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Abstract. There are two versions of the Dirichlet problem for the heat equation

on an arbitrary open set in Euclidean space. For one of them, there is already

a characterization of resolutivity in terms of caloric measure. We prove that
there is a similar characterization for the other, that the measure involved is

essentially the same caloric measure, and that a boundary function is resolutive

with respect to one version of the problem if and only if it is resolutive with
respect to the other. We also prove that, for any boundary function, the upper

solutions for the two versions coincide.

1. Introduction

Let E be an arbitrary open subset of Rn+1. We take the boundary ∂E of E
relative to the one-point compactification of Rn+1. Thus ∂E contains the point at
infinity if and only if E is unbounded. There are two distinct versions of the Dirich-
let problem for the heat equation on E. In the first, the problem is formulated in
exactly the same way as for Laplace’s equation. That is, a continuous, real-valued
function f on ∂E is given, and a temperature u on E such that limp→q u(p) = f(q)
for all q ∈ ∂E is sought. This version has the advantage that it can be treated
in an axiomatic setting that includes both parabolic and elliptic equations, as in
[2, 4]. On the other hand, it takes no account of the fact that the temporal vari-
able behaves differently to the spatial variables, and is thus out of line with earlier
works that considered only particular types of open set. Moreover, the treatments
in [2, 4] are bound up in their axiomatic systems, and so are unnecessarily tortuous
for the heat equation. In [5], Doob asserted that a direct approach, more in line
with the traditional approach to the Dirichlet problem for Laplace’s equation, was
possible for the heat equation, but gave few details. Sections 2-4 of this paper are
devoted to providing such details, but guided by the treatment of the second form
of the problem in [9] rather than by [5].

The second version of the Dirichlet problem for the heat equation does take into
account the special nature of the temporal variable. This version was begun in [7],
and carried through to [9] with different notations. It requires a classification of
the boundary points of E, in which we use the following notations for the upper
and lower half-balls. Given p0 = (x0, t0) ∈ Rn+1 and r > 0, we denote by H(p0, r)
the open lower half-ball {(x, t) : |x−x0|2 + (t− t0)2 < r2, t < t0}, and by H∗(p0, r)
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the open upper half-ball {(x, t) : |x− x0|2 + (t− t0)2 < r2, t > t0}.

Definitions. Let q be a boundary point of the open set E. We call q a normal
boundary point if either

(a) q is the point at infinity, or
(b) q ∈ Rn+1 and for every r > 0, H(q, r)\E 6= ∅.

Otherwise, we call q an abnormal boundary point; in this case, there is some
r0 > 0 such that H(q, r0) ⊆ E. The abnormal boundary points are of two kinds,
according to whether they can be approached from above by points in E. If there
is some r1 < r0 such that H∗(q, r1) ∩ E = ∅, then q is called a singular boundary
point. In this case, H(q, r1) = B(q, r1)∩E. On the other hand if, for every r < r0,
we have H∗(q, r) ∩ E 6= ∅, then q is called a semi-singular boundary point.

The set of all normal boundary points of E is denoted by ∂nE, that of all
abnormal points by ∂aE, that of all singular points by ∂sE, and that of all semi-
singular points by ∂ssE. Thus ∂E = ∂nE ∪ ∂aE and ∂aE = ∂sE ∪ ∂ssE. The
essential boundary ∂eE is defined by

∂eE = ∂nE ∪ ∂ssE = ∂E\∂sE.

The second version of the Dirichlet problem for the heat equation is formu-
lated as follows. In this, we use the notation limp→q+ u(p) as an abbreviation for
lim(x,t)→(y,s+) u(p), where p = (x, t) and q = (y, s). A continuous, real-valued func-
tion f on the essential boundary ∂eE is given, and a temperature u on E such that
limp→q u(p) = f(q) for all q ∈ ∂nE, and limp→q+ u(p) = f(q) for all q ∈ ∂ssE, is
sought.

We deal with the generalised forms of the Dirichlet problem, in which the bound-
ary function f is not required to be continuous and can take the values −∞ and
+∞. For each version of the problem, we try to associate with f a temperature
on E, using the PWB method. We shall not discuss the boundary behaviour of
such temperatures here. We now establish different notations for the PWB method
relative to the two versions of the problem. Our terminology will follow [9], where
further details can be found. For proofs that the corresponding concepts in [2, 4, 5]
are equivalent, see [3] or [8].

Let f be an extended real-valued function defined on ∂E. For any lower bounded
hypertemperature v on E, we put v in the class UEf if and only if both

lim inf
p→q

v(p) ≥ f(q) for all q ∈ ∂nE,

and

lim inf
p→q+

v(p) ≥ f(q) for all q ∈ ∂ssE.

This is the same as in [7, 9]. We put v in the class H
E

f if and only if

lim inf
p→q

v(p) ≥ f(q) for all q ∈ ∂E.

This is similar to [2, 4, 5].
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Clearly H
E

f ⊆ UEf , so that if H
E

f = inf{v : v ∈ H
E

f } is the upper H-solution, and

UEf = inf{v : v ∈ UEf } is the upper S-solution, then UEf ≤ H
E

f on E.

Dually, for any upper bounded hypotemperature w on E, we put w in the class
LEf if and only if both

lim sup
p→q

w(p) ≤ f(q) for all q ∈ ∂nE,

and

lim sup
p→q+

w(p) ≤ f(q) for all q ∈ ∂ssE.

We put w in the class HEf if and only if

lim sup
p→q

w(p) ≤ f(q) for all q ∈ ∂E.

Clearly HEf ⊆ LEf , so that if HE
f = sup{w : w ∈ HEf } is the lower H-solution, and

LEf = sup{w : w ∈ LEf } is the lower S-solution, then LEf ≥ H
E
f on E.

If HE
f = H

E

f and is a temperature on E, we denote it by HE
f and say that f is

H-resolutive for E. We also call HE
f the PWB solution to the H-Dirichlet problem

for f on E. Similarly, if LEf = UEf and is a temperature on E, we denote it by

SEf and say that f is S-resolutive for E. We also call SEf the PWB solution to the
S-Dirichlet problem for f on E.

Since HE
f ≤ LEf ≤ UEf ≤ H

E

f on E, the function f is H-resolutive only if it is S-

resolutive, and then HE
f = SEf . The main purpose of this paper is to establish that

f is S-resolutive only if it is H-resolutive. In [10] (or [9]), there is a characterization
of S-resolutivity in terms of caloric measure. In [5, p.332], Doob claims that there
is a similar characterization of H-resolutivity in terms of parabolic measure, but
gives no details to support that claim. Guided by the treatment in [10], we prove
in Section 4 that there is such a characterization. In Section 5, we show that the
parabolic measure coincides with the caloric measure, and deduce the equivalence
of the two notions of resolutivity. In Section 6, we prove a property of caloric
measure that requires us to consider boundary functions that are not necessarily
resolutive. This leads us to show, in Section 7, that the upper H-solution and the
upper S-solution of any boundary function coincide. Thus the PWB method does
not distinguish between the two forms of the Dirichlet problem.

2. Upper and Lower PWB Solutions of the H-Dirichlet Problem

In this section, we begin the systematic treatment of the H-Dirichlet problem.
Lemmas 1 and 2, and Theorem 1, are well-known but are included for completeness.
Lemmas 3 and 4 are new, as is the precise form of Lemma 5.

