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Abstract—The accurate calculation of the current densities 
induced in layered soil by HV transmission lines in normal 
conditions is one of the most important steps in the study of the 
electromagnetic interference between transmission lines and 
underground metallic structures (i.e. metallic gas pipelines). In 
electromagnetic interference problems, the best way to 
investigate the soil’s behavior as conducting media is to 
determine the current distribution within ground. The aim of 
the present paper is to examine the level of influence that soil 
layers with different resistivity have on the induced current 
densities. New analytical formulas for the induced current 
densities in the two-layer soil case are derived. The determined 
formulas contain semi-infinite integral terms which are 
calculated through a stable and efficient numerical integration 
scheme, in order to overcome the problems arising from the 
oscillate form of the infinite integrals. In the second part of the 
paper, the author’s contribution relates to the exposure and 
implementation of a robust Monte Carlo simulation method, in 
an original approach, for solving ill-posed synthesis magnetic 
or electric field problems. 

 
Index Terms—electromagnetic interference, induced current 
densities, induced voltages, numerical integration, ill-posed 
problems 

I. INTRODUCTION 
Solving problems that imply electromagnetic fields 

generated by high voltage power lines (HVPL) that cause 
electromagnetic interference on underground metallic 
structures (UMS) tends to be a complex issue. There are a 
great number of coexistent areas between HVPL and UMS. 
Almost any attempt to simulate problems involving currents 
circulating outside phase conductors or induced currents by 
inductive effect (in soil, neutral ground wires, metallic 
pipelines) should take into account many aspects regarding 
the soil properties, electromagnetic fields and interferences. 
[1-3]. 

There are a number of compatibility problems that must 
be carefully considered before a conclusion is drawn, in 
order to share new or existing rights of way.  

The eddy currents induced in the metallic neighborhoods 
of the AC systems in the soil lead to important 
supplementary power looses. One cannot neglect the 
presence of field currents in the soil (considering a 
dissipative medium) and, thus, must study the current 
diffusion in soil in quasi-stationary regime. [4-5] 

The soil structure is an important parameter that affects 
the level of the interference problem. The paper investigates 

the influence of a soil structure composed of two layers with 
different resistivity, both horizontally, in respect with the 
inductive interference HVPL – UMS. 

In real cases, the ground is composed of several layers 
with different resistivity. The results of the parametric 
analysis performed in [6] showed that the inductive 
interference levels are also influenced by the soil structure. 

A purpose of the paper is to examine the level of 
influence that soil layers with different resistivity have on 
the induced current densities, on levels, due to the presence 
of a nearby high voltage power line. New analytical 
formulas for the induced current densities in the two-layer 
soil case are derived. 

The accurate calculation of the current densities induced 
in layered soil by a HV transmission line in normal 
conditions is the first and most important step in the study of 
the electromagnetic interference between transmission lines 
and underground metallic structures (i.e. metallic gas 
pipelines). [7] 

The paper starts from the assumption that there is still a 
lack of analytic clear formulations for the case of the current 
densities induced in multi-layered soil. The determined 
formulas contain semi-infinite integral terms that are 
evaluated by a stable and efficient numerical integration 
scheme, in order to overcome efficiently the problems 
arising from the oscillatory form of the infinite integrals. 

II. ANANALYTICAL SOLUTION OF THE INDUCED 
CURRENT DENSITIES IN LAYERED SOIL 

A. Proposed approach 
In order to calculate the current distribution in the soil, let 

us assume the system shown in Fig 1, composed of an 
overhead conductor, parallel to the earth’s surface, and a 
pipeline placed into the soil. 

There are many efforts to solve the problem in the 
reference materials, but usually the authors make the 
approximations derived from the circuits’ theory. Many 
physical events cannot be taken into account using the 
elements with concentrated parameters, i.e. grounding 
resistors, capacitors and inductances to describe the 
behavior into the soil. All these calculations are more or less 
accurate for basic frequency, but not so exact for higher 
harmonics. [5] 
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To avoid mathematical difficulties, they introduced some 
simplifications, which conceal the physical picture of the 
problem. The skin effect in the soil, especially for different 
earth’s resistivities, is hidden in empiric formulas, diagrams 
and nomograms, usually applied in power engineering. For 
this reason, it has been decided to take the physical base as 
an essential electromagnetic starting-point and the applied 
mathematical methods will be only the consequence of such 
a treatment. 

