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Abstract. There are two versions of the Dirichlet problem for the heat equation
on an arbitrary open set in Euclidean space. For one of them, there is already
a characterization of resolutivity in terms of caloric measure. We prove that
there is a similar characterization for the other, that the measure involved is
essentially the same caloric measure, and that a boundary function is resolutive
with respect to one version of the problem if and only if it is resolutive with
respect to the other. We also prove that, for any boundary function, the upper
solutions for the two versions coincide.

1. Introduction

Let F be an arbitrary open subset of R™™!. We take the boundary OF of E
relative to the one-point compactification of R"**. Thus dF contains the point at
infinity if and only if E is unbounded. There are two distinct versions of the Dirich-
let problem for the heat equation on F. In the first, the problem is formulated in
exactly the same way as for Laplace’s equation. That is, a continuous, real-valued
function f on OF is given, and a temperature v on E such that lim,_,, u(p) = f(q)
for all ¢ € OF is sought. This version has the advantage that it can be treated
in an axiomatic setting that includes both parabolic and elliptic equations, as in
[2, 4]. On the other hand, it takes no account of the fact that the temporal vari-
able behaves differently to the spatial variables, and is thus out of line with earlier
works that considered only particular types of open set. Moreover, the treatments
in [2, 4] are bound up in their axiomatic systems, and so are unnecessarily tortuous
for the heat equation. In [5], Doob asserted that a direct approach, more in line
with the traditional approach to the Dirichlet problem for Laplace’s equation, was
possible for the heat equation, but gave few details. Sections 2-4 of this paper are
devoted to providing such details, but guided by the treatment of the second form
of the problem in [9] rather than by [5].

The second version of the Dirichlet problem for the heat equation does take into
account the special nature of the temporal variable. This version was begun in [7],
and carried through to [9] with different notations. It requires a classification of
the boundary points of F, in which we use the following notations for the upper
and lower half-balls. Given py = (z0,%9) € R™™ and 7 > 0, we denote by H(p,r)
the open lower half-ball {(z,t) : |z —x0|? + (t —t9)? < 12, t < to}, and by H*(po,7)
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the open upper half-ball {(x,t) : |x — xo|? + (t — t9)? <%, t > to}.

Definitions. Let ¢ be a boundary point of the open set E. We call ¢ a normal
boundary point if either

(a) ¢ is the point at infinity, or

(b) ¢ € R™™ and for every r > 0, H(q,7)\E # 0.

Otherwise, we call ¢ an abnormal boundary point; in this case, there is some
ro > 0 such that H(g,79) C E. The abnormal boundary points are of two kinds,
according to whether they can be approached from above by points in E. If there
is some r1 < rg such that H*(q,r1) N E = 0, then q is called a singular boundary
point. In this case, H(q,71) = B(q,71) N E. On the other hand if, for every r < ro,
we have H*(q,7) N E # ), then ¢ is called a semi-singular boundary point.

The set of all normal boundary points of F is denoted by 0,F, that of all
abnormal points by 0,F, that of all singular points by 0sF, and that of all semi-
singular points by O0ssE. Thus OF = 0,FE U 0, F and 9,F = 0,FE U 0ssF. The
essential boundary O0.F is defined by

0.E = 0,E U9, E = OF\0,E.

The second version of the Dirichlet problem for the heat equation is formu-
lated as follows. In this, we use the notation lim,_,44 u(p) as an abbreviation for
lim (g ) (y,s+) w(p), Where p = (z,t) and ¢ = (y, s). A continuous, real-valued func-
tion f on the essential boundary 0. F is given, and a temperature u on E such that
lim, ,, u(p) = f(q) for all ¢ € 9, E, and lim, ,,+ u(p) = f(q) for all ¢ € IsE, is
sought.

We deal with the generalised forms of the Dirichlet problem, in which the bound-
ary function f is not required to be continuous and can take the values —oo and
+o00. For each version of the problem, we try to associate with f a temperature
on F, using the PWB method. We shall not discuss the boundary behaviour of
such temperatures here. We now establish different notations for the PWB method
relative to the two versions of the problem. Our terminology will follow [9], where
further details can be found. For proofs that the corresponding concepts in [2, 4, 5]
are equivalent, see [3] or [8].

Let f be an extended real-valued function defined on JE. For any lower bounded
hypertemperature v on E, we put v in the class ilf if and only if both
liminfo(p) > f(q) for all ¢ € O, F,
p—aq

and

liminfo(p) > f(q) for all ¢ € 9s.F.
P—q+

This is the same as in [7, 9]. We put v in the class 5? if and only if
liminfv(p) > f(q) for all ¢ € OF.
p—4q

This is similar to [2, 4, 5].
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Clearly 5? - Ll?, so that if ﬁ? =inf{v:v e E?} is the upper H-solution, and
UfE =inf{v:v € 11?} is the upper S-solution, then UfE < ﬁ? on E.

Dually, for any upper bounded hypotemperature w on F, we put w in the class
2]123 if and only if both

limsupw(p) < f(q) for all ¢ € 0, F,
p—q
and
limsupw(p) < f(q) for all g € 0s,F.
p—q+

We put w in the class Qf if and only if

limsupw(p) < f(q) for all ¢ € OF.
p—q

Clearly Qf C £%. so that if ﬂf =sup{w: w € Qf} is the lower H-solution, and
LJ]? =sup{w:we€ 2?} is the lower S-solution, then L}’J > ﬁ}g on E.

If HY = F? and is a temperature on F, we denote it by H}E and say that f is
H-resolutive for E. We also call Hf the PWB solution to the H-Dirichlet problem
for f on E. Similarly, if L7 = U and is a temperature on E, we denote it by

S}E and say that f is S-resolutive for E. We also call SJ‘? the PWB solution to the
S-Dirichlet problem for f on E.

Since ﬂ? < Lf < Uf < Ff on F, the function f is H-resolutive only if it is S-
resolutive, and then H ]{3 =5 J‘? . The main purpose of this paper is to establish that
f is S-resolutive only if it is H-resolutive. In [10] (or [9]), there is a characterization
of S-resolutivity in terms of caloric measure. In [5, p.332], Doob claims that there
is a similar characterization of H-resolutivity in terms of parabolic measure, but
gives no details to support that claim. Guided by the treatment in [10], we prove
in Section 4 that there is such a characterization. In Section 5, we show that the
parabolic measure coincides with the caloric measure, and deduce the equivalence
of the two notions of resolutivity. In Section 6, we prove a property of caloric
measure that requires us to consider boundary functions that are not necessarily
resolutive. This leads us to show, in Section 7, that the upper H-solution and the
upper S-solution of any boundary function coincide. Thus the PWB method does
not distinguish between the two forms of the Dirichlet problem.

