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Abstract. In this work we prove that the V-conjugation operator is of type

(H1, H1). We provide an example that shows that the L1-norm of the V-
conjugate function is not equivalent to the H1-norm of the original function

on any Vilenkin group.

1. Introduction

The V-conjugate function was studied in the works of P. Simon [1], [3] and [2].
In [1, Theorem 4] it has been proved that the V-conjugation operator is of type
(H1, L1). On the same paper it was speculated that the L1-norm of the V-conjugate
function is equivalent to the H1-norm of the original function. In this paper we
establish that these two norms are not equivalent on any Vilenkin group. Besides,
we prove that the V-conjugate function of any element from H1 also belongs to the
space H1, on which the boundedness remains valid.

Let (m0,m1, . . . ,mn, . . . ) be a bounded sequence of integers not less than 2.
Let G :=

∏∞
n=0 Zmn , where Zmn denotes the discrete group of order mn, with

addition mod mn. Each element from G can be represented as a sequence (xn)n,
where xn ∈ {0, 1, . . . ,mn − 1}, for every integer n ≥ 0. Addition in G is obtained
coordinatewise.

The topology on G is generated by the subgroups:

In := {x = (xi)i ∈ G, xi = 0 for i < n},

and their translations

In(y) := {x = (xi)i ∈ G, xi = yi for i < n}.

The basis (en)n is formed by elements en = (δin)i.
Define the sequence (Mn)n as follows: M0 = 1 and Mn+1 = mnMn.
If |In| denotes the normalized product measure of In then it can be easily seen

that |In| = M−1
n .

The generalized Rademacher functions are defined by

rn(x) := e
2πixn
mn , n ∈ N ∪ {0}, x ∈ G,

For every nonnegative integer n, there exists a unique sequence (ni)i so that

n =
∞∑
i=0

niMi.
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and the system of Vilenkin functions by

ψn(x) :=

∞∏
i=0

rni(x), n ∈ N ∪ {0}, x ∈ G.

The Fourier coefficients, the partial sums of the Fourier series and the Dirichlet
kernels are respectively defined as follows

f̂(n) =

∫
f(x)ψ̄n(x)dx, Snf =

n−1∑
k=0

f̂(k)ψk, Dn =

n−1∑
k=0

ψk.

It can be easily seen that

Snf(y) =

∫
Dn(y − x)f(x)dx,

and

DMn
(x) = Mn1In(x).

The Hardy space H1 (see [1]) consists of integrable functions f for which the
two quadratic variations

q(f) = (|f̂(0)|2 +

∞∑
n=0

|SMn+1
f − SMn

f |2)
1
2 ,

Q(f) = (|f̂(0)|2 +

∞∑
n=0

mn−1∑
j=1

|S(j+1)Mn
f − SjMn

f |2)
1
2

belong to L1.
Quadratic variation and conditional quadratic variation were also used in [4] and

[5].
In this work we introduce a new quadratic variation

q̃(f)(x) = (|f̂(0)|2 +

∞∑
n=0

sup
s∈{0,...,mn−1}

|SMn+1
f(x+ sen)− SMn

f(x)|2)
1
2 .

The V-conjugate function as defined in [1] and [3], has the form

f̃ :=

∞∑
k=0

f ∗ LkDMk
,

where f is an integrable function and

Lk := −
4k∑
j=1

rjk +

mk−1∑
j=4k+1

rjk,

4k = [mk−1
2 ], if mk > 2, and 4k = 1, if mk = 2.

Using the expressions of Lk given in [3], we have

Lk(x) = 1− 1

i

(−1)k

sin
πxk
mk

+

exp

(
−πxki
mk

)
i

(
sin

xkπ

mk

)−1

,



ON THE BOUNDEDNESS OF THE V-CONJUGATION OPERATOR 123

where (xk 6= 0,mk ≡ 1(2)).
For mk ≡ 0(2), (mk > 2), (xk 6= 0), we have

Lk(x) = 1 +
1

i

exp

(
−πxki
mk

)
[1− (−1)xk ]

sin
πxk
mk

.

When mk = 2, we have Lk(x) = −(−1)xk , (x ∈ G).
For mk ≡ 1(2)), s ∈ {1, ...,mk − 1}, we write

Lk(sek) = 1 +
i(−1)s

sin
sπ

mk

−
icos

sπ

mk
+ sin

sπ

mk

sin
sπ

mk

=
i(−1)s

sin
sπ

mk

− i
cos

sπ

mk

sin
sπ

mk

.