 
Figure 1. Geometric configuration of an overhead line and an underground 

metallic pipeline in a two-layer earth (soil). 
 

The medium is considered linear, homogenous and 
isotropic, and the problem is to find the analytical 
expression of the magnetic vector potential, the induced 
current density and the power losses in some D domains. 
We assume the feeding electrical current has the expression: 

( ) ( ) II,tsin2Iti =⋅ω= . (1) 

The angular frequency is considered sufficiently low to 
assume the quasi-stationary magnetic regime and neglect the 
displacement current. [8] 

Using Maxwell equations for a quasi-stationary magnetic 
state, we obtain the linear diffusion equation: 

( ) V
t
AAAdivgrad 00 ∇⋅σμ−
∂
∂

σμ−=Δ−  (2) 

In the above relation (2), we impose the Lorentz gauge 
condition VAdiv 0σμ−= , and we obtain a Helmholtz 
equation:  

( ) AjAtAA 00 σωμ=Δ⇒∂∂σμ=Δ  (3) 

Taking into account the symmetry of the 
problem ( ) ky,xAA ⋅= , we rewrite the above relation: 

AjA 0σωμ=Δ .  

It is then denoted: 

( ) σμπ=
δ

=α+α=σωμ=γ 00 f1;j1j  (the inverse 

of the skin depth), so finally a typical Helmholtz type 
equation is obtained: 

AA 2 ⋅γ=Δ  (4) 

Considering D0 the domain between 0 and h0 and, 
eventually, the domain above the wire, for not very high 
values of y; D1 the domain between y=0 and y=-h1 and D2 
the domain for )h,(y 1−−∞∈ , the equations are: 
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B. Analytical expressions of the induced magnetic vector 
potentials in each layer 

For solving the Helmholtz equation AA 2 ⋅γ=Δ , the 
method of variable separation is applied, thus the solutions 
could be particularized for the three domains. The equation 

A
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∂
∂

+
∂
∂  is reshaped as ( ) ( )yQxPA ⋅= , where 

P(x) and Q(y) are complex functions. The complex equation 
becomes: 

( ) ( ) ( ) ( ) ( ) ( )yQxP
y
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 Taking into account that y/ABx ∂∂=  is an even 
function in x, P(x) must be also even. The magnetic vector B 
projected on Ox is the same, therefore Bx is an even function 
so Ax is even; x/ABy ∂−∂=  is an odd function in x, and 

also is Q(y). The convenient solutions are (7): 
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Taking into account that P(x) must be even, it results a=0, 
and we could determine the solution for the magnetic vector 
potential of the i domain (i=0, 1, and 2) (8): 
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where i0
2
i j σωμ=γ , with 00 =σ . 

For the D0 domain, the Ox axis 00 =γ  and we obtain (9): 
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For the D1 domain, ]0,h[y 1−∈ , 10
2
1 j σωμ=γ , we have 

(10): 
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For the D2 domain, )h,(y 1−−∞∈ , 20
2
2 j σωμ=γ , we 

obtain (11): 
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From ( ) ( )
y

y,xAy,xB i
xi ∂
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= , ( ) ( )

x
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yi ∂
∂
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results: 

( ) ( ) ( ) ( )∫
∞ ⎟

⎠
⎞⎜

⎝
⎛ γ+−⎟

⎠
⎞⎜

⎝
⎛ γ+

γ+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

0

2
i

2ym
i2

ym
i1xi dmmxcosmemCemCy,xB

2
i

22
i

2

 (12) 

( ) ( ) ( ) ( )∫
∞ ⎟

⎠
⎞⎜

⎝
⎛ γ+−⎟

⎠
⎞⎜

⎝
⎛ γ+

⋅⋅⋅
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+=

0

ym
i2

ym
i1yi dmmxsinmemCemCy,xB

2
i

22
i

2

 (13) 