2. Upper and Lower PWB Solutions of the H-Dirichlet Problem

In this section, we begin the systematic treatment of the H-Dirichlet problem.
Lemmas 1 and 2, and Theorem 1, are well-known but are included for completeness.
Lemmas 3 and 4 are new, as is the precise form of Lemma 5.

Lemma 1. Let E be an open set, and let f be an extended real-valued function
defined on the boundary OE. Ifu € @? andv € E?, thenu < v on E. Consequently

E —F
Y <.
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Proof. Since u is a hypotemperature and v is a hypertemperature on F, v —u is a
hypertemperature, by [9, Corollaries 3.55 and 3.57]. Furthermore, if ¢ € OF (and
is possibly the point at infinity) and f(q) is finite, then

liminf(v — u)(p) > liminf v(p) — limsupu(p) > f(q) — f(¢) = 0.
pP—q p—q p—q

On the other hand, if f(q) = +o0 then lim,, ,, v(p) = +oo and limsup,,_,, u(p) <
+00 because u is upper bounded, so that liminf, ,,(v—u)(p) > 0; and if f(¢) = —oc0
then lim,_,, u(p) = —oco and liminf, ,, v(p) > —oo, so that liminf,,,(v — u)(p) >

0. Therefore, by [9, Theorem 3.13], v > v on E. It follows that ﬂ? < Ff O

Lemma 2. Let E be an open set, let f and g be extended real-valued functions on
OF, and let a € R.
(a) Without further conditions, Fff = —ﬂ?
) If @« > 0, then Fgf = ozEﬁf and ﬂff = aﬂ?.
Y If f <y, thenﬁf Sﬁg cmdﬂj?J Sﬂf.
) Let (f + g)(q) be defined arbitrarily at each point ¢ € OFE where f(q) + g(q) is
undefined. Then for each point p € E,
—E —E —E
Hy,o(p) < Hy(p)+H, (p)
provided that the sum on the right-hand side is defined, and
HY,,(p) > Hf (p) + H. (p)

with the same proviso.
Proof. (a) Since w € Ei‘ if and only if —w € Qf, we have
—F .
H_;=inf{w: -we Qf} =—sup{v:ve€ Qf} = fﬂ?.
(b) If & > 0, then w € Ef if and only if aw € Eff Therefore
Fff =inf{aw : w € 5?} = OLF?.
Similarly ﬂaEf = aﬂ?.
() If f<g, tgen 55 C E?Eand Q? C ﬁf, so that ﬁ? < Ff and ﬂ]]? < ﬂf
(d) Let v € Ef and w € Eg . Then v + w is a lower bounded hypertemperature
on E, and at all points ¢ € OF where f(q) + g(q) is well-defined, we have
liminf(v + w)(p) > liminf v(p) + liminf w(p) > f(q) + g(q).
p—q p—q p—q

At any point ¢ € OF where f(q)+ g(q) is undefined, then without loss of generality
we take f(g) = +o00 and g(¢q) = —oo. This implies that lim,_,, v(p) = +o0, and
therefore that lim,_,,(v+ w)(p) = +00 because w is lower bounded. Thus, regard-
less of the value we assign to (f + ¢)(g), we have lim,_.,(v + w)(p) > (f + 9)(q).

Hence v + w € 5?+g. Now let p € E, so that v(p) + w(p) > F?Jrg(p). Clearly
Firg (p) < F?(p) + F; (p) if the sum on the right-hand side is defined andfgher
term is +oo. Since ﬁf (p) = +oo if and only if v(p) = +oo for all v € Hy, it

—E —E
only remains to consider the case where there exist v € § ¥ and w € 9 g such that
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v(p) < +o0 and w(p) < +oo. In this case ﬁ?(p) + ﬁgE(p) is defined, and since
—E —E —E
Hyo o (p) <v(p)+w(p) wehave Hy,  (p) < Hy (p)+w(p), and hence the first result.

The proof for the lower solutions now follows easily from (a). O

Definition. Let E be an open set, and let f € C(OF). We say that a temperature
won FE is a classical solution of the H-Dirichlet problem for f if

lim u(p) = f(¢) forall ¢ € OF.
p—q

It is an important fact that, if there is a classical solution of the H-Dirichlet
problem for f, then the PWB solution for f exists and coincides with the classical
solution.

Theorem 1. Let E be an open set, and let f € C(OFE). If there is a classical
solution u of the H-Dirichlet problem for f on E, then f is H-resolutive and Hy = u
on E.

Proof. Since f € C(OF) it is bounded, and therefore u is bounded, in view of the
boundary point maximum principle. Therefore, because of its boundary limits, u

belongs to both E? and Qf . Hence v > ﬁ? and u < H ? , and so it follows from

—E
Lemma 1 that u = H; = Q}E Since v is a temperature on F, this implies that f
is H-resolutive and H JlE =wuon FE. (]

It follows easily from Theorem 1 that, if f(q) = a € R for all ¢ € OF, then f is
H-resolutive and H f = « on E. Furthermore, in view of Lemma 2(c) and Lemma

1,ifg:8E—>[a,ﬁ],thenagﬂfgﬁfgﬁonE.

Given an open subset F of R"** and a point py € E, we denote by A(po; E) the
set of points ¢ € E that are lower than pg relative to F, in the sense that there is a
polygonal path v C E joining pg to g along which the temporal variable ¢ is strictly

decreasing.

Lemma 3. Let FE be an open set, let pg € E, and put A = A(po; E). Let f be a
function defined on OF, and define a function g on OA by

(p) = f(p) if pe OANOE,
TW =\ oo ifpcOA\OE.

—A ) . —=
Then ), is precisely the class of restrictions to A of the members of 5’3?, so that

—A —E
H  is the restriction to A of H .

