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Abstract. We offer a new family of lacunary partition functions by using in-

teresting properties of indefinite quadratic forms. In particular, we obtain a
family of colored partition functions by paraphrasing some old and new q-series

identities.

1. Introduction and Statement of Results

A lacunary function is a function on N that is zero for almost all natural
numbers. Several authors (e.g. [3, 8]) have observed that certain partition
functions exhibit this property. In fact, there are numerous examples (see [1])
of partition functions with distinct parts that are lacunary, and follow from the
Jacobi triple product identity. The most famous example of this phenomenon in
the theory of partitions is Euler’s Pentagonal number theorem. That is, if pe(n)
(resp. po(n)) denote the number of partitions into distinct parts of n with even
(resp. odd) number of parts, then

pe(n)− po(n) =
{

(−1)m, n = m(3m± 1)/2,
0 otherwise.

(1)

It follows directly from (1) that pe(n) = po(n) for almost all natural n.
In 1986, Andrews [2] proved the q-series identity

∞∏
n=1

(1− qn)2(1− q2n−1) =
∑
n≥0
|j|≤n

(−1)jqn(3n+1)/2−j2
(1− q2n+1), (2)

by use of Bailey pairs. It turns out we can paraphrase the left side of (2) using
colored partitions in the same flavor as [5]. Furthermore, by using known results
about indefinite quadratic forms, we relate some of our partition functions to the
arithmetic of Z[

√
2], another to Z[

√
6].

Theorem 1.1. Let S denote the set of partitions into 2 distinct colors with one
color appearing at most once, and the other color appearing at most once and in
parts that are even. Let pe(S, n) (resp. po(S, n)) denote the number of parti-
tions of n taken from S with an even (resp. odd) number of distinct parts. For
n ≡ 1 (mod 8), let ν(n) be the excess of the number of inequivalent solutions of
x2 − 2y2 = n in which x + y ≡ 1 (mod 4) over the number in which x + y ≡ 3
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(mod 4). Then pe(S, n)− po(S, n) = ν(8n+ 1).

Theoren 1.2. Let B be the set of partitions into 3 distinct colors with one color
appearing at most once, and in parts that are odd, and the other 2 colors appear
at most once and in parts that are even. Let pe(B,n) (resp. po(B,n)) denote the
number of partitions of n taken from B with an even (resp. odd) number of distinct
even parts. For n ≡ 1 (mod 8), let µ(n) be the excess of the number of inequivalent
solutions of x2 − 2y2 = n in which x + 4y ≡ 1 or 3 (mod 8) over the number in
which x+ 4y ≡ 5 or 7 (mod 8). Then pe(B,n)− po(B,n) = µ(8n+ 1).

The next theorem is the arithmetic interpretation of a result equivalent to an iden-
tity given by Rowell [9].

Theorem 1.3. Let W denote the set of partitions into 3 distinct colors with one
color appearing at most once, and in parts that are odd, and the other 2 colors appear
at most once and in parts that are multiples of 4. Let pe(W,n) (resp. po(W,n)) de-
note the number of partitions of n taken from W with an even (resp. odd) number of
distinct parts. For n ≡ 7 (mod 24), let κ(n) be the excess of the number of inequiva-
lent solutions of x2−2y2 = n in which x+2y ≡ 1, 3, or 5 (mod 12) over the number
in which x+2y ≡ −1, −3, or −5 (mod 12). Then pe(B,n)−po(B,n) = κ(7−24n).

Our next result gives a combinatorial interpretation of (2) when q is replaced by
−q.

Theorem 1.4. Let Z denote the set of partitions into 5 distinct colors with 3 col-
ors appearing at most once and in parts that are odd, and the other 2 colors appear
at most once and in parts that are even. Let pe(Z, n) (resp. po(Z, n)) denote the
number of partitions of n taken from Z with an even (resp. odd) number of distinct
even parts. For n ≡ 1 (mod 24), let α+(n) be the number of inequivalent solutions
of x2− 6y2 = n when x+ 12y ≡ 1, 5, 7, or 11 (mod 24) and α−(n) when x+ 12y ≡
13, 17, 19, or 23 (mod 24). Then pe(Z, n)− po(Z, n) = α+(24n+ 1)−α−(24n+ 1).

2. Proofs of Theorems

In order to prove our partition theorems we first need to obtain the desired
generating functions, which follow directly from inserting some known Bailey pairs
into the Bailey lemma [8, 10]. It should also be noted that we will employ standard
q-series notation [7].

We define a pair of sequences (αn, βn) to be a Bailey pair with respect to a if

βn =
n∑

r=0

αn

(aq; q)n+r(q; q)n−r
. (3)

The q-series identities established herein follow directly from:

Proposition 2.1. If (αn, βn) form a Bailey pair with respect to a then
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∞∑
n=0

(z)n(y)n(aq/zy)nβn =
(aq/z)∞(aq/y)∞
(aq)∞(aq/zy)∞

∞∑
n=0

(z)n(y)n(aq/zy)nαn

(aq/z)n(aq/y)n
. (4)

Proof of Theorem 1.1: First recall [2] that (αn, βn) form a Bailey pair with
respect to q with

αn =
qn(3n+1)/2(1− q2n+1)

1− q

n∑
j=−n

(−1)jq−j2
,

βn =
1

(−q)n
.