Lemma 1. Let E be an open set, and let f be an extended real-valued function

defined on the boundary ∂E. If u ∈ HEf and v ∈ H
E

f , then u ≤ v on E. Consequently

HE
f ≤ H

E

f .
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Proof. Since u is a hypotemperature and v is a hypertemperature on E, v−u is a
hypertemperature, by [9, Corollaries 3.55 and 3.57]. Furthermore, if q ∈ ∂E (and
is possibly the point at infinity) and f(q) is finite, then

lim inf
p→q

(v − u)(p) ≥ lim inf
p→q

v(p)− lim sup
p→q

u(p) ≥ f(q)− f(q) = 0.

On the other hand, if f(q) = +∞ then limp→q v(p) = +∞ and lim supp→q u(p) <
+∞ because u is upper bounded, so that lim infp→q(v−u)(p) ≥ 0; and if f(q) = −∞
then limp→q u(p) = −∞ and lim infp→q v(p) > −∞, so that lim infp→q(v − u)(p) ≥
0. Therefore, by [9, Theorem 3.13], v ≥ u on E. It follows that HE

f ≤ H
E

f . �

Lemma 2. Let E be an open set, let f and g be extended real-valued functions on
∂E, and let α ∈ R.

(a) Without further conditions, H
E

−f = −HE
f .

(b) If α > 0, then H
E

αf = αH
E

f and HE
αf = αHE

f .

(c) If f ≤ g, then H
E

f ≤ H
E

g and HE
f ≤ H

E
g .

(d) Let (f + g)(q) be defined arbitrarily at each point q ∈ ∂E where f(q) + g(q) is
undefined. Then for each point p ∈ E,

H
E

f+g(p) ≤ H
E

f (p) +H
E

g (p)

provided that the sum on the right-hand side is defined, and

HE
f+g(p) ≥ H

E
f (p) +HE

g (p)

with the same proviso.

Proof. (a) Since w ∈ H
E

−f if and only if −w ∈ HEf , we have

H
E

−f = inf{w : −w ∈ HEf } = − sup{v : v ∈ HEf } = −HE
f .

(b) If α > 0, then w ∈ H
E

f if and only if αw ∈ H
E

αf . Therefore

H
E

αf = inf{αw : w ∈ H
E

f } = αH
E

f .

Similarly HE
αf = αHE

f .

(c) If f ≤ g, then H
E

g ⊆ H
E

f and HEf ⊆ HEg , so that H
E

f ≤ H
E

g and HE
f ≤ H

E
g .

(d) Let v ∈ H
E

f and w ∈ H
E

g . Then v + w is a lower bounded hypertemperature
on E, and at all points q ∈ ∂E where f(q) + g(q) is well-defined, we have

lim inf
p→q

(v + w)(p) ≥ lim inf
p→q

v(p) + lim inf
p→q

w(p) ≥ f(q) + g(q).

At any point q ∈ ∂E where f(q) + g(q) is undefined, then without loss of generality
we take f(q) = +∞ and g(q) = −∞. This implies that limp→q v(p) = +∞, and
therefore that limp→q(v+w)(p) = +∞ because w is lower bounded. Thus, regard-
less of the value we assign to (f + g)(q), we have limp→q(v + w)(p) ≥ (f + g)(q).

Hence v + w ∈ H
E

f+g. Now let p ∈ E, so that v(p) + w(p) ≥ H
E

f+g(p). Clearly

H
E

f+g(p) ≤ H
E

f (p) +H
E

g (p) if the sum on the right-hand side is defined and either

term is +∞. Since H
E

f (p) = +∞ if and only if v(p) = +∞ for all v ∈ H
E

f , it

only remains to consider the case where there exist v ∈ H
E

f and w ∈ H
E

g such that
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v(p) < +∞ and w(p) < +∞. In this case H
E

f (p) + H
E

g (p) is defined, and since

H
E

f+g(p) ≤ v(p)+w(p) we have H
E

f+g(p) ≤ H
E

f (p)+w(p), and hence the first result.

The proof for the lower solutions now follows easily from (a). �

Definition. Let E be an open set, and let f ∈ C(∂E). We say that a temperature
u on E is a classical solution of the H-Dirichlet problem for f if

lim
p→q

u(p) = f(q) for all q ∈ ∂E.

It is an important fact that, if there is a classical solution of the H-Dirichlet
problem for f , then the PWB solution for f exists and coincides with the classical
solution.

Theorem 1. Let E be an open set, and let f ∈ C(∂E). If there is a classical
solution u of the H-Dirichlet problem for f on E, then f is H-resolutive and Hf = u
on E.

Proof. Since f ∈ C(∂E) it is bounded, and therefore u is bounded, in view of the
boundary point maximum principle. Therefore, because of its boundary limits, u

belongs to both H
E

f and HEf . Hence u ≥ H
E

f and u ≤ HE
f , and so it follows from

Lemma 1 that u = H
E

f = HE
f . Since u is a temperature on E, this implies that f

is H-resolutive and HE
f = u on E. �

It follows easily from Theorem 1 that, if f(q) = α ∈ R for all q ∈ ∂E, then f is
H-resolutive and HE

f = α on E. Furthermore, in view of Lemma 2(c) and Lemma

1, if g : ∂E → [α, β], then α ≤ HE
g ≤ H

E

g ≤ β on E.

Given an open subset E of Rn+1 and a point p0 ∈ E, we denote by Λ(p0;E) the
set of points q ∈ E that are lower than p0 relative to E, in the sense that there is a
polygonal path γ ⊆ E joining p0 to q along which the temporal variable t is strictly
decreasing.

Lemma 3. Let E be an open set, let p0 ∈ E, and put Λ = Λ(p0;E). Let f be a
function defined on ∂E, and define a function g on ∂Λ by

g(p) =

{
f(p) if p ∈ ∂Λ ∩ ∂E,
−∞ if p ∈ ∂Λ\∂E.

Then H
Λ

g is precisely the class of restrictions to Λ of the members of H
E

f , so that

H
Λ

g is the restriction to Λ of H
E

f .

Proof. We first show that, given any hypertemperature v ∈ H
E

f , its restriction to

Λ belongs to H
Λ

g . Obviously the restriction is a lower bounded hypertemperature
on Λ. Let q ∈ ∂Λ. If q ∈ ∂E also, then

lim inf
p→q, p∈Λ

v(p) ≥ lim inf
p→q, p∈E

v(p) ≥ f(q) = g(q).
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On the other hand, if q /∈ ∂E then

lim inf
p→q, p∈Λ

v(p) ≥ −∞ = g(q).

Hence the restriction of v to Λ belongs to H
Λ

g .

In the opposite direction, given any hypertemperature w ∈ H
Λ

g , we define a
function w̄ on E by putting

w̄(p) =


w(p) if p ∈ Λ,

+∞ if p ∈ E\Λ,
lim infq→p, q∈Λ w(q) if p ∈ ∂Λ ∩ E.