—E
Proof. We first show that, given any hypertemperature v € §), its restriction to

A belongs to E;\ Obviously the restriction is a lower bounded hypertemperature
on A. Let g € OA. If ¢ € OF also, then

lim inf > liminf > = g(q).
pﬂ;}%/\v(p) > pE%IéEU(p) > f(q) = 9(q)
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On the other hand, if ¢ ¢ OF then

liminf v(p) > —o0 = g(q).
p—q, pEA

—A
Hence the restriction of v to A belongs to ﬁg.

A

g0 we define a

In the opposite direction, given any hypertemperature w €
function w on E by putting

w(p) if peA,
w(p) = § +00 if pe E\A,
liminf,,, jenw(q) if pedANE.

We claim that w € E? We show that w is a hypertemperature on F using [9,
Theorem 3.51]. Clearly @ is lower semicontinuous on FE, and is also lower bounded
on F because w is lower bounded on A. It remains to show that, given any point
p € E and any € > 0, we can find a positive number ¢ < € such that the inequality
w(p) > V(w;p;c) holds. Clearly we can do this if p € E\JA, so suppose that
p € ENOA. Since 9.A C 0.F by [9, Lemma 8.4], p € 9;A. Therefore we can
find 7o > 0 such that H(p,2r9) = B(p,2r9) N A. We now choose ¢y > 0 such that

Q(g;c) € A whenever ¢ € H(p,79) and ¢ < ¢g. Then, for any ¢ < ¢y, we have
w(p) = liminf w(q) > liminf V(w;q;c) = liminf V(w;q;c) > V(w;p;c),
q—p, gEA q—p, qEN q—p, gEA
by Fatou’s lemma. Hence w is a hypertemperature on E.

We now take any point ¢ € IE. If ¢ ¢ OA, then
liminf @(p) = +o00 > f(q).
p—q
On the other hand, if ¢ € A then

liminfw(p) = liminf w(p) > g(q) = f(q).
p—q p—q, PEA

Hence w € Ny Thus w is the restriction to A of a function in Ny O

Lemma 4. Let E be an open set, and let f be an extended real-valued function
defined on OE. If there are points po,qo € E such that qo € A(po; E), F?(po) <
+o00, and ﬁ?(qo) > —o0, then ﬁ? is a temperature on A(qo; E).

Proof. We put A = A(po; E). Let g be defined on JA as in Lemma 3, so that

— —A — _
H? = H, on A. Since H?(po) < 400, we can find a hypertemperature wg € f)f

such that wg(po) < +oo. By [9, Corollary 3.55], wy is a supertemperature on A. By

— —A
Lemma 3, the restriction of wp to A belongs to £, and so we can write H, = inf F,

—A
where JF is the class of all supertemperatures that belong to £,,.

We show that F is a saturated family of supertemperatures on A, with a view
to applying [9, Theorem 3.26]. Let u,v € F. Then u A v is a lower bounded
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supertemperature on A. Moreover, whenever ¢ € A, we have
liminf(u A v = (liminf « A (liminf v > .
minf(uAv)(p) = (liminfu(p)) A (liminfo(p)) = g(q)

Hence u A v € F. We now take any function w € F, and any circular cylinder
D such that D C A. By [9, Theorem 3.21], the Poisson integral of the restriction
of w to 9, D exists, and if mpw is defined on A to be equal to that Poisson integral
on D\, D, and equal to w elsewhere on A, then mpw is a supertemperature on A
which is lower bounded on A by the same lower bound as w. Furthermore, since
the compact set D C A and mpw = w on A\D, the boundary behaviour of 7pw
is the same as that of w. Therefore m1pw € F, and so F is a saturated family of
supertemperatures on A.

Since qg € A and, by Lemma 3, ﬁs(qo) = Ff(qo) > —o0, it follows from [9,
Theorem 3.26] that ﬁ;\ is a temperature on A(qgo; A) = A(qo; E), as required. O
Corollary. Let E be an open set, and let f be an extended real-valued function
defined on OE. If there is a point po € E such that ﬂ?(po) and Ff(po) are both
finite, then E? and H? are temperatures on A(po; E).

Proof. Since ﬂ?(po) > —o0, we can find a hypotemperature u € Q? such that
u(po) > —oo. By [9, Corollary 3.55], u is a subtemperature on A(po; F), and in
particular is finite on a dense subset F' of A(pg; E). Therefore

—o0 < u(q) < H¥(g) < Hy (q)

for all ¢ € F. Since F}E(po) < 400, it follows from Lemma 4 that F}E is a
temperature on the set

U Alg: B) = A(po; B).
qeF

Applying this result to — f, and using Lemma 2(a), we obtain the result for A ? . g
Lemma 5. Let E be an open set, and let f be the limit of an increasing sequence
{f;} of extended real-valued functions on OF such that F?m > —o0 on E for some
m. If py is a point in E such that ﬁi (po) < +o0 for all j, then

—E —E

H, = lim H

on A(po; E).

Proof. By Lemma 2(c), the sequence {F?J} is increasing on E, and Fi < Ff
on I for all j. Therefore lim;_, F?J < ﬁ? on F, and we may suppose that
ﬁi > —oo on E for all j.

For each j, Lemma 4 and our hypothesis that F;EJ (po) < +00 now imply that
ﬁfj is a temperature on A(p; E) for all p € A(po; E), and thus on A(pg; E) itself.
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We put A = A(po; E), and define a function g; on A by

fi(p) if pe OANOE,
9i(p) = .
—00 if p € OA\OE.
Then Lemma 3 shows that F?J = F?j on A. Given any positive number € and any

—A
point p; € A, we can find a hypertemperature w; € 9y, such that
wj(pl) — ng (pl) <277
_ —A
Since H;\j is a temperature on A, [9, Theorem 3.60] shows that lim;_, H, isahy-

. —A
pertemperature on A. Moreover, since w; — H

95
. —A
on A, the same is true of 372, (w; — H, )

is a nonnegative hypertemperature

, and hence of the function

. —A = —A
v :jlgf}ngj +Z(wj —Hy)).

=1

For each k, we have

—A
v>H, +(wp — H, ) = wy,
so that v is lower bounded on A and

liminf v(p) > gr(q)
p—q

for all ¢ € OA. Therefore, if g = limy_,o, gr on A, we have v € 52 and hence
v > F;X. In particular,

—A . =A L . =A
H, (p1) <v(p1) < lim H _(p1)+z2 Je=lim H, (p1) +e
g9 j—o0 9j — j—o0 9
=

This holds for all € > 0, so that
—A . =A —A
Hy(p1) < lim Hy (p1) < Hg(p1).
j—o0
Therefore, by Lemma 3,
—E . —E —E
Hy(p1) < lim Hy (p1) < Hy (p1).
j—o0 J
Since p; is an arbitrary point of A, the result is established. O

An earlier version of Lemma 5, with extra hypotheses and less precision, is given
in [2, Lemma 4.1.6].