If s ∈ {2, ...,mk − 1} is even, then

Lk(sek) = i
1− cos sπ

mk

sin
sπ

mk

= 2i
sin2 sπ

2mk

2sin
sπ

2mk
cos

sπ

2mk

= i tan
sπ

2mk
,

and clearly, Lk(0) = 0. If s is odd, we obtain

Lk(sek) = −i
1 + cos

sπ

mk

sin
sπ

mk

= −2i
cos2 sπ

2mk

2sin
sπ

2mk
cos

sπ

2mk

= −i cot
sπ

2mk
.

Notice that

(f ∗ LkDMk
) (y) =

∫
f(x)(LkDMk

)(y − x)dx = Mk

∫
Ik(y)

f(x)Lk(y − x)dx

= Mk

mk−1∑
j=0

∫
(y−x)∈(s·ek+Ik+1)

f(x)Lk(y − x)dx =

= Mk

mk−1∑
j=0

Lk(sek)

∫
t∈(s·ek+Ik+1)

f(y − t)dt =

mk−1∑
s=0

Lk(sek)aks(y),

where aks(y) = Mk

∫
t∈(s·ek+Ik+1)

f(y − t)dt.

Notice that if s is odd then

−Lk(sek) = i cot
πs

2mk
= i tan

(
π

2
− πs

2mk

)
= i tan

(
mk − s

2mk
π

)
= Lk((mk − s)ek).

This is clearly also valid when s is even. Therefore,
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mk∑
s=0

Lk(sek)aks =

mk∑
s=1

Lk(sek)aks =

mk∑
s=1

Lk(sek)(aks−akmk−s) =

mk∑
s=1

Lk(sek)(aks−ak−s).

Now, if mk is even we have

Lk(sek) = 1 +
1

i

(cos(
πs

mk
)− i sin(

πs

mk
))[1− (−1)s]

sin
πs

mk

= 1−
(i cos(

πs

mk
) + sin(

πs

mk
))[1− (−1)s]

sin
πs

mk

.

Then, for s even Lk(sek) = 1, and for s odd we get

Lk(sek) = 1− 2
i cos

πs

mk
+ sin

πs

mk

sin
πs

mk

= −1− 2i cot
πs

mk
.

Set γs = 2 cot
πs

mk
.

Notice that

−γs = 2 cot(π − πs

mk
) = 2 cot

π(mk − s)
mk

= γ−s.

The notation C will be used for an absolute positive constant that may vary in
different contexts.

2. Main Results

Theorem 2.1. Let G be a bounded Vilenkin group. There exists a sequence (fn)n ∈
L1(G) satisfying ‖f̃n‖1 = 1 for every n ∈ N, and ‖fn‖1 →∞ as n→∞.

Proof. Let

fn(y) =
∑

0≤k≤n,mkodd

fk(y)(1{yk=1}−1{yk=0})+
∑

0≤k≤n,mkeven

fk(y)

mk−1∑
j=0

(−1)j1{yk=j},

where the functions fk(y) are recursively constructed from the formulae

fk(y) =
mk

Lk(ek)
f̃k−1(y),

if mk is odd,
fk(y) = f̃k−1(y),

if mk is even and k ≥ 2,

f0(y) =
m0

L0(y0 − 1)− L0(y0)
,

for m0 odd, and f0(y) = (−1)y0 if m0 is even.
Let

αk(yk) = 1 +
Lk((yk − 1)ek)− Lk(ykek)

Lk(ek)
,
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if mk is odd and yk ∈ {0, . . . ,mk − 1}, and

αk(yk) = 1 + (−1)yk ,

for mk even.
Since fn is constant on every In+1-coset, it follows that LkDMk

∗ fn = 0 if
k ≥ n+ 1 and that fn are constant on In-cosets.

Moreover,

LkDMk
∗ fk = LkDMk

∗ fk−1 + LkDMk
∗ fk(1{yk=1} − 1{yk=0})

= LkDMk
∗ fk(1{yk=1} − 1{yk=0}).

If mk is an odd number then for y ∈ G,

LkDMk
∗ fk(y) = Mk

∫
Ik(y)

fk(x)Lk(y − x)(1{xk=1} − 1{xk=0})dx

= fk(y)
Mk

Mk+1
(Lk((yk − 1)ek)− Lk(ykek))

= f̃k−1(y)
Lk((yk − 1)ek)− Lk(ykek)

Lk(ek)
.

If mk is even we get

LkDMk
∗ fk(y) = Mk

∫
Ik(y)

fk(x)Lk(y − x)(

mk−1∑
j=0

(−1)j1{xk=j}(x))dx

= Mkf
k(y)

mk−1∑
s=0

(−1)yk+sLk(−sek)

∫
Ik+1(y+sek)

dx

=
(−1)yk

mk
fk(y)

mk−1∑
s=0

(−1)sLk(−sek)

= (−1)ykfk(y) +
(−1)yk

mk
fk(y)

∑
0≤s≤mk−1,s odd

2i cot
−sπ
mk

= (−1)yk f̃k−1(y).