We claim that w̄ ∈ H
E

f . We show that w̄ is a hypertemperature on E using [9,
Theorem 3.51]. Clearly w̄ is lower semicontinuous on E, and is also lower bounded
on E because w is lower bounded on Λ. It remains to show that, given any point
p ∈ E and any ε > 0, we can find a positive number c < ε such that the inequality
w̄(p) ≥ V(w̄; p; c) holds. Clearly we can do this if p ∈ E\∂Λ, so suppose that
p ∈ E ∩ ∂Λ. Since ∂eΛ ⊆ ∂eE by [9, Lemma 8.4], p ∈ ∂sΛ. Therefore we can
find r0 > 0 such that H(p, 2r0) = B(p, 2r0) ∩ Λ. We now choose c0 > 0 such that
Ω(q; c) ⊆ Λ whenever q ∈ H(p, r0) and c ≤ c0. Then, for any c ≤ c0, we have

w̄(p) = lim inf
q→p, q∈Λ

w(q) ≥ lim inf
q→p, q∈Λ

V(w; q; c) = lim inf
q→p, q∈Λ

V(w̄; q; c) ≥ V(w̄; p; c),

by Fatou’s lemma. Hence w̄ is a hypertemperature on E.

We now take any point q ∈ ∂E. If q /∈ ∂Λ, then

lim inf
p→q

w̄(p) = +∞ ≥ f(q).

On the other hand, if q ∈ ∂Λ then

lim inf
p→q

w̄(p) = lim inf
p→q, p∈Λ

w(p) ≥ g(q) = f(q).

Hence w̄ ∈ H
E

f . Thus w is the restriction to Λ of a function in H
E

f . �

Lemma 4. Let E be an open set, and let f be an extended real-valued function

defined on ∂E. If there are points p0, q0 ∈ E such that q0 ∈ Λ(p0;E), H
E

f (p0) <

+∞, and H
E

f (q0) > −∞, then H
E

f is a temperature on Λ(q0;E).

Proof. We put Λ = Λ(p0;E). Let g be defined on ∂Λ as in Lemma 3, so that

H
E

f = H
Λ

g on Λ. Since H
E

f (p0) < +∞, we can find a hypertemperature w0 ∈ H
E

f

such that w0(p0) < +∞. By [9, Corollary 3.55], w0 is a supertemperature on Λ. By

Lemma 3, the restriction of w0 to Λ belongs to H
Λ

g , and so we can write H
Λ

g = inf F ,

where F is the class of all supertemperatures that belong to H
Λ

g .

We show that F is a saturated family of supertemperatures on Λ, with a view
to applying [9, Theorem 3.26]. Let u, v ∈ F . Then u ∧ v is a lower bounded
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supertemperature on Λ. Moreover, whenever q ∈ ∂Λ, we have

lim inf
p→q

(u ∧ v)(p) =
(

lim inf
p→q

u(p)
)
∧
(

lim inf
p→q

v(p)
)
≥ g(q).

Hence u ∧ v ∈ F . We now take any function w ∈ F , and any circular cylinder
D such that D ⊆ Λ. By [9, Theorem 3.21], the Poisson integral of the restriction
of w to ∂nD exists, and if πDw is defined on Λ to be equal to that Poisson integral
on D\∂nD, and equal to w elsewhere on Λ, then πDw is a supertemperature on Λ
which is lower bounded on Λ by the same lower bound as w. Furthermore, since
the compact set D ⊆ Λ and πDw = w on Λ\D, the boundary behaviour of πDw
is the same as that of w. Therefore πDw ∈ F , and so F is a saturated family of
supertemperatures on Λ.

Since q0 ∈ Λ and, by Lemma 3, H
Λ

g (q0) = H
E

f (q0) > −∞, it follows from [9,

Theorem 3.26] that H
Λ

g is a temperature on Λ(q0; Λ) = Λ(q0;E), as required. �

Corollary. Let E be an open set, and let f be an extended real-valued function

defined on ∂E. If there is a point p0 ∈ E such that HE
f (p0) and H

E

f (p0) are both

finite, then HE
f and H

E

f are temperatures on Λ(p0;E).

Proof. Since HE
f (p0) > −∞, we can find a hypotemperature u ∈ HEf such that

u(p0) > −∞. By [9, Corollary 3.55], u is a subtemperature on Λ(p0;E), and in
particular is finite on a dense subset F of Λ(p0;E). Therefore

−∞ < u(q) ≤ HE
f (q) ≤ HE

f (q)

for all q ∈ F . Since H
E

f (p0) < +∞, it follows from Lemma 4 that H
E

f is a
temperature on the set ⋃

q∈F
Λ(q;E) = Λ(p0;E).

Applying this result to −f , and using Lemma 2(a), we obtain the result for HE
f . �

Lemma 5. Let E be an open set, and let f be the limit of an increasing sequence

{fj} of extended real-valued functions on ∂E such that H
E

fm > −∞ on E for some

m. If p0 is a point in E such that H
E

fj (p0) < +∞ for all j, then

H
E

f = lim
j→∞

H
E

fj

on Λ(p0;E).

Proof. By Lemma 2(c), the sequence {HE

fj} is increasing on E, and H
E

fj ≤ H
E

f

on E for all j. Therefore limj→∞H
E

fj ≤ H
E

f on E, and we may suppose that

H
E

fj > −∞ on E for all j.

For each j, Lemma 4 and our hypothesis that H
E

fj (p0) < +∞ now imply that

H
E

fj is a temperature on Λ(p;E) for all p ∈ Λ(p0;E), and thus on Λ(p0;E) itself.
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We put Λ = Λ(p0;E), and define a function gj on ∂Λ by

gj(p) =

{
fj(p) if p ∈ ∂Λ ∩ ∂E,
−∞ if p ∈ ∂Λ\∂E.

Then Lemma 3 shows that H
E

fj = H
Λ

gj on Λ. Given any positive number ε and any

point p1 ∈ Λ, we can find a hypertemperature wj ∈ H
Λ

gj such that

wj(p1)−HΛ

gj (p1) < 2−jε.

Since H
Λ

gj is a temperature on Λ, [9, Theorem 3.60] shows that limj→∞H
Λ

gj is a hy-

pertemperature on Λ. Moreover, since wj−H
Λ

gj is a nonnegative hypertemperature

on Λ, the same is true of
∑∞
j=1(wj −H

Λ

gj ), and hence of the function

v = lim
j→∞

H
Λ

gj +

∞∑
j=1

(wj −H
Λ

gj ).

For each k, we have

v ≥ HΛ

gk
+ (wk −H

Λ

gk
) = wk,

so that v is lower bounded on Λ and

lim inf
p→q

v(p) ≥ gk(q)

for all q ∈ ∂Λ. Therefore, if g = limk→∞ gk on ∂Λ, we have v ∈ H
Λ

g and hence

v ≥ HΛ

g . In particular,

H
Λ

g (p1) ≤ v(p1) ≤ lim
j→∞

H
Λ

gj (p1) +

∞∑
j=1

2−jε = lim
j→∞

H
Λ

gj (p1) + ε.

This holds for all ε > 0, so that

H
Λ

g (p1) ≤ lim
j→∞

H
Λ

gj (p1) ≤ HΛ

g (p1).

Therefore, by Lemma 3,

H
E

f (p1) ≤ lim
j→∞

H
E

fj (p1) ≤ HE

f (p1).

Since p1 is an arbitrary point of Λ, the result is established. �

An earlier version of Lemma 5, with extra hypotheses and less precision, is given
in [2, Lemma 4.1.6].

3. H-Resolutivity and PWB Solutions

Apart from Lemma 6, all the results in this section are standard but included
for completeness.