3. H-Resolutivity and PWB Solutions

Apart from Lemma 6, all the results in this section are standard but included
for completeness.

Lemma 6. Let E be an open set, and let f be an extended real-valued function on
OFE. If, for each point qo € E, we can find a point py € E such that qo € A(po; E)

and ﬂf(po) = F?(po) € R, then f is H-resolutive for E.
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Proof. Let qo € E. By hypothesis, there is a point pg € E such that gg € A(po; E)
and H f (po) and F}E(po) are both finite. Therefore, by Lemma 4 Corollary, the
functions H ? and F? are temperatures on the neighbourhood A(pg; E) of go. Thus

—FE —E
ﬂ? and H ; are temperatures on the whole of £, so that the function v = ﬂ? —Hy

is a nonpositive temperature on F, in view of Lemma 1. For any point ¢ € F, our

hypothesis shows that there is a point p such that ¢ € A(p; E) and v(p) = 0, so

that v = 0 on A(p; E) by the strong maximum principle. In particular, v(q) = 0.

Hence H ? = F? on F, and f is H-resolutive for F. O

Theorem 2. Let E be an open set, let f and g be extended real-valued functions

on OF, and let a € R.

(a) If f is H-resolutive, then af is H-resolutive and Hff = aHf on E.

(b) If f and g are both H-resolutive, and (f + ¢)(q) is defined arbitrarily at each
point ¢ € OF where f(q) + g(q) is undefined, then f + g is H-resolutive and

E _ gE E

Hf+g fo +Hy on E.

Proof. (a) If & = 0, the result is trivial. If > 0, then Lemma 2(b) and the

H-resolutivity of f show that H ff = aH J]ZJ = aﬁf = Fff. The result follows.

If @ < 0, then —af is H-resolutive; this, together with Lemma 2(a), shows that

HY = —Ffaf =-H" ;= Fff. The result follows.

(b) If f and g are both H-resolutive, then Lemma 1 and Lemma 2(d) show that

E E E E E - £ | 7F E E
Hf +Hq :ﬂf +ﬂg Sﬂf+g§Hf+g§Hf +Hg ZHf +Hg7

which implies the result. (I
Theorem 3. Let E be an open set, and let {f;} be a sequence of real-valued, H-

resolutive functions on OE. If {f;} converges uniformly on OE to a function f,
then f is H-resolutive and H}f — H}E uniformly on E.

Proof. Given any ¢ > 0, we choose a number & such that |f; — f| < € on OF for
all j > k. For such j, if w € Ei then w + € € E? Therefore Hf < w+e¢, and it
follows that F? < F?] + €. Similarly ﬂ? > ﬂ?] — ¢ for all 7 > k. It now follows
from Lemma 1 and the H-resolutivity of the functions f; that

HP —e<HP <H; <Hf +e

These inequalities show that |HfE] - ﬂﬂ < € and \Hﬁ - ﬁﬂ < e forall j >k, so
that the sequence {H fE; } convergés uniformly on E to both H ]IZJ and F? Therefore
HY = F? € C(E), so that f is H-resolutive for E, by Lemma 6. O
Lemma 7. Let E be an open set, let K be a compact subset of E, and let w

be a function on E'UOFE that is both a subtemperature on E and an element of
C((FUOE)\K). Then the restriction of w to OF is H-resolutive for E.

Proof. We denote by f the restriction of w to 9F. Since f € C(OE) it is bounded,
and so we can find real numbers a and g such that « < f < g on JE. Then
a < ﬂ? < B on E, so that ﬂ? is a temperature on E, by Lemma 4. For every
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point ¢ € OFE we have lim,_,, w(p) = f(¢q) < 8, and so w is upper bounded, by [9,
Theorem 8.2]. It follows that w € g]’i and hence w < H J]ZJ on E. Therefore

liminf HZ (p) > 1i =
im n. 7f(p)_plgglw(p) f(q)

for all ¢ € OF, so that ﬂ? € E?, and hence ﬂ? > ﬁ? on E. Since ﬂ? < ﬁ?
by Lemma 1, equality holds and, because H }]ZJ is a temperature on F, f is H-
resolutive. (I

Theorem 4. If E is an open set and f € C(OF), then f is H-resolutive for E.

Proof. Let G denote the class of real-valued functions on F U 9F that are both
supertemperatures on E and continuous on (FUJE)\ K for some compact subset K
of E. Let D denote the class of differences u — v of functions in G, and let F denote
the class of restrictions to OF of the functions in D. Then F is a linear subspace of
C(OF) that contains the constant functions. By Lemma 7, the restrictions to OF of
the functions in G are H-resolutive, and so Theorem 2 shows that the functions in F
are all H-resolutive. Furthermore, for any point go ¢ OF, the class D contains the
function G(+;qo) A « for every positive number «, and so F separates points of OF.
Finally, if u,v € G then [9, Corollaries 3.18 and 3.19] imply that u A v,u+v € G,
so that if w1, us,v1,v9 € G the function

(ul—vl)\/(UQ—vg):u1+u27(u2+v1)/\(u1+v2)ED.

Thus fV g € F whenever f,g € F. It now follows from the Stone-Weierstrass
theorem for the one-point compactification of R"*! that F is dense in C(0F) with
respect to the supremum norm. So every function in C(OF) can be expressed as
the uniform limit of a sequence in F. Since every function in F is H-resolutive, it
follows from Theorem 3 that every every function in C(9F) is H-resolutive. g

Remark. For earlier versions of Theorem 4 in the context of harmonic spaces, see
[2, Satz 4.1.5] (for bounded open sets) and [4, Theorem 1.2.2].

4. The Parabolic Measure on the Boundary

In this section, we develop the analogue for the heat equation of the notion of
harmonic measure. Since we are giving details for Doob’s program, and want a
different terminology from that used for the S-Dirichlet problem in [10], we shall
adopt his terminology and call the measure parabolic.

Theorem 5. Let E be an open set, and let p € E. Then there is a unique
. E .
nonnegative Borel measure w,’ on OF such that the equality

HEG) = [ fdof
OF
holds for every f € C(OE). Moreover wr(0FE) = 1.