Inserting this pair into (4) with z = −q and y →∞ gives

(q)∞(q2; q2)∞ =
∞∑

n≥0
|j|≤n

(−1)jqn(2n+1)−j2
(1− q2n+1). (5)

Taking S to be the set of partitions into 2 distinct colors with both colors appearing
at most once and one color having only even parts, we have

(q; q)∞(q2; q2)∞ =
∞∑

n=0

(pe(S, n)− po(S, n))qn.

Replacing q by q8 in (5) and multiply both sides by q to obtain
∞∑

n≥0
|j|≤n

(−1)j(q(4n+1)2−2(2j)2 − q(4n+3)2−2(2j)2). (6)

Now, note (see [6] for a related generating function) that this generates the number
of inequivalent solutions of x2 − 2y2 = k with norm 8k+ 1, where x is odd, y even,
and an additional weight. Thus, we only need to consider when (11) is weighted
by +1 and −1. Now we have +1 when x ≡ 1 (mod 4) and y ≡ 0 (mod 4) or x ≡ 3
(mod 4) and y ≡ 2 (mod 4). We have −1 when x ≡ 1 (mod 4) and y ≡ 2 (mod 4)
or x ≡ 3 (mod 4) and y ≡ 0 (mod 4). This gives us +1 when x + y ≡ 1 (mod 4),
and −1 when x+ y ≡ 3 (mod 4).

Proof of Theorem 1.2: Replace q by −q in (5), then replace q by q8 and multiply
both sides by q to get

(q2; q2)2∞(−q; q2)∞ =
∞∑

n≥0
|j|≤n

(−1)n(q(4n+1)2−2(2j)2 + q(4n+3)2−2(2j)2).

Now

(q2; q2)2∞(−q; q2)∞ =
∞∑

n=0

(pe(B,n)− po(B,n))qn.

The connection with Z[
√

2] follows in the same manner as in the previous proof.
However, this time, we have +1 when x ≡ 1 (mod 8) or x ≡ 3 (mod 8), and −1
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when x ≡ 5 (mod 8) or x ≡ 7 (mod 8). Inspection on x + 4y gives the desired
result.

Proof of Theorem 1.3: Inserting the pair (αn, βn) [2] with respect to q with

αn = qn(2n+1) (1− q2n+1)
(1− q)

n∑
j=−n

(−1)jq−j(3j+1)/2,

and
βn = 1.

into (4), and letting z, y →∞, we obtain the identity

∞∑
n=0

qn(n+1) =
1

(q; q)∞

∞∑
n=0

qn(3n+2)(1− q2n+1)
n∑

j=−n

(−1)jq−j(3j+1)/2. (7)

The sum on the left side of (7) can be summed by means of [1, pg. 23, e.q.
(2.2.13)], which leads to the identity

(q; q2)∞(q4; q4)2∞ =
∞∑

n=0

qn(3n+2)(1− q2n+1)
n∑

j=−n

(−1)jq−j(3j+1)/2, (8)

since,

(q; q)∞
(q4; q4)∞
(q2; q4)∞

= (q; q2)∞(q4; q4)2∞. (9)

The right side of (9) is the generating function for pe(W,n)−po(W,n), and the right
hand is to be treated in the same manner as in the previous proofs. Replacing q by
q24 and multiplying both sides by q7 gives the generating function for the number
of inequivalent solutions of x2 − 2y2 = k with norm 7 − 24k in which x + 2y ≡ 1,
3, or 5 (mod 12) over the number in which x+ 2y ≡ −1, −3, or −5 (mod 12).

Proof of Theorem 1.4: First, we recall from the work of [3] that the right hand
side of (2) generates the number of inequivalent solutions of x2−6y2 = k, with norm
24k+ 1 weighted by +1 when 2x+ 3y ≡ 2 or 4 (mod 12) and −1 when 2x+ 3y ≡ 8
or 10 (mod 12). Now replacing q by −q in (2) gives us

(−q; q2)3∞(q2; q2)2∞ =
∑
n≥0
|j|≤n

(−1)n(3n+1)/2qn(3n+1)/2−j2
(1 + q2n+1).

Replacing q by q24 in the sum on the right and multiplying both sides by q gives∑
n≥0
|j|≤n

(−1)n(3n+1)/2(q(6n+1)2−6(2j)2 + q(6n+5)2−6(2j)2).

Now we only need to consider when (−1)n(3n+1)/2 is +1 and −1. When n ≡ 0 or
1 (mod 4) we have +1, and −1 when n ≡ 2 or 3 (mod 4). The remainder of the
proof requires us to inspect x+ 12y, and we leave the details to the reader.
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3. Concluding remarks

Here we were able to observe a family of partition functions where lacu-
narity is easily established by use of indefinite quadratic forms. It is to be expected
that there are further examples of partition functions in this family that have parts
congruent to some other modulus, which will be dealt with in another paper.

Using the pair in the proof of Theorem 1.3 we may also show that

(q; q)2∞ =
∞∑

n≥0

qn(2n+1)(1− q2n+1)
n∑

j=−n

(−1)jq−j(3j+1)/2, (10)

which will be investigated in future study. It should also be noted that Rowell
[9] has proven the q-series identities herein by means of his new general conjugate
Bailey pair. Also, (10) is due L. J Rogers (see [9] for this reference).
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