Lemma 6. Let E be an open set, and let f be an extended real-valued function on
∂E. If, for each point q0 ∈ E, we can find a point p0 ∈ E such that q0 ∈ Λ(p0;E)

and HE
f (p0) = H

E

f (p0) ∈ R, then f is H-resolutive for E.
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Proof. Let q0 ∈ E. By hypothesis, there is a point p0 ∈ E such that q0 ∈ Λ(p0;E)

and HE
f (p0) and H

E

f (p0) are both finite. Therefore, by Lemma 4 Corollary, the

functions HE
f and H

E

f are temperatures on the neighbourhood Λ(p0;E) of q0. Thus

HE
f and H

E

f are temperatures on the whole of E, so that the function v = HE
f −H

E

f

is a nonpositive temperature on E, in view of Lemma 1. For any point q ∈ E, our
hypothesis shows that there is a point p such that q ∈ Λ(p;E) and v(p) = 0, so
that v = 0 on Λ(p;E) by the strong maximum principle. In particular, v(q) = 0.

Hence HE
f = H

E

f on E, and f is H-resolutive for E. �

Theorem 2. Let E be an open set, let f and g be extended real-valued functions
on ∂E, and let α ∈ R.
(a) If f is H-resolutive, then αf is H-resolutive and HE

αf = αHE
f on E.

(b) If f and g are both H-resolutive, and (f + g)(q) is defined arbitrarily at each
point q ∈ ∂E where f(q) + g(q) is undefined, then f + g is H-resolutive and
HE
f+g = HE

f +HE
g on E.

Proof. (a) If α = 0, the result is trivial. If α > 0, then Lemma 2(b) and the

H-resolutivity of f show that HE
αf = αHE

f = αH
E

f = H
E

αf . The result follows.
If α < 0, then −αf is H-resolutive; this, together with Lemma 2(a), shows that

HE
αf = −HE

−αf = −HE
−αf = H

E

αf . The result follows.

(b) If f and g are both H-resolutive, then Lemma 1 and Lemma 2(d) show that

HE
f +HE

g = HE
f +HE

g ≤ H
E
f+g ≤ H

E

f+g ≤ H
E

f +H
E

g = HE
f +HE

g ,

which implies the result. �

Theorem 3. Let E be an open set, and let {fj} be a sequence of real-valued, H-
resolutive functions on ∂E. If {fj} converges uniformly on ∂E to a function f ,
then f is H-resolutive and HE

fj
→ HE

f uniformly on E.

Proof. Given any ε > 0, we choose a number k such that |fj − f | < ε on ∂E for

all j > k. For such j, if w ∈ H
E

fj then w + ε ∈ H
E

f . Therefore H
E

f ≤ w + ε, and it

follows that H
E

f ≤ H
E

fj + ε. Similarly HE
f ≥ HE

fj
− ε for all j > k. It now follows

from Lemma 1 and the H-resolutivity of the functions fj that

HE
fj − ε ≤ H

E
f ≤ H

E

f ≤ HE
fj + ε.

These inequalities show that |HE
fj
−HE

f | < ε and |HE
fj
−HE

f | < ε for all j > k, so

that the sequence {HE
fj
} converges uniformly on E to both HE

f and H
E

f . Therefore

HE
f = H

E

f ∈ C(E), so that f is H-resolutive for E, by Lemma 6. �

Lemma 7. Let E be an open set, let K be a compact subset of E, and let w
be a function on E ∪ ∂E that is both a subtemperature on E and an element of
C((E ∪ ∂E)\K). Then the restriction of w to ∂E is H-resolutive for E.

Proof. We denote by f the restriction of w to ∂E. Since f ∈ C(∂E) it is bounded,
and so we can find real numbers α and β such that α ≤ f ≤ β on ∂E. Then
α ≤ HE

f ≤ β on E, so that HE
f is a temperature on E, by Lemma 4. For every
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point q ∈ ∂E we have limp→q w(p) = f(q) ≤ β, and so w is upper bounded, by [9,

Theorem 8.2]. It follows that w ∈ HEf , and hence w ≤ HE
f on E. Therefore

lim inf
p→q

HE
f (p) ≥ lim

p→q
w(p) = f(q)

for all q ∈ ∂E, so that HE
f ∈ H

E

f , and hence HE
f ≥ H

E

f on E. Since HE
f ≤ H

E

f

by Lemma 1, equality holds and, because HE
f is a temperature on E, f is H-

resolutive. �

Theorem 4. If E is an open set and f ∈ C(∂E), then f is H-resolutive for E.

Proof. Let G denote the class of real-valued functions on E ∪ ∂E that are both
supertemperatures on E and continuous on (E∪∂E)\K for some compact subset K
of E. Let D denote the class of differences u−v of functions in G, and let F denote
the class of restrictions to ∂E of the functions in D. Then F is a linear subspace of
C(∂E) that contains the constant functions. By Lemma 7, the restrictions to ∂E of
the functions in G are H-resolutive, and so Theorem 2 shows that the functions in F
are all H-resolutive. Furthermore, for any point q0 /∈ ∂E, the class D contains the
function G(·; q0)∧α for every positive number α, and so F separates points of ∂E.
Finally, if u, v ∈ G then [9, Corollaries 3.18 and 3.19] imply that u ∧ v, u + v ∈ G,
so that if u1, u2, v1, v2 ∈ G the function

(u1 − v1) ∨ (u2 − v2) = u1 + u2 − (u2 + v1) ∧ (u1 + v2) ∈ D.

Thus f ∨ g ∈ F whenever f, g ∈ F . It now follows from the Stone-Weierstrass
theorem for the one-point compactification of Rn+1 that F is dense in C(∂E) with
respect to the supremum norm. So every function in C(∂E) can be expressed as
the uniform limit of a sequence in F . Since every function in F is H-resolutive, it
follows from Theorem 3 that every every function in C(∂E) is H-resolutive. �

Remark. For earlier versions of Theorem 4 in the context of harmonic spaces, see
[2, Satz 4.1.5] (for bounded open sets) and [4, Theorem 1.2.2].

4. The Parabolic Measure on the Boundary

In this section, we develop the analogue for the heat equation of the notion of
harmonic measure. Since we are giving details for Doob’s program, and want a
different terminology from that used for the S-Dirichlet problem in [10], we shall
adopt his terminology and call the measure parabolic.

Theorem 5. Let E be an open set, and let p ∈ E. Then there is a unique
nonnegative Borel measure ωEp on ∂E such that the equality

HE
f (p) =

∫
∂E

f dωEp

holds for every f ∈ C(∂E). Moreover ωEp (∂E) = 1.

Proof. Any function f ∈ C(∂E) has a PWB solution HE
f on E, by Theorem

4. We show that the mapping f 7→ HE
f (p) is a positive linear functional on the
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Banach space C(∂E) with the supremum norm. By Theorem 2, if f, g ∈ C(∂E)
and α, β ∈ R, then

HE
αf+βg = HE

αf +HE
βg = αHE

f + βHE
g ,

so that the mapping in question is a linear functional on C(∂E). Furthermore, if
f ≥ 0 then 0 ≤ HE

f on E, by Lemma 2. Hence the linear functional f 7→ HE
f (p)

is positive. It now follows from the Riesz Representation Theorem that there is
a unique nonnegative Borel measure ωEp on ∂E such that HE

f (p) =
∫
∂E

f dωEp for

every f ∈ C(∂E). In particular, if f(q) = 1 for all q ∈ ∂E, then HE
f = 1 on E by

Theorem 1, so that 1 = HE
f (p) =

∫
∂E

dωEp = ωEp (∂E). �

Remark. Given Theorem 4, Theorem 5 is a standard deduction. In the context of
harmonic spaces, see [4, p.19]. In the same context, Bauer used a different defini-
tion of harmonic measure; see [2, Satz 4.1.5] (for bounded open sets and without
the uniqueness assertion).