Proof. Any function f € C(0F) has a PWB solution Hf on FE, by Theorem
4. We show that the mapping f — H }E (p) is a positive linear functional on the
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Banach space C(OF) with the supremum norm. By Theorem 2, if f,g € C(OF)
and «, 8 € R, then

E E E E E
Hoyipg = Hoy + Hpy = oHy + BHY',

so that the mapping in question is a linear functional on C(9F). Furthermore, if
f >0 then 0 < HJ‘? on F, by Lemma 2. Hence the linear functional f +— HE( )
is positive. It now follows from the Rleez Representation Theorem that there is

a unique nonnegative Borel measure wp on OF such that H¥ f = /. op dw for
every f € C(OFE). In partlcular if f(q) =1forall g € OF, then Hf =1on E by
Theorem 1, so that 1 = H{ (p) = [, dwy = w) (OE). O

Remark. Given Theorem 4, Theorem 5 is a standard deduction. In the context of
harmonic spaces, see [4, p.19]. In the same context, Bauer used a different defini-
tion of harmonic measure; see [2, Satz 4.1.5] (for bounded open sets and without
the uniqueness assertion).

Definition. Let E be an open set, and let p € E. Then the completion of the
measure wf of Theorem 5, is called the parabolic measure relative to E and p. It
will also be denoted by wl. A function on dE will be called w} -measurable if it is
measurable with respect to the completed measure.

Lemma 8. Let E be an open set, and let f be a lower finite, lower semicontinuous
function on OF. Then

H;(p)=HF(p) = . fdwl

for allp € E, and if Ff < 400 on a dense subset of E, then f is H-resolutive for
E.

Proof. There is an increasing sequence {f;} of functions in C(0F) that converges
pointwise to f on 0F. By Theorem 4, each function f; is H-resolutive for E so
that, in particular, each H ]ZEJ is finite-valued on E. Therefore, by Lemma 5,

Hf = lim Hf7

]*)OO

on E. Furthermore, Lemma 2(c) shows that H ]’cf <H JIZJ on F for all j, so it follows
that ﬁf < H f on F. Since Lemma 1 shows that H f < ﬁ? on F, equality holds.
Therefore, for all p € E we have
—E
HEp)=H = lim H = lim »dwE:/ dw?,
7f(p) f( ) j—oo fj( ) j—ro0 8Ef] D aEf p
by Theorem 5 and the Lebesgue monotone convergence theorem Finally, since

Hf > HE > —oo on F, it follows from Lemma 4 that Hf is a temperature on F
if it is upper finite on a dense subset of F, so that f is H-resolutive for E in this
case. (|
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Corollary. Let E be an open set, let D be an open subset of E, and let u be a
nonnegative supertemperature on E. Let f be defined on 0D by

Flq) = u(q) ifge ODNE,
Y=o if g € 9D\E.
Then f is H-resolutive for D, and

1P = [ pasf
forallp e D.

Proof. The function f is lower bounded and lower semicontinuous on 9D, so that
—D
T 0) = 1Y) = [ fasf

for all p € D, by Lemma 8. Furthermore u € 5?, so that u > ﬁ? on D, and

hence F? < 400 on a dense subset of D. Therefore Lemma 8 shows that f is
H-resolutive for D, and

HP (p) = / f duwsy
oD
forall p € D. O
Lemma 9. Let E be an open set, let p € E, and let f be an extended real-valued

function on OE. Given any number A > F?(p), we can find a lower finite, lower
semicontinuous function g on OF, such that f < g on OF and Ff(p) < A. Given
any number B < ﬂf (p), we can find an upper finite, upper semicontinuous function
h on OE, such that h < f on OE and HY (p) > B.

Proof. Since F?(p) < A, we can find a function w € 5? such that w(p) < A. We
define a function g on OF by putting g(¢) = liminf,_,, w(p) for all ¢ € OE. Then

g is lower bounded and lower semicontinuous on dFE. Since w € £, we also have

g > fon OF. Finally, we note that w € Ef, which implies that Ff (p) <w(p) < A.

Given B < ﬂf(p), we have —B > —ﬂ?(p) = ﬁ]ff(p), by Lemma 2(a). There-
fore, by the part just proved, we can find a lower finite, lower semicontinuous

function —h on JF, such that —f < —h on OF and ﬁ]fh(p) < —B. So his an
upper finite, upper semicontinuous function on dF, such that h < f on JF and

HE(p) = ~T",(p) > B. 0

Theorem 6. Let E be an open set, let p € E, and let f be an extended real-valued
function on OF.
(a) If [, fdw? exists, then

2 (p) = HE(p) = /8 . (4.1)

(b) Conwversely, zfﬁf(p) = ﬂ?(p) and is finite, then f is w} -integrable (and (4.1)
holds).
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Proof. (a) We prove that (4.1) holds for increasingly general classes of functions.

If f is the characteristic function y 4 of a relatively open subset A of OF, then
f is finite and lower semicontinuous on OF, so that (4.1) follows from Lemma 8.

We denote by B the o-algebra of all Borel subsets of F, and by F the class of
all sets A € B for which (4.1) holds when f = x4. We prove that 7 = B. We know
that F contains all the relatively open subsets of OF, so we can prove that F = B
by showing that F is a g-algebra. Clearly OF € F. Suppose that A € F, so that

—E
WE(A) = /8 xadef =T, () = ).

We denote by A€ the complement of A in OF. Then, using Theorem 5 and Lemma
2, we have
. —FE —FE
wy (A% =1—wl(A) =1-H,, (p) = HY (p) + HE,  (p) <H?,.(p) <H,,.(p)

——XaAc
—FE —FE
<H[(p)+H_,,(p) =1-Hy,(p) =1 —w, (A) = wy (A°).
Therefore equality holds throughout, and hence
—FE :
HE ) =T, ) = wf (49 = [ el

Thus A¢ € F. We now let {F;} be an expanding sequence of sets in F, and put
F = U;‘;l F;. By Lemma 2, we have 1 > ﬂfF > ﬂfFHl > ﬂEFj >0 for all 5. It
therefore follows from Lemma 5 that

. . —=F —F
ﬂfF (p) Z JILIEOEEFJ (p) = hm HXFj (p) = HXF (p) Z EEF (p)

j—o0
E
/ XF dwp )
OFE

so that F' € F. It follows that F is a o-algebra, and hence F = B.