Using these facts it is easily seen that f̃0 = 1. Besides, for arbitrary n we have

f̃n(y) = f̃n−1(y) + (LnDMn
∗ fn)(y) = αn(yn)f̃n−1(y).

From f̃1(y) = α1(y1)f̃0(y) = α1(y1), it follows that f̃n(y) =
∏n
k=1 αk(yk).

The following step is to verify that αk(yk) is nonnegative for every yk ∈ {0, . . . ,mk−
1}, k ≥ 1. This is obviously true when mk is even. Now, if mk is odd and yk even
but different from 0, we have

αk(yk) = 1 +
Lk((yk − 1)ek)− Lk(ykek)

Lk(ek)

= 1 +
cot yk−1

2mk
π + tan yk

2mk
π

cot π
2mk

≥ 0.

If mk and yk are both odd numbers with yk 6= 1, then we have
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αk(yk) = 1−
tan yk−1

2mk
π + cot yk

2mk
π

cot π
2mk

= 1−
sin π

2mk

cos(yk−1
2mk

π) sin( yk
2mk

π)
.

But, from

sin
π

2mk
= sin(

yk
2mk

π) cos(
yk − 1

2mk
π)− sin(

yk − 1

2mk
π) cos(

yk
2mk

π),

it follows that

sin
π

2mk
≤ sin(

yk
2mk

π) cos(
yk − 1

2mk
π).

Now, if mk is odd and yk = 0 or yk = 1, we get αk(0) = αk(1) = 0,
which implies that αk(yk) ≥ 0.
The L1-norm of the V-conjugate function is therefore given by

‖f̃n‖1 =

m0−1∑
y0=0

m1−1∑
y1=0

. . .

mn−1∑
yn=0

∫
In+1(y0,...,yn)

|f̃n(y)|dy

=
1

Mn+1

m0−1∑
y0=0

m1−1∑
y1=0

. . .

mn−1∑
yn=0

n∏
k=1

αk(yk) =
m0

Mn+1

n∏
k=1

Fk,

where Fk =
mk−1∑
yk=0

αk(yk).

For mk odd we have

Fk =

mk−1∑
yk=0

(1 +
Lk((yk − 1)ek)− Lk(ykek)

Lk(ek)
)

= mk +
1

Lk(ek)

mk−1∑
yk=0

(Lk((yk − 1)ek)− Lk(ykek))

= mk +
1

Lk(ek)
(Lk(−ek)− Lk((mk − 1)ek)) = mk.

Fk = mk is also obviously true when mk is even. Finally we get ‖f̃n‖1 = 1.
Define the sets Ek ⊂ G by Ek = {yk = 0} ∪ {yk = 1}, if mk is odd and

Ek = {y : yk ≡ 1,mod(2)} if mk is even.
Notice that αk(yk) = 0 if and only if y ∈ Ek. Define Jk ⊂ {0, . . . ,mk − 1} by

y ∈ Ek ⇔ yk ∈ Jk.

Suppose that y ∈ Ek \
k−1⋃
i=0

Ei, for some k ≥ 1. Then αk(yk) = 0 and αi(yi) > 0

for every i ∈ {0, . . . , k − 1}. This means that whenever mi is odd for i ≤ k − 1, we
get f i(y) = 0, because yi 6= 0, 1.

Also, if mi is even then f i is nonnegative by definition.
Notice that from αk(yk) = 0, we get that f i(y) = 0 whenever i ≥ k + 1.
Since fk(y) is either nonnegative or purely imaginary we conclude that

|fn(y)| = |fk(y) +
∑

0≤i≤k−1,mi even

f i(y)| ≥ |fk(y)| ≥ f̃k−1(y) =

k−1∏
i=1

αi(yi).
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We obtain ∫
Ek\

⋃k−1
i=0 Ei

|fn(y)|dy ≥
∫
Ek\

⋃k−1
i=0 Ei

k−1∏
i=1

αi(yi)

=
∑
y0∈Jc0

. . .
∑

yk−1∈Jck−1

∑
yk∈Jk

∫
Ik+1(y0,...,yk)

k−1∏
i=1

αi(yi),

≥ 2

Mk+1

m0−1∑
y0=0

. . .

mk−1−1∑
yk−1=0

k−1∏
i=1

αi(yi) =
2m0

Mk+1

k−1∏
i=1

Fi =
2m0

mk
,

where
Jci = {0, . . . ,mi − 1} \ Ji, i ∈ {0, . . . , k − 1}.