Definition. Let E be an open set, and let p ∈ E. Then the completion of the
measure ωEp of Theorem 5, is called the parabolic measure relative to E and p. It

will also be denoted by ωEp . A function on ∂E will be called ωEp -measurable if it is
measurable with respect to the completed measure.

Lemma 8. Let E be an open set, and let f be a lower finite, lower semicontinuous
function on ∂E. Then

H
E

f (p) = HE
f (p) =

∫
∂E

f dωEp

for all p ∈ E, and if H
E

f < +∞ on a dense subset of E, then f is H-resolutive for
E.

Proof. There is an increasing sequence {fj} of functions in C(∂E) that converges
pointwise to f on ∂E. By Theorem 4, each function fj is H-resolutive for E so
that, in particular, each HE

fj
is finite-valued on E. Therefore, by Lemma 5,

H
E

f = lim
j→∞

HE
fj

on E. Furthermore, Lemma 2(c) shows that HE
fj
≤ HE

f on E for all j, so it follows

that H
E

f ≤ H
E
f on E. Since Lemma 1 shows that HE

f ≤ H
E

f on E, equality holds.
Therefore, for all p ∈ E we have

HE
f (p) = H

E

f (p) = lim
j→∞

HE
fj (p) = lim

j→∞

∫
∂E

fj dω
E
p =

∫
∂E

f dωEp ,

by Theorem 5 and the Lebesgue monotone convergence theorem. Finally, since

H
E

f ≥ HE
f1
> −∞ on E, it follows from Lemma 4 that H

E

f is a temperature on E
if it is upper finite on a dense subset of E, so that f is H-resolutive for E in this
case. �
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Corollary. Let E be an open set, let D be an open subset of E, and let u be a
nonnegative supertemperature on E. Let f be defined on ∂D by

f(q) =

{
u(q) if q ∈ ∂D ∩ E,
0 if q ∈ ∂D\E.

Then f is H-resolutive for D, and

HD
f (p) =

∫
∂D

f dωDp

for all p ∈ D.

Proof. The function f is lower bounded and lower semicontinuous on ∂D, so that

H
D

f (p) = HD
f (p) =

∫
∂D

f dωDp

for all p ∈ D, by Lemma 8. Furthermore u ∈ H
D

f , so that u ≥ H
D

f on D, and

hence H
D

f < +∞ on a dense subset of D. Therefore Lemma 8 shows that f is
H-resolutive for D, and

HD
f (p) =

∫
∂D

f dωDp

for all p ∈ D. �

Lemma 9. Let E be an open set, let p ∈ E, and let f be an extended real-valued

function on ∂E. Given any number A > H
E

f (p), we can find a lower finite, lower

semicontinuous function g on ∂E, such that f ≤ g on ∂E and H
E

g (p) < A. Given

any number B < HE
f (p), we can find an upper finite, upper semicontinuous function

h on ∂E, such that h ≤ f on ∂E and HE
h (p) > B.

Proof. Since H
E

f (p) < A, we can find a function w ∈ H
E

f such that w(p) < A. We
define a function g on ∂E by putting g(q) = lim infp→q w(p) for all q ∈ ∂E. Then

g is lower bounded and lower semicontinuous on ∂E. Since w ∈ H
E

f , we also have

g ≥ f on ∂E. Finally, we note that w ∈ H
E

g , which implies that H
E

g (p) ≤ w(p) < A.

Given B < HE
f (p), we have −B > −HE

f (p) = H
E

−f (p), by Lemma 2(a). There-
fore, by the part just proved, we can find a lower finite, lower semicontinuous

function −h on ∂E, such that −f ≤ −h on ∂E and H
E

−h(p) < −B. So h is an
upper finite, upper semicontinuous function on ∂E, such that h ≤ f on ∂E and

HE
h (p) = −HE

−h(p) > B. �

Theorem 6. Let E be an open set, let p ∈ E, and let f be an extended real-valued
function on ∂E.
(a) If

∫
∂E

f dωEp exists, then

H
E

f (p) = HE
f (p) =

∫
∂E

f dωEp . (4.1)

(b) Conversely, if H
E

f (p) = HE
f (p) and is finite, then f is ωEp -integrable (and (4.1)

holds).
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Proof. (a) We prove that (4.1) holds for increasingly general classes of functions.

If f is the characteristic function χA of a relatively open subset A of ∂E, then
f is finite and lower semicontinuous on ∂E, so that (4.1) follows from Lemma 8.

We denote by B the σ-algebra of all Borel subsets of ∂E, and by F the class of
all sets A ∈ B for which (4.1) holds when f = χA. We prove that F = B. We know
that F contains all the relatively open subsets of ∂E, so we can prove that F = B
by showing that F is a σ-algebra. Clearly ∂E ∈ F . Suppose that A ∈ F , so that

ωEp (A) =

∫
∂E

χA dω
E
p = H

E

χA
(p) = HE

χA
(p).

We denote by Ac the complement of A in ∂E. Then, using Theorem 5 and Lemma
2, we have

ωEp (Ac) = 1− ωEp (A) = 1−HE

χA
(p) = HE

1 (p) +HE
−χA

(p) ≤ HE
χAc (p) ≤ HE

χAc (p)

≤ HE

1 (p) +H
E

−χA
(p) = 1−HE

χA
(p) = 1− ωEp (A) = ωEp (Ac).

Therefore equality holds throughout, and hence

HE
χAc (p) = H

E

χAc (p) = ωEp (Ac) =

∫
∂E

χAc dωEp .

Thus Ac ∈ F . We now let {Fj} be an expanding sequence of sets in F , and put

F =
⋃∞
j=1 Fj . By Lemma 2, we have 1 ≥ HE

χF
≥ HE

χFj+1
≥ HE

χFj
≥ 0 for all j. It

therefore follows from Lemma 5 that

HE
χF

(p) ≥ lim
j→∞

HE
χFj

(p) = lim
j→∞

H
E

χFj
(p) = H

E

χF
(p) ≥ HE

χF
(p).

Hence

HE
χF

(p) = H
E

χF
(p) = lim

j→∞
H
E

χFj
(p) = lim

j→∞
ωEp (Fj) = ωEp (F ) =

∫
∂E

χF dω
E
p ,

so that F ∈ F . It follows that F is a σ-algebra, and hence F = B.

Now we extend (4.1) to the characteristic functions of all ωEp -measurable sets.
Let A be such a set. Then we can write A = F ∪ Y for some Borel set F and some
subset Y of a Borel set Z with ωEp (Z) = 0. Then ωEp (A) = ωEp (F ), and

HE
χF

(p) ≤ HE
χA

(p) ≤ HE

χA
(p) ≤ HE

χF∪Z
(p) ≤ HE

χF
(p) +H

E

χZ
(p),

by Lemmas 1 and 2. Since Z,F ∈ B, we have

H
E

χZ
(p) =

∫
∂E

χZ dω
E
p = 0,

and (4.1) with f = χF . Hence

HE
χF

(p) ≤ HE
χA

(p) ≤ HE

χA
(p) ≤ HE

χF
(p) =

∫
∂E

χF dω
E
p = HE

χF
(p).