Hence
E —F . —FE . E
Hy (p)=H,, (p)= lim H, (p)= lim w

o XF Jj—o0 J Jj—roo p

(Fj) = wy (F)

Now we extend (4.1) to the characteristic functions of all wf—measurable sets.

Let A be such a set. Then we can write A = FUY for some Borel set ' and some

subset Y of a Borel set Z with w’(Z) = 0. Then w(A) = wf(F), and

E E —E —E —E —E
Hy (p)<H/ (p)<H,(p)<H, (p)<H, (p)+H,,([P),

by Lemmas 1 and 2. Since Z, F' € B, we have

—F

T )= [ xzdsf =0

OE
and (4.1) with f = xr. Hence
—E —E
HE, () < HE0) < T4, 0) <TG 0) = [ xedof = HE, )

Therefore equality holds throughout, and so

—F —F
HE (0) =T (p) =T (p) = /8 Xpdaf = wf (F) = wf(4) = /8 xadf.
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Thus (4.1) holds with f = x4.

Our next step is to extend (4.1) to all nonnegative, wf

tions on JF. Suppose that f can be written in the form f = Zle a;X4,, for some
positive numbers aq, ..., ag and wf—measurable sets Ay, ..., Ag. Then (4.1) holds for
each function x4,, and therefore Lemmas 1 and 2 can be used to show that

k k
Zaiw Zal—m _ﬂf( <Hf )SZaiwf(A
i=1 i=1

Hence

-measurable, simple func-

HM?r

k
H ;W i) = ai/ XAidwE:/ fdw?,
f( Z Ai) ; 0B P 0B P
so that (4.1) holds for f.

We now consider the case where f is an arbitrary nonnegative, wf-measurable
function on OE. We write f as the limit of an increasing sequence {g;} of nonneg-
ative, w/’-measurable, simple functions on OE. Since (4.1) holds for each function
g;, the Lebesgue monotone convergence theorem gives

E B E E
HE0) =T, )= | gdof = [ fdof,
OE OE
Moreover, using Lemma 2 we obtain

ﬁ?()>hmHE() hmHJ()

jooo” 9 j—oo

Each function g; is bounded, so that each Fi is also bounded, and hence Lemma

5 can be used to show that lim;_, Ffj (p) = F? (p). Since Ff > ﬂf, it follows
that

—F
H7(p)=H;(p) = aEfdwf,

as required.

Finally, we let f be an arbitrary wf—measurable function for which |, on | dwf
exists. Then (4.1) holds for the positive and negative parts of f, so that Lemma 2
gives

| pas =TT )~ HE- ) = T} 0)+ T () = T ),
and also
[ fduf = H} )~ F- () = HY () + HE ;- () < HY ) < H
with the help of Lemma 1. Now (4.1) follows.
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(b) Since H (p) is finite, it follows from Lemma 9 that, given any positive
integer j, we can find a lower finite, lower semicontinuous function g; on £ such
that f < g; on OF and
—E —E 1
H, (p) <Hj (PH‘}

Furthermore, because H ? (p) is finite, Lemma 9 also shows that we can find an
upper finite, upper semicontinuous function h; on OF such that h; < f on OF and

1
Hy} (p) > Hf (p) — G
We put
g = inf g;, h = sup hy,
j j

and note that g, h are Borel measurable and satisfy h < f < g on 0E. By Lemma
8,

—E . oE .
Hy (p) = unggJ(p) :lI}f/ gjdwf > / gdwf.
OE OE
Moreover, by Lemmas 2 and 8 we have
E

) .
i) = —1an_hj(p) = —1nf/ (—hj)dwf
J OF

Hf(p)=-H ;

= sup h; dwf < hdwf.
i JoE OF

Hence
HE(p) < /aEhdw,;E < /aEgdw,;E <H(p) = HE(p) € R,

so that h =g wf -almost everywhere on JF. Since g and h are Borel measurable, it
follows that there is a Borel set Z such that w/(Z) =0 and h = f = g on (OE)\Z.

All subsets of Z are wf—measurable, so that f is an wf

1) < [
a
Thus f is w/-integrable (and (4.1) holds). O

-measurable function and

—F
fdwy <Hj(p)=Hf(p) € R.
E

Corollary 1. Let E be an open set, and let f be an extended real-valued function on
OFE. If, for each point qy € E, we can find a point py € E such that qo € A(po; E),

fis w{f; -measurable, and both F? (po) and ﬂ?(po) are finite, then f is H-resolutive
for E with

mFw) = [ paug
forallp e E.

Proof. Let qy € E, and let pg be a point as described in the statement of the

theorem. Since f is wﬁ)—measurable, so is f*. Therefore Theorem 6(a) gives

—F
7Y, (po) = HE, (po) = /8 sk,
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Since Ff(po) < +o00, there is a hypertemperature w € E? such that w(pg) < +o0,
—E

and since w is lower bounded on F, there is a number « such that w + o € 4.

Therefore ﬁ?r (po) < 400, and obviously Fﬁr (po) > —oo. Lemma 6 now shows

that fT is H-resolutive for E. In particular, for all p € E we have F;i (p) =
ﬂ]ﬂ (p) € R, so that fT is wf—integrable and

H }2 (p) = fr dwf
OFE
by Theorem 6(b). This result holds if f is replaced by —f because, by Lemma 2,
F]ff(po) = fﬂf(po) and ﬂff(po) = fﬁf(po), which are finite; so f* can be
replaced by (—f)T = f~. Therefore, by Theorem 2, the function f = f*+ — f~ is
H-resolutive and

Hf(p)ZHﬁ(p)—H}E—(p)Z/aEfJ“dwf—/aEf‘dwf:/8Efdwf.
O

Corollary 2. Let E be an open set, and let f be an extended real-valued function
on OF. Then the following statements are equivalent:

(a) f is H-resolutive for E;

(b) for each point qo € E, we can find a point pg € E such that gy € A(po; E) and
f is w;;‘; -integrable;

(c) f is wf—integmble forallp € E.
If these statements hold, then

Hi ()= | fdoy
forallp e E.