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:02:48 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                        Volume 9, Number 2, 2009 
 

         84

For −∞→y , the magnetic field is zero, so the constant 
( ) 0mC22 = . The components Bx0, By0 are given through 

wire superposition and by the semi-space current. For 
]h,0[y∈  and for x fixed, if y is increased (between 0 and 

h), the component due to the wire is increasing and the other 
component, accordingly to the semi-space, is decreasing. 
Considering only the conductor without the influence of the 
semi space (supposing the semi-space does not exist), with 
the known formulas we obtain (14): 

 

( ) ( ) ( ) ( )∫∫
∞

−−
∞

π
μ

≡
0
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0

my
10 dmmxcose

2
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so the constant C10(m) is expressed by: 

( )
m

e
2

ImC
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⋅
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At the surface of separation (y = 0) the normal component of 
the magnetic induction is conserved ( ) ( )0,xB0,xB 1y0y =  

and it results: ( ) ( ) ( ) ( )mCmCmCmC 21112010 +=+ . 
At the interface (y = 0) the tangential component of the 
magnetic field intensity is conserved: 

( ) ( )0,xB10,xB1
1x
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0x

0 μ
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yields: 

( ) ( )[ ] ( ) ( )[ ] 2
1

2
21112010 mmCmCmmCmC γ+⋅−=⋅−  (17) 

At the separation surface between the two layers (y=-h1) the 
normal component of the magnetic induction is conserved 

( ) ( )12y11y h,xBh,xB −=−
 and results (18): 
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The constant C22(m)=0, for any value of m, and for 

−∞→y  we have ∞→⋅γ+− ym 2
2

2

e , which is not possible. 
At the separation surface between the two layers (y=-h1) 

the tangential component of the magnetic field intensity is 

conserved: ( ) ( )12x
0

11x
0
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−
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μ
, and we obtain: 
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Thus, we gain a relation between constants: 
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By solving the system of the above equations (19) and (20):  
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and substituting the C11(m) and C21(m) in C10(m), and 

denoting ( )
⎟⎟
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constants: 
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Therefore, in the D0 domain the expression of the 

magnetic vector potential is: 
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For the D1 and D2 domains, the expressions of the magnetic 
vector potentials are (24), and (25): 
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C. Analytical expressions of the induced current densities 
in each layer 

Taking into consideration the above expressions for the 
magnetic vector potential, after the substitution of the 
constants and the relation between the magnetic vector 
potential and the induced current 

density ( ) ( )
t

y,xAy,xJ i
ii ∂
∂
⋅σ−= , we obtain the final 

expressions of the induced current densities in the two-soil 
layers: 
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 (26) 
The ratio between the two induced current densities in 

each layer is (27): 
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Rewriting the relation (27), taking into consideration the 
notations for k1 and k2 and considering 2/hy 11 −=  and 

12 h2y −= , it results:  
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The expressions for the constants k1 and k2 are: 
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We conclude, from the deduced approximation between 
the induced current densities in the two soil layers, that if 
the first soil layer increases in depth, the induced current 
density in this layer is higher with respect to the current 
density induced in the latter layer. 

III. PROPOSED NUMERICAL INTEGRATION 
SCHEME 

Direct numerical integration is used for the calculation of 
the semi-infinite integrals in (26). The integrals are highly 
oscillatory, showing also an initial steep descent. For these 
reasons, the use of a single numerical integration method 
proved to be inefficient. To overcome these difficulties, a 
combination of numerical integration methods was 
implemented. More specifically, the Gauss-Legendre 
method [8], a highly accurate numerical integration method 
applicable in finite intervals of functions, is combined with 
two other methods: the Gauss-Laguerre method, which is 
best suited for infinite integrals, and the Lobatto rule, a very 
efficient method for oscillatory functions. The selective 
implementation of the different integration methods in the 
intervals between the roots of the cosine function of the 
integrals leads to a quick and very efficient integration 
scheme for the evaluation of the semi-infinite integrals (26). 
This integration scheme was tested in the numerical 
calculation of highly oscillatory infinite integral terms of the 
earth return impedances [6].  