Therefore equality holds throughout, and so

HE
χA

(p) = H
E

χA
(p) = H

E

χF
(p) =

∫
∂E

χF dω
E
p = ωEp (F ) = ωEp (A) =

∫
∂E

χA dω
E
p .
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Thus (4.1) holds with f = χA.

Our next step is to extend (4.1) to all nonnegative, ωEp -measurable, simple func-

tions on ∂E. Suppose that f can be written in the form f =
∑k
i=1 αiχAi , for some

positive numbers α1, ..., αk and ωEp -measurable sets A1, ..., Ak. Then (4.1) holds for
each function χAi , and therefore Lemmas 1 and 2 can be used to show that

k∑
i=1

αiω
E
p (Ai) =

k∑
i=1

αiH
E
χAi

(p) ≤ HE
f (p) ≤ HE

f (p) ≤
k∑
i=1

αiH
E

χAi
(p) ≤

k∑
i=1

αiω
E
p (Ai).

Hence

HE
f (p) = H

E

f (p) =

k∑
i=1

αiω
E
p (Ai) =

k∑
i=1

αi

∫
∂E

χAi
dωEp =

∫
∂E

f dωEp ,

so that (4.1) holds for f .

We now consider the case where f is an arbitrary nonnegative, ωEp -measurable
function on ∂E. We write f as the limit of an increasing sequence {gj} of nonneg-
ative, ωEp -measurable, simple functions on ∂E. Since (4.1) holds for each function
gj , the Lebesgue monotone convergence theorem gives

HE
gj

(p) = H
E

gj (p) =

∫
∂E

gj dω
E
p →

∫
∂E

f dωEp .

Moreover, using Lemma 2 we obtain

HE
f (p) ≥ lim

j→∞
HE
gj (p) = lim

j→∞
H
E

gj (p).

Each function gj is bounded, so that each H
E

gj is also bounded, and hence Lemma

5 can be used to show that limj→∞H
E

gj (p) = H
E

f (p). Since H
E

f ≥ HE
f , it follows

that

HE
f (p) = H

E

f (p) =

∫
∂E

f dωEp ,

as required.

Finally, we let f be an arbitrary ωEp -measurable function for which
∫
∂E

f dωEp
exists. Then (4.1) holds for the positive and negative parts of f , so that Lemma 2
gives ∫

∂E

f dωEp = H
E

f+(p)−HE
f−(p) = H

E

f+(p) +H
E

−f−(p) ≥ HE

f (p),

and also∫
∂E

f dωEp = HE
f+(p)−HE

f−(p) = HE
f+(p) +HE

−f−(p) ≤ HE
f (p) ≤ HE

f (p),

with the help of Lemma 1. Now (4.1) follows.
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(b) Since H
E

f (p) is finite, it follows from Lemma 9 that, given any positive
integer j, we can find a lower finite, lower semicontinuous function gj on ∂E such
that f ≤ gj on ∂E and

H
E

gj (p) < H
E

f (p) +
1

j
.

Furthermore, because HE
f (p) is finite, Lemma 9 also shows that we can find an

upper finite, upper semicontinuous function hj on ∂E such that hj ≤ f on ∂E and

HE
hj

(p) > HE
f (p)− 1

j
.

We put

g = inf
j
gj , h = sup

j
hj ,

and note that g, h are Borel measurable and satisfy h ≤ f ≤ g on ∂E. By Lemma
8,

H
E

f (p) = inf
j
H
E

gj (p) = inf
j

∫
∂E

gj dω
E
p ≥

∫
∂E

g dωEp .

Moreover, by Lemmas 2 and 8 we have

HE
f (p) = −HE

−f (p) = − inf
j
H
E

−hj
(p) = − inf

j

∫
∂E

(−hj) dωEp

= sup
j

∫
∂E

hj dω
E
p ≤

∫
∂E

h dωEp .

Hence

HE
f (p) ≤

∫
∂E

h dωEp ≤
∫
∂E

g dωEp ≤ H
E

f (p) = HE
f (p) ∈ R,

so that h = g ωEp -almost everywhere on ∂E. Since g and h are Borel measurable, it

follows that there is a Borel set Z such that ωEp (Z) = 0 and h = f = g on (∂E)\Z.

All subsets of Z are ωEp -measurable, so that f is an ωEp -measurable function and

HE
f (p) ≤

∫
∂E

f dωEp ≤ H
E

f (p) = HE
f (p) ∈ R.

Thus f is ωEp -integrable (and (4.1) holds). �

Corollary 1. Let E be an open set, and let f be an extended real-valued function on
∂E. If, for each point q0 ∈ E, we can find a point p0 ∈ E such that q0 ∈ Λ(p0;E),

f is ωEp0-measurable, and both H
E

f (p0) and HE
f (p0) are finite, then f is H-resolutive

for E with

HE
f (p) =

∫
∂E

f dωEp

for all p ∈ E.

Proof. Let q0 ∈ E, and let p0 be a point as described in the statement of the
theorem. Since f is ωEp0-measurable, so is f+. Therefore Theorem 6(a) gives

H
E

f+(p0) = HE
f+(p0) =

∫
∂E

f+ dωEp0 .
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Since H
E

f (p0) < +∞, there is a hypertemperature w ∈ H
E

f such that w(p0) < +∞,

and since w is lower bounded on E, there is a number α such that w + α ∈ H
E

f+ .

Therefore H
E

f+(p0) < +∞, and obviously H
E

f+(p0) > −∞. Lemma 6 now shows

that f+ is H-resolutive for E. In particular, for all p ∈ E we have H
E

f+(p) =

HE
f+(p) ∈ R, so that f+ is ωEp -integrable and

HE
f+(p) =

∫
∂E

f+ dωEp

by Theorem 6(b). This result holds if f is replaced by −f because, by Lemma 2,

H
E

−f (p0) = −HE
f (p0) and HE

−f (p0) = −HE

f (p0), which are finite; so f+ can be

replaced by (−f)+ = f−. Therefore, by Theorem 2, the function f = f+ − f− is
H-resolutive and

HE
f (p) = HE

f+(p)−HE
f−(p) =

∫
∂E

f+ dωEp −
∫
∂E

f− dωEp =

∫
∂E

f dωEp .

�

Corollary 2. Let E be an open set, and let f be an extended real-valued function
on ∂E. Then the following statements are equivalent:
(a) f is H-resolutive for E;
(b) for each point q0 ∈ E, we can find a point p0 ∈ E such that q0 ∈ Λ(p0;E) and

f is ωEp0-integrable;

(c) f is ωEp −integrable for all p ∈ E.
If these statements hold, then

HE
f (p) =

∫
∂E

f dωEp

for all p ∈ E.

Proof. If statement (a) holds, then Theorem 6(b) shows that statement (c) holds
also. If (c) holds, then obviously (b) holds too. Now suppose that (b) holds, and
let q0 ∈ E. Then we can find a point p0 ∈ E such that q0 ∈ Λ(p0;E) and f is
ωEp0-integrable, so that

HE
f (p0) = H

E

f (p0) =

∫
∂E

f dωEp0

by Theorem 6(a), and the integral is finite. It now follows from Lemma 6 that (a)
holds, and so the equivalence of the three statements is established.