Proof. If statement (a) holds, then Theorem 6(b) shows that statement (c) holds
also. If (c) holds, then obviously (b) holds too. Now suppose that (b) holds, and
let go € E. Then we can find a point pg € E such that gy € A(pg; E) and f is
wﬁ) -integrable, so that

HE (po) = T (py) = /8 g,

by Theorem 6(a), and the integral is finite. It now follows from Lemma 6 that (a)
holds, and so the equivalence of the three statements is established.

Finally, if statement (a) holds, then

Hf(p)Z/aEfdwf

for all p € E, by Theorem 6(b). O
It follows from Corollary 2 that, if A is a subset of E which is wf—measurable for
all p € E, then its characteristic function x4 is H-resolutive and HE, (p) = wl(A)

for all p € E. Therefore, if wﬁ) (A) = 0 for some point py € F, then wE(A) = 0 for
all p € A(po; E), by the minimum principle.
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5. The Equivalence of H-Resolutivity and S-Resolutivity

Let f be an extended real-valued function on the boundary of an open set . We
have already observed that H ? < LE <U JZE < FE on F, so that if f is H-resolutive

for E then it is S-resolutive for E, Wlth H f S ]]ZJ on F. As a necessary step towards
proving the converse, we now show that the caloric and parabolic measures coincide.

Theorem 7. Let E be an open set, and let p € E. We extend the caloric measure
uf on 0.E, to a measure ﬁf on OF, by putting ﬂf(c’)sE) = 0. Then the parabolic
measure wf 1s equal to ,af on OF.

Proof. By [9, Theorem 8.27] or [10, Theorem 4.1], we have

/ fanf = [ it

for all f € C(OF). By Theorem 5, there is a unique nonnegative Borel measure w

on OF such that
= / f dwf
oF

for all f € C(OF). Since S¥ = H }3 on E whenever the latter function exists, we
also have the representation

E
p

HE ) = [ ik

OF
for all f € C(OF). Therefore the uniqueness assertion in Theorem 5 shows that
wf = ﬂf on OFE. ]
E

Remark. Theorem 7 shows that the parabolic measure w,
which was proved earlier by Suzuki [6].

is supported in 0. F,

Corollary. Let E be an open set, let pg € E, and put A = A(po; E). Then for any
point p € A, the parabolic measure wf is supported in 0.\, and wzl)\ is the restriction
to 0.\ of wf.

Proof. Since w) = i on OE, the result follows from [9, Lemma 8.29] or [10,

Lemma 4.3]. O

We can now combine Theorem 6 Corollary 2 with [9, Corollary 8.34] or [10,
Corollary 4.8] to obtain the equivalence of H-resolutivity and S-resolutivity.

Theorem 8. Let E be an open set, and let f be an extended real-valued function
on OF. Then f is H-resolutive for E if and only if f is S-resolutive for E.

Proof. If f is S-resolutive for E then, by [9, Corollary 8.34] or [10, Corollary 4.8],
fis /ipE—integrable for all p € E. Therefore f is wf—integrable for all p € E, by
Theorem 7, and hence f is H-resolutive for E, by Theorem 6 Corollary 2.

The converse has already been demonstrated. O
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Despite Theorem 8, consideration of the S-Dirichlet problem often gives sharper,
more precise results, than does consideration of the H-Dirichlet problem. However,
the relation between reductions and Dirichlet solutions is much easier to establish
using H-Dirichlet solutions. The proof of the following theorem incorporates both
of these facts.

Theorem 9. Let E be an open set, let D be an open subset of E, and let u be a
nonnegative supertemperature on E. Let f be defined on 0D by

~ Julq) ifqe ODNE,
Ha) = {0 if g € OD\E.

Then
H.D _ S? _ Rf\(DuasD) — RE\D
on D.

Proof. We first prove that HfD = Rf\D on D. Let v be a supertemperature in

5?‘ Then liminf, ., v(p) > f(¢) > 0 for all points ¢ € 0D, so that v > 0 on D by
the boundary minimum principle. We put

uAv on D,
w =
u on F\D,

and note that w > 0 on E. Moreover, w is a supertemperature on E, by [2, Satz

1.3.10] or [9, Lemma 7.20]. Since w = u on E\D, we have w > RE\P on E. There-

fore v > RE\D on D, and it follows that F? > RE\D on D.

Now suppose, instead, that v is a nonnegative supertemperature on E such that
v > won E\D. Then for all points ¢ € 9D N E, we have

liminf v(p) > liminf v(p) =v(q) > u(q) = f(¢) > 0.
p—q,peD P—q, pEE

Moreover, for all points ¢ € D\ E, we obviously have

lim inf >0= f(q).
pg;{géDv(p)_ f(q)

Hence the restriction of v to D belongs to E?, so that v > F}D on D. It follows
that RY \D > ﬁ? on D, and hence that equality holds. Since f is H-resolutive, by
Lemma 8 Corollary, we have established that H J? = Rf \D on D.

By [11, Theorem 2.5], we have SJ? < RENDPYI:D) o D, Hence

HP = SP < REDU.D) < REVD _ P

on D, and the result follows. O

Remark. The proof that F? = RE\P goes back to [2, Satz 4.1.4], for the case
where D C E.



THE TWO VERSIONS OF THE DIRICHLET PROBLEM FOR THE HEAT EQUATION 107

6. A Property of Caloric Measure

In order to prove our next theorem, we need the following lemma. The lemma
was given in [2, Lemma 4.2.4] in the context of harmonic spaces, but the proof
contained a significant error, which we correct in the present context.

Lemma 10. Let E be an open set, let D be an open subset of E, and let f be an

extended real-valued function defined on OF for which F? is a temperature. If g is
defined on 0D by

wo{f  acopnor
M= \HY ) ifgeopnE,

then FQD = F? on D.

—E
Proof. Let u € $;, and let v be its restriction to D. Clearly v is a lower bounded
hypertemperature on D. Moreover, for any point ¢ € 9D N JE, we have

lim inf > liminf > =9(q);
p_l)rg;)l’éDU(p) > pl{gl}p%E“(p) > fla) = 9(a);

and for any ¢ € 0D N E, we have

—F
lim inf > liminf = >H =g(q).
Jim inf v(p) > Jim in E ulp) = ulq) = Hy(g) = 9(q)

—D
Consequently v € 9,
that Ff > Ff on D.

