, and fO(y) = (—=1)% if myg is even.

Let
Li((yx — V)ex) — Li(yrer)
Li(ex) ’

ar(yr) =14+
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if my, is odd and y € {0,...,m — 1}, and
o(yr) =1+ (=1)%,

for my, even.

Since f,, is constant on every I,;-coset, it follows that LyDps * f, = 0 if
k > n+1 and that f™ are constant on I,-cosets.

Moreover,

LDy, * fro = LD, * fe—1 + LD, * fk(]-{ykzl} — 1{yn=0})

= LiDag, * f*(Lyu=1y = Liyu=0})-
If my, is an odd number then for y € G,

LD, * fr(y) = Mk/ fF(@)Li(y — ) (Lzp=1} — Yzy=0})da

I (y)
= )3 Bl = Dew) = L)
— fa(y) Ly ((yr — 12:8}; Li(yrer)
If my, is even we get
LD, * ful) = My [ P@I = 2D (1)1 gy ()
I (y) =0
= M f* R~ —1)¥ TS (—se dz
kfE(y) ;( ) k( k)/lkﬂ(y“%)
= O ) S ) Le-sen)
= i Yy 2 k\—Seg
(=1)¥-

= (—1)¥* fR(y) + ) Y 2icot & = (<)% fi_i(y).

m m
k 0<s<my—1,s odd k

Using these facts it is easily seen that fo = 1. Besides, for arbitrary n we have

fn(y) = fn—l(y) + (LnDMn * fn)(y) = an(yn)fn—l(y)'

From fi(y) = a1(y1)fo(y) = a1(y1), it follows that f,,(y) = [T, ar(yr)-

The following step is to verify that ay (yx) is nonnegative for every y. € {0, ..., mg—
1}, k > 1. This is obviously true when my, is even. Now, if my is odd and yi even
but different from 0, we have

Li((yx — Vex) — L (yrer)
Lk(ek)

Yr—1 Yk
cot omy, ¥ + tan S >0

ap(yr) =14+

s

cot T

If my and yg are both odd numbers with y; # 1, then we have
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B tan %’j;klw + cot 527 B sin 577
Oék(yk)—l_ t T =1- Yr—1 : Yk
cot 5 cos(=m) sin(52-m)
But, from

-1 —

sin 2777]@ = Sin(%w) COS<y§mk ) — sin(y;cmk ) COS(%W),
it follows that )

sin —— < sin( Yk ) cos(yk ).

mg mp ka
Now, if my, is odd and y; = 0 or yr = 1, we get ax(0) = ax(1) =0,
which implies that ay(yx) > 0.
The L'-norm of the V-conjugate function is therefore given by

mo—1mip—1 my,—1
Flh=> Y Y [ Futwlay
Yo=0 y1=0 yn=0 Y In+1(Y0;--;yn)
1 mo—1mi—1 mnyp—1 n m n
0
=3 2 > o 2 o) = 5= [T A
yo=0 y1=0 Yn=0 k=1 k=1
mkfl
where Fk = Z ak(yk)-
yr=0
For m;, odd we have
mkfl
Ly ((ys — Dex) — Li(yrer)
Fr = (1+ )
ykZ:O Lk(ek)
1 mk—l
= my + Tnler) Z_:O (Lx((yr — V)ex) — Li(yrer))
Y=
1
=my + m(!lk(—ek) — Li((mg — V)eg)) = my,.

Fy, = my, is also obviously true when my, is even. Finally we get an||1 =1.

Define the sets Ey C G by Er, = {yx = 0} U {yr = 1}, if my is odd and
E, ={y:yr =1,mod(2)} if my, is even.

Notice that ax(yx) = 0 if and only if y € Ej. Define J, C {0,...,my — 1} by
[ES E, < Yk € Ji.

k—1

Suppose that y € E, \ |J E;, for some k > 1. Then ax(yx) = 0 and «;(y;) > 0
for every i € {0,...,k — 1}7 This means that whenever m; is odd for ¢ < k — 1, we
get fi(y) = 0, because y; # 0, 1.

Also, if m; is even then f? is nonnegative by definition.

Notice that from ay(yx) = 0, we get that fi(y) = 0 whenever i > k + 1.
Since f*(y) is either nonnegative or purely imaginary we conclude that

k—1
)] = 1£*() + > F@I 215 ) = fraly) = [T eatw).