Finally, if statement (a) holds, then

HE
f (p) =

∫
∂E

f dωEp

for all p ∈ E, by Theorem 6(b). �

It follows from Corollary 2 that, if A is a subset of ∂E which is ωEp -measurable for

all p ∈ E, then its characteristic function χA is H-resolutive and HE
χA

(p) = ωEp (A)

for all p ∈ E. Therefore, if ωEp0(A) = 0 for some point p0 ∈ E, then ωEp (A) = 0 for
all p ∈ Λ(p0;E), by the minimum principle.
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5. The Equivalence of H-Resolutivity and S-Resolutivity

Let f be an extended real-valued function on the boundary of an open set E. We

have already observed that HE
f ≤ LEf ≤ UEf ≤ H

E

f on E, so that if f is H-resolutive

for E then it is S-resolutive for E, with HE
f = SEf on E. As a necessary step towards

proving the converse, we now show that the caloric and parabolic measures coincide.

Theorem 7. Let E be an open set, and let p ∈ E. We extend the caloric measure
µEp on ∂eE, to a measure µ̄Ep on ∂E, by putting µ̄Ep (∂sE) = 0. Then the parabolic

measure ωEp is equal to µ̄Ep on ∂E.

Proof. By [9, Theorem 8.27] or [10, Theorem 4.1], we have

SEf (p) =

∫
∂eE

f dµEp =

∫
∂E

f dµ̄Ep

for all f ∈ C(∂E). By Theorem 5, there is a unique nonnegative Borel measure ωEp
on ∂E such that

HE
f (p) =

∫
∂E

f dωEp

for all f ∈ C(∂E). Since SEf = HE
f on E whenever the latter function exists, we

also have the representation

HE
f (p) =

∫
∂E

f dµ̄Ep

for all f ∈ C(∂E). Therefore the uniqueness assertion in Theorem 5 shows that
ωEp = µ̄Ep on ∂E. �

Remark. Theorem 7 shows that the parabolic measure ωEp is supported in ∂eE,
which was proved earlier by Suzuki [6].

Corollary. Let E be an open set, let p0 ∈ E, and put Λ = Λ(p0;E). Then for any
point p ∈ Λ, the parabolic measure ωEp is supported in ∂eΛ, and ωΛ

p is the restriction

to ∂eΛ of ωEp .

Proof. Since ωEp = µ̄Ep on ∂E, the result follows from [9, Lemma 8.29] or [10,
Lemma 4.3]. �

We can now combine Theorem 6 Corollary 2 with [9, Corollary 8.34] or [10,
Corollary 4.8] to obtain the equivalence of H-resolutivity and S-resolutivity.

Theorem 8. Let E be an open set, and let f be an extended real-valued function
on ∂E. Then f is H-resolutive for E if and only if f is S-resolutive for E.

Proof. If f is S-resolutive for E then, by [9, Corollary 8.34] or [10, Corollary 4.8],
f is µ̄Ep -integrable for all p ∈ E. Therefore f is ωEp -integrable for all p ∈ E, by
Theorem 7, and hence f is H-resolutive for E, by Theorem 6 Corollary 2.

The converse has already been demonstrated. �
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Despite Theorem 8, consideration of the S-Dirichlet problem often gives sharper,
more precise results, than does consideration of the H-Dirichlet problem. However,
the relation between reductions and Dirichlet solutions is much easier to establish
using H-Dirichlet solutions. The proof of the following theorem incorporates both
of these facts.

Theorem 9. Let E be an open set, let D be an open subset of E, and let u be a
nonnegative supertemperature on E. Let f be defined on ∂D by

f(q) =

{
u(q) if q ∈ ∂D ∩ E,
0 if q ∈ ∂D\E.

Then

HD
f = SDf = RE\(D∪∂sD)

u = RE\Du

on D.

Proof. We first prove that HD
f = R

E\D
u on D. Let v be a supertemperature in

H
D

f . Then lim infp→q v(p) ≥ f(q) ≥ 0 for all points q ∈ ∂D, so that v ≥ 0 on D by
the boundary minimum principle. We put

w =

{
u ∧ v on D,

u on E\D,

and note that w ≥ 0 on E. Moreover, w is a supertemperature on E, by [2, Satz

1.3.10] or [9, Lemma 7.20]. Since w = u on E\D, we have w ≥ RE\Du on E. There-

fore v ≥ RE\Du on D, and it follows that H
D

f ≥ R
E\D
u on D.

Now suppose, instead, that v is a nonnegative supertemperature on E such that
v ≥ u on E\D. Then for all points q ∈ ∂D ∩ E, we have

lim inf
p→q, p∈D

v(p) ≥ lim inf
p→q, p∈E

v(p) = v(q) ≥ u(q) = f(q) ≥ 0.

Moreover, for all points q ∈ ∂D\E, we obviously have

lim inf
p→q, p∈D

v(p) ≥ 0 = f(q).

Hence the restriction of v to D belongs to H
D

f , so that v ≥ H
D

f on D. It follows

that R
E\D
u ≥ HD

f on D, and hence that equality holds. Since f is H-resolutive, by

Lemma 8 Corollary, we have established that HD
f = R

E\D
u on D.

By [11, Theorem 2.5], we have SDf ≤ R
E\(D∪∂sD)
u on D. Hence

HD
f = SDf ≤ RE\(D∪∂sD)

u ≤ RE\Du = HD
f

on D, and the result follows. �

Remark. The proof that H
D

f = R
E\D
u goes back to [2, Satz 4.1.4], for the case

where D ⊆ E.
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6. A Property of Caloric Measure

In order to prove our next theorem, we need the following lemma. The lemma
was given in [2, Lemma 4.2.4] in the context of harmonic spaces, but the proof
contained a significant error, which we correct in the present context.

Lemma 10. Let E be an open set, let D be an open subset of E, and let f be an

extended real-valued function defined on ∂E for which H
E

f is a temperature. If g is
defined on ∂D by

g(q) =

{
f(q) if q ∈ ∂D ∩ ∂E,
H
E

f (q) if q ∈ ∂D ∩ E,

then H
D

g = H
E

f on D.

Proof. Let u ∈ H
E

f , and let v be its restriction to D. Clearly v is a lower bounded
hypertemperature on D. Moreover, for any point q ∈ ∂D ∩ ∂E, we have

lim inf
p→q, p∈D

v(p) ≥ lim inf
p→q, p∈E

u(p) ≥ f(q) = g(q);

and for any q ∈ ∂D ∩ E, we have

lim inf
p→q, p∈D

v(p) ≥ lim inf
p→q, p∈E

u(p) = u(q) ≥ HE

f (q) = g(q).

Consequently v ∈ H
D

g , and so u = v ≥ H
D

g on D. Since u is arbitrary, it follows

that H
E

f ≥ H
D

g on D.