We now take any function v € 5;3, and define a function w on E by putting
wipy — [T @) ifpe E\D,
= —F .
v(p) N H (p) ifpeD.
For any point ¢ € 9D N E, we have

—FE
liminf v(p) > g(q) = H
iminfv(p) > g(q) = H  (q),

and so it follows from [2, Satz 1.3.10] (or the proof of [9, Lemma 7.20]) that u is a

hypertemperature on E. Given any function w € Ef , we consider the function

—=D . . . .
and sou =v > H g on D. Since u is arbitrary, it follows

wlzw—i—u—ﬁf,

which is a hypertemperature on E because Ff is a temperature. We show that
wy € 5? We put
—E
A={peE:ulp)=H;(p)} and B={peD: up)=uv(p}
and note that £ = AU B. For each point ¢ € 0E N JA, we have

lim inf — liminf > liminf > :
Jim inf wi(p) pgg{;ﬂeAw(p) > pgqu{;ng(p) > f(q);

and for each point ¢ € OF N 0B, we have

. b o i N .
Jiminf wi(p) 2 lminf u(p) = liminf v(p) > liminf v(p) > g(q) = f(q);
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thus liminf, ., wi(p) > f(q) for all ¢ € OE. Now w; = w on E\D, and at
those points of D where F? < v. At other points of D we have u = v, so that
w; = w4+ v — Ff > v. Since both w and v are lower bounded, w; is too. Thus
wy € E}E, and so wy > F? Given any point pg € D and any positive number ¢,

we can choose w such that w(pg) < F}E (po) + €. It then follows that

H (po) < wi(po) = w(po) + u(po) — Hy (o) < ulpo) + € < v(po) + e,

and therefore that F?(po) < v(po). This holds for all py € D and every v € 55.
Therefore Ff < Ff on D, and hence equality holds. ([l

The next theorem and its proof were suggested by [1, Theorem 6.4.8].

Theorem 10. Let E be an open set, let D be an open subset of E, let ¢ € D, and
let A C 0. FENO.D. If A is uf—measumble, then it is also u?—measumble with
pl (A) < pE(A), and equality holds if d.D C OF.

Proof. It follows from Theorem 7 that A is wf —measurable, and that we need

to prove that A is w} —measurable with w?(A) < wf(A), and equality holds if
J.D C OF. We denote by x4 the characteristic function of A on R"!. We define
functions f and g on @D by putting f = xa =gon 0DNOIOE, f = FfA on 0DNE,

and g = ﬂfA on dD N E. Since A is wf’—measurable, Theorem 6(a) shows that
=F E E E
Te0) = HE, (@ = [ xadaff =uf(4)
Because 0 < x4 < 1 on OF, we have 0 < ﬂfA < FfA < 1 on E, so that
H f , and Ff , are both temperatures on E, by Lemma 4 Corollary. It therefore
follows from Lemma 10 that F? = FfA and ﬂf = ﬂfA on D. In particular,

ﬁ?(q) = wf(A) = ﬂ?(q). Since g < f on 0D, it follows that

WE(A) = HD(q) < H (q) < HY (q) = wE(A),

In particular, ﬂ?(q) = F? (¢) and is finite, so that Theorem 6(b) shows that f is

w{? —measurable and

—D
Hf(q):/ fdwf.
oD
Since f > x4 on 0D, it follows that
—D
W= [ xadef < [ faup ~T (@) = wf ()
oD oD

as required. If 9.D C OF, then f = x4 on 0.D, and the fact that w,? is supported
in 0. D implies that

w(?(A)z/aDXAdw(?:/andw;):wf(A).
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Remark. The condition 9.D C OF, of Theorem 10, holds if D = A(pg; E) for some
point pg € E, by [9, Lemma 8.4]. If D is a component of E, the condition also
holds.

7. The Equality of Upper H-Solutions and Upper S-Solutions

The results of Section 6 illustrate the fact that we sometimes need to consider
boundary functions that are not necessarily resolutive. Our final theorem shows

that, for any boundary function f, the equality F? =U f holds on E. Thus the
PWB method does not distinguish between the two forms of the Dirichlet problem.
The result and its proof were suggested by [2, Satz 4.1.7].

Theorem 11. Let E be an open set, and let f be an extended real-valued function
on OE. Then F? = UJ? on E.

Proof. Let p € E. We denote by U the class of all lower semicontinuous, lower
bounded majorants of f on JE. Any element ¢ of W is wf — measurable, so that
Theorem 6(a) and Theorem 7 yield

Fi(p)=/8Ewdwf=/aEwdﬂf=/8E¢duf- (7.1)

e

We take any function u € 5?, and define ¢ by putting ¢(q) = liminf,_,, u(r) for
all g € OF. Then ¢ € ¥, and also u € 55 It follows that

Hy(p) < Jnf Hy(p) < H,(p) < ulp).

Taking the infimum over all choices of u, and using (7.1), we obtain

—E
Hy(p) _J;E{va p) —igg/ b dpy,. (7.2)

We now denote by A the class of all lower semicontinuous, lower bounded majorants
of f on 9. E. Any element § of A is uf— measurable, so that [9, Theorem 8.32(a)]
or [10, Theorem 4.6(a)] yields

Uy(p)= [ ddu,. (7.3)
0. F

We take any function v € HJIZJ , and define ¢ by putting

(g) = liminf, 4 v(r) if g € O, F,
= liminf, 44 v(r) if g € 055F.

Then ¢ € A, and also v € ﬂg . It follows that
UF (p) < inf UF(p) < U7 (p) < v(p).
Taking the infimum over all choices of v, and using (7.3), we obtain

E o E o E
Uy (p) = jnf U5 (p) = inf 66E5 dpy - (7.4)
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The class A is precisely the class of restrictions to d. E of the functions in W, because
if § € A we can extend its definition to get a function in ¥ by putting 6 = 400 on
0sF, since 0. F is closed. It now follows from (7.2) and (7.4) that

—E
H; (p) = inf duf = inf sduf = UF (p).
7 (P) ﬁhéﬂwup g&&E py, = Uf (p)
Since p is arbitrary, the result is proved. O

Corollary. Let E be an open set, let D be an open subset of E, and let f be an
extended real-valued function defined on OF for which U}{-E s a temperature. If g is
defined on 0D by

(q) = f(9) ifg € ODNOE
9= Uf(q) ifqe ODNE,

then UgD = U}E on D.
Proof. In view of Theorem 11, the corollary is just Lemma 10. O

Remark. A direct proof of the corollary is elusive.
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