0<i<k—1,m; even
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We obtain .
fawldy = [ . (y:)
/Ek\Ufol E; " E\UMZ, B };[1 o
k—1
P RED IR | [T et
Yo€JS Yr—1€J5_ Y€k D1 (Yoo o0k) =1
> o (y;) = F=—,
Mi+1 ¥o—0 Yh_1=0 i=1 M1 5 mk
where
JP={0,....m; —1}\ J;,i € {0,..., k —1}.
From
n n 2meo
it =3 [ Faldy > 3 200
/ ; BA\UZ, B ; M
we get that || fn]1 — o0 as n — 0. O

Lemma 2.2. There exists a constant C > 0 only depending on the sequence (my )y,
satisfying

|LnD]\/[,L * f(x)‘ S C sup |SM"+1f<$ + Sen) - SMnf(x)l?

s€{0,...,my,—1}

for every f € LY(G).
Proof. Suppose in the first case that m, is odd.

m,—1 2

|LuDar, % f(z)] = | Y Li(ser)al(z)] = | Ly (sex)(ag(x) — ol (2))]
s=0

)
<C { sup }|5Mﬂ,+1f($ + sen) — Swm, f()] Z | Li(sex)|
s€{0,...,m,—1 s=1

=C sup |Sn 0 f (2 + s€n) — S, f(2)].
s€{0,...,m,—1}

Suppose now that m, is even. If f is a real function, the imaginary part of
L, Dy, * f(z) is given by

Im(L, Dy, * f)(x) = > qal(z) = > s (al (z) —a” ().

1<s<m,—1,s odd 1<s< T2 —1,5 odd

Hence,

Mmn _ 7

2

[Im (LD, + f)(@)] < 052 1}ISMWJ”(I+56n)*SMnf(ﬂ:)\ > sl
s€0,....mp— s=1

=C sup |Sa, 0 f(x 4 sen) — Sar, f(2)].

86{07"~amn_1}
On the other hand the real part consists of
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Re(Ln D, * f)(x) = > ag(z) — > ag ()

0<s<mn,—2,s even 1<s<m,—1,s odd
=maSy, =2 > dl@=2 Y (Sa.fl@)—al(x))
1<s<m, —1,s odd 1<s<m, —1,s odd
It follows
|Re(Ln D, * f)(z)] < C s }ISMan(fE + sen) — Sur,, f(@)].
s€{0,...,m,—1

Then, the result follows by an easy calculation. (I
Lemma 2.3. The norms ||G(f)|l1 and || f| g are equivalent in H*.
Proof. Let f € H'. Tt is clear that q(f) < G(f). Let x € G be arbitrary.

sup |SM7L+1f(x + Sen) - SMnf(m)‘Z
s€{0,...,m,—1}

= sup | SN [ (T 4 s€1) —AS'Mnj"(xJrsen)\2
s€{0,...,m,—1}

s€{0,...,m,—

my—1
= S S Gt sen) — Sian, S+ sea)
j=0

my,—1

<C sup Z S+ vyan, f(x + sen) = Sjm, f @ + sen) |
s€{0,...,m,—1} =0

my,—1
=C  sup Y |rh(z+se,)M, F@O)7,(t)dt|?
s€{0,...,m,—1} =0 I, (z+sen)
mp—1
=C  swp Y@M, [ fOF@d?
s€{0,...,m,—1} =0 I, (z)
my,—1

=C  sup > [SGsna (&) = Siar, f(2).

s€{0,...,m,—1} =0

It follows that G(f) < CQ(f), and the result follows by applying Theorem 3 from

[1].
O

Theorem 2.4. The V-conjugation operator is bounded on H'. Namely, if f € H',
then f € H', and there exists a constant C' > 0 only depending on the sequence
(mp)n such that || fllgr < C|\fllar-
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Proof. Let f € H'. Notice that SMnf = Z?:_()l L;Dyy, * f. Therefore, by Lemma
2.2 we get

1000 (@) = Saa,, f(2)| = [(Ln D, f)()]
S C sup |SMn+1f(x+8€n) _SMnf(x)|7
s€{0,...,mp,—1}
for some constant C' > 0 only depending on the sequence (1, )y,
Then, Lemma 2.3 gives

IFllz < CNAHIx ~ 1 f -
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