We now take any function v ∈ H
D

g , and define a function u on E by putting

u(p) =

{
H
E

f (p) if p ∈ E\D,
v(p) ∧HE

f (p) if p ∈ D.
For any point q ∈ ∂D ∩ E, we have

lim inf
p→q

v(p) ≥ g(q) = H
E

f (q),

and so it follows from [2, Satz 1.3.10] (or the proof of [9, Lemma 7.20]) that u is a

hypertemperature on E. Given any function w ∈ H
E

f , we consider the function

w1 = w + u−HE

f ,

which is a hypertemperature on E because H
E

f is a temperature. We show that

w1 ∈ H
E

f . We put

A = {p ∈ E : u(p) = H
E

f (p)} and B = {p ∈ D : u(p) = v(p)},
and note that E = A ∪B. For each point q ∈ ∂E ∩ ∂A, we have

lim inf
p→q, p∈A

w1(p) = lim inf
p→q, p∈A

w(p) ≥ lim inf
p→q, p∈E

w(p) ≥ f(q);

and for each point q ∈ ∂E ∩ ∂B, we have

lim inf
p→q, p∈B

w1(p) ≥ lim inf
p→q, p∈B

u(p) = lim inf
p→q, p∈B

v(p) ≥ lim inf
p→q, p∈D

v(p) ≥ g(q) = f(q);
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thus lim infp→q w1(p) ≥ f(q) for all q ∈ ∂E. Now w1 = w on E\D, and at

those points of D where H
E

f ≤ v. At other points of D we have u = v, so that

w1 = w + v − HE

f ≥ v. Since both w and v are lower bounded, w1 is too. Thus

w1 ∈ H
E

f , and so w1 ≥ H
E

f . Given any point p0 ∈ D and any positive number ε,

we can choose w such that w(p0) ≤ HE

f (p0) + ε. It then follows that

H
E

f (p0) ≤ w1(p0) = w(p0) + u(p0)−HE

f (p0) ≤ u(p0) + ε ≤ v(p0) + ε,

and therefore that H
E

f (p0) ≤ v(p0). This holds for all p0 ∈ D and every v ∈ H
D

g .

Therefore H
E

f ≤ H
D

g on D, and hence equality holds. �

The next theorem and its proof were suggested by [1, Theorem 6.4.8].

Theorem 10. Let E be an open set, let D be an open subset of E, let q ∈ D, and
let A ⊆ ∂eE ∩ ∂eD. If A is µEq −measurable, then it is also µDq −measurable with

µDq (A) ≤ µEq (A), and equality holds if ∂eD ⊆ ∂E.

Proof. It follows from Theorem 7 that A is ωEq −measurable, and that we need

to prove that A is ωDq −measurable with ωDq (A) ≤ ωEq (A), and equality holds if

∂eD ⊆ ∂E. We denote by χA the characteristic function of A on Rn+1. We define

functions f and g on ∂D by putting f = χA = g on ∂D∩∂E, f = H
E

χA
on ∂D∩E,

and g = HE
χA

on ∂D ∩ E. Since A is ωEq −measurable, Theorem 6(a) shows that

H
E

χA
(q) = HE

χA
(q) =

∫
∂E

χA dω
E
q = ωEq (A).

Because 0 ≤ χA ≤ 1 on ∂E, we have 0 ≤ HE
χA
≤ H

E

χA
≤ 1 on E, so that

HE
χA

and H
E

χA
are both temperatures on E, by Lemma 4 Corollary. It therefore

follows from Lemma 10 that H
D

f = H
E

χA
and HD

g = HE
χA

on D. In particular,

H
D

f (q) = ωEq (A) = HD
g (q). Since g ≤ f on ∂D, it follows that

ωEq (A) = HD
g (q) ≤ HD

f (q) ≤ HD

f (q) = ωEq (A).

In particular, HD
f (q) = H

D

f (q) and is finite, so that Theorem 6(b) shows that f is

ωDq −measurable and

H
D

f (q) =

∫
∂D

f dωDq .

Since f ≥ χA on ∂D, it follows that

ωDq (A) =

∫
∂D

χA dω
D
q ≤

∫
∂D

f dωDq = H
D

f (q) = ωEq (A),

as required. If ∂eD ⊆ ∂E, then f = χA on ∂eD, and the fact that ωDq is supported
in ∂eD implies that

ωDq (A) =

∫
∂eD

χA dω
D
q =

∫
∂eD

f dωDq = ωEq (A).

�
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Remark. The condition ∂eD ⊆ ∂E, of Theorem 10, holds if D = Λ(p0;E) for some
point p0 ∈ E, by [9, Lemma 8.4]. If D is a component of E, the condition also
holds.

7. The Equality of Upper H-Solutions and Upper S-Solutions

The results of Section 6 illustrate the fact that we sometimes need to consider
boundary functions that are not necessarily resolutive. Our final theorem shows

that, for any boundary function f , the equality H
E

f = UEf holds on E. Thus the
PWB method does not distinguish between the two forms of the Dirichlet problem.
The result and its proof were suggested by [2, Satz 4.1.7].

Theorem 11. Let E be an open set, and let f be an extended real-valued function

on ∂E. Then H
E

f = UEf on E.

Proof. Let p ∈ E. We denote by Ψ the class of all lower semicontinuous, lower
bounded majorants of f on ∂E. Any element ψ of Ψ is ωEp − measurable, so that
Theorem 6(a) and Theorem 7 yield

H
E

ψ (p) =

∫
∂E

ψ dωEp =

∫
∂E

ψ dµ̄Ep =

∫
∂eE

ψ dµEp . (7.1)

We take any function u ∈ H
E

f , and define φ by putting φ(q) = lim infr→q u(r) for

all q ∈ ∂E. Then φ ∈ Ψ, and also u ∈ H
E

φ . It follows that

H
E

f (p) ≤ inf
ψ∈Ψ

H
E

ψ (p) ≤ HE

φ (p) ≤ u(p).

Taking the infimum over all choices of u, and using (7.1), we obtain

H
E

f (p) = inf
ψ∈Ψ

H
E

ψ (p) = inf
ψ∈Ψ

∫
∂eE

ψ dµEp . (7.2)

We now denote by ∆ the class of all lower semicontinuous, lower bounded majorants
of f on ∂eE. Any element δ of ∆ is µEp − measurable, so that [9, Theorem 8.32(a)]
or [10, Theorem 4.6(a)] yields

UEδ (p) =

∫
∂eE

δ dµEp . (7.3)

We take any function v ∈ UEf , and define ϕ by putting

ϕ(q) =

{
lim infr→q v(r) if q ∈ ∂nE,
lim infr→q+ v(r) if q ∈ ∂ssE.

Then ϕ ∈ ∆, and also v ∈ UEϕ . It follows that

UEf (p) ≤ inf
δ∈∆

UEδ (p) ≤ UEϕ (p) ≤ v(p).

Taking the infimum over all choices of v, and using (7.3), we obtain

UEf (p) = inf
δ∈∆

UEδ (p) = inf
δ∈∆

∫
∂eE

δ dµEp . (7.4)
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The class ∆ is precisely the class of restrictions to ∂eE of the functions in Ψ, because
if δ ∈ ∆ we can extend its definition to get a function in Ψ by putting δ = +∞ on
∂sE, since ∂eE is closed. It now follows from (7.2) and (7.4) that

H
E

f (p) = inf
ψ∈Ψ

∫
∂eE

ψ dµEp = inf
δ∈∆

∫
∂eE

δ dµEp = UEf (p).

Since p is arbitrary, the result is proved. �

Corollary. Let E be an open set, let D be an open subset of E, and let f be an
extended real-valued function defined on ∂E for which UEf is a temperature. If g is
defined on ∂D by

g(q) =

{
f(q) if q ∈ ∂D ∩ ∂E,
UEf (q) if q ∈ ∂D ∩ E,

then UDg = UEf on D.

Proof. In view of Theorem 11, the corollary is just Lemma 10. �

Remark. A direct proof of the corollary is elusive.
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