From ∫
|fn(y)|dy =

n∑
k=1

∫
Ek\

⋃k−1
i=0 Ei

|fn(y)|dy ≥
n∑
k=1

2m0

mk
,

we get that ‖fn‖1 →∞ as n→∞. �

Lemma 2.2. There exists a constant C > 0 only depending on the sequence (mn)n
satisfying

|LnDMn ∗ f(x)| ≤ C sup
s∈{0,...,mn−1}

|SMn+1f(x+ sen)− SMnf(x)|,

for every f ∈ L1(G).

Proof. Suppose in the first case that mn is odd.

|LnDMn
∗ f(x)| = |

mn−1∑
s=0

Lk(sek)ans (x)| = |

mn−1
2∑
s=1

Lk(sek)(ans (x)− an−s(x))|

≤ C sup
s∈{0,...,mn−1}

|SMn+1
f(x+ sen)− SMn

f(x)|

mn−1
2∑
s=1

|Lk(sek)|

= C sup
s∈{0,...,mn−1}

|SMn+1f(x+ sen)− SMnf(x)|.

Suppose now that mn is even. If f is a real function, the imaginary part of
LnDMn

∗ f(x) is given by

Im(LnDMn ∗ f)(x) =
∑

1≤s≤mn−1,s odd

γsa
n
s (x) =

∑
1≤s≤mn2 −1,s odd

γs(a
n
s (x)−an−s(x)).

Hence,

|Im(LnDMn ∗ f)(x)| ≤ sup
s∈{0,...,mn−1}

|SMn+1
f(x+ sen)− SMn

f(x)|

mn
2 −1∑
s=1

|γs|

= C sup
s∈{0,...,mn−1}

|SMn+1f(x+ sen)− SMnf(x)|.

On the other hand the real part consists of
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Re(LnDMn
∗ f)(x) =

∑
0≤s≤mn−2,s even

ans (x)−
∑

1≤s≤mn−1,s odd

ans (x)

= mnSMn − 2
∑

1≤s≤mn−1,s odd

ans (x) = 2
∑

1≤s≤mn−1,s odd

(SMnf(x)− ans (x)).

It follows

|Re(LnDMn
∗ f)(x)| ≤ C sup

s∈{0,...,mn−1}
|SMn+1

f(x+ sen)− SMn
f(x)|.

Then, the result follows by an easy calculation. �

Lemma 2.3. The norms ‖q̃(f)‖1 and ‖f‖H1 are equivalent in H1.

Proof. Let f ∈ H1. It is clear that q(f) ≤ q̃(f). Let x ∈ G be arbitrary.

sup
s∈{0,...,mn−1}

|SMn+1
f(x+ sen)− SMn

f(x)|2

= sup
s∈{0,...,mn−1}

|SMn+1
f(x+ sen)− SMn

f(x+ sen)|2

= sup
s∈{0,...,mn−1}

|
mn−1∑
j=0

(S(j+1)Mn
f(x+ sen)− SjMn

f(x+ sen))|2

≤ C sup
s∈{0,...,mn−1}

mn−1∑
j=0

|S(j+1)Mn
f(x+ sen)− SjMnf(x+ sen)|2

= C sup
s∈{0,...,mn−1}

mn−1∑
j=0

|rjn(x+ sen)Mn

∫
In(x+sen)

f(t)r̄jn(t)dt|2

= C sup
s∈{0,...,mn−1}

mn−1∑
j=0

|rjn(x)Mn

∫
In(x)

f(t)r̄jn(t)dt|2

= C sup
s∈{0,...,mn−1}

mn−1∑
j=0

|S(j+1)Mn
f(x)− SjMn

f(x)|2.

It follows that q̃(f) ≤ CQ(f), and the result follows by applying Theorem 3 from
[1].

�

Theorem 2.4. The V-conjugation operator is bounded on H1. Namely, if f ∈ H1,
then f̃ ∈ H1, and there exists a constant C > 0 only depending on the sequence
(mn)n such that ‖f̃‖H1 ≤ C‖f‖H1 .
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Proof. Let f ∈ H1. Notice that SMn
f̃ =

∑n−1
i=0 LiDMi

∗ f . Therefore, by Lemma
2.2 we get

|SMn+1 f̃(x)− SMn f̃(x)| = |(LnDMn ∗ f)(x)|
≤ C sup

s∈{0,...,mn−1}
|SMn+1

f(x+ sen)− SMn
f(x)|,

for some constant C > 0 only depending on the sequence (mn)n.
Then, Lemma 2.3 gives

‖f̃‖H1 ≤ C‖q̃(f)‖1 ∼ ‖f‖H1 .

�
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