A choice of numerical integration may be given by the 
use of a family of orthogonal polynomials. These 
polynomials generate a Gaussian quadratic rule, according 
to the following theorem: let ( ) 0xw ≥  be a weight function 
on the interval [a;b], and let {φk(x)} be the family of 
orthogonal polynomials with respect to this weight function 
and this interval.  

The quadratic rule is defined by: 

( ) ( )∑
=

ϕ⋅=
n

1i

)n(
i

)n(
in xwxG  30) 

For xi
(n) the roots of φn and wi

(n) given by relation above: 
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Then Gn(p) is exact for all polynomials 1n2Pp −⋅∈ , and 
there exists ]b;a[∈ξ  such that is verified:  
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for all ( )]b;a[Cf n2⋅∈ , where (33) expresses: 

( ) ( )( )∏
=

−=Ψ
n

1k

2n
kn xxx   (33) 

We applied this theorem to construct a Gaussian quadratic 
rule for semi-infinite integrals having the form: 

( ) ( )∫
∞

− ⋅=
0

x dxxfefI  (34) 

In our case, the weight function is the reduced decaying 
exponential ( ) xexw −= , so the orthogonal polynomial family 
that we need to use is the Laguerre family. We choose the 
solutions of the fourth-order Laguerre polynomial: 

( ) ( )24x96x72x16x
24
1xL 234

4 +⋅−⋅+⋅−⋅=  (35) 
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The correspondent Gauss points are presented in Table I. 
TABLE I. 

NUMERICAL SOLUTIONS OF LAGUERRE FOURTH-ORDER POLYNOMIAL 

x1 x2 x3 x4 

0.32254769 1.74576094 4.53662056 9.39507082 
Next, the weights are evaluated through the particular 

form of the relation above: 

( )( )
( )( )
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−
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0

4
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4

k
4

i

4
khx4

1
xx

xxehw  (36) 

The parameter h provides an extension in the numerical 
evaluation of the semi-infinite integral. These weight 
integrals are computed using a sort of numerical integration 
routine, such as the trapezoidal of Simpson rule. Their 
values, accordingly to the imposed parameter, are exposed 
in Table II: 

TABLE II 
NUMERICAL VALUES OF THE WEIGHT INTEGRALS 

h [m] 1 2 2 
w1 0.693 0.441 0.339 
w2 0.357 0.056 -0.011 
w3 0.039 0.0024 0.0055 
w4 0.0005 -0.00019 -0.00047 

In these conditions, we may apply the explained solving 
procedure in the case of a semi infinite integral involving 
the evaluation of a pipeline to ground impedance [9], and, 
indirectly, the induced potential or current density on the 
metallic pipeline due to the coexistence with a high voltage 
power grid, above the ground. The explicit integral which is 
to be calculated from relation (26), is presented below:  

( )
∫
∞

⋅−+⋅

++

⋅
⋅=

0
22

hxmxy dx
mxx

xucoseI
22

 (37) 

We consider the evaluation of this integral at the surface 
level of the earth: y=0. 

The involved function is: 

( ) ( )
22 mxx

x,ucosu,xf
++

=  (38) 

It remains only to apply and evaluate the quadratic rule: 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )u,xfhw
u,xfhwu,xfhwu,xfhwh,uI

441

332211

+
+++=

 (39) 

For an imposed test parameter u=1,2,3, in the conditions 
presented up to here, regarding the weight integrals and the 
parameter h, a matrix of results is achieved (Table III): 

TABLE IIII 
NUMERICAL VALUES OF THE SEMI INFINITE INTEGRAL – TEST CASE 

0.868-1.681j 0.646-1.231j 0.049-0.946j 
0.647-1.411j 0.531-1.036j 0.042-0.797j 

0.584-1.01j 0.039-0.736j 0.029-0.565j 
·10-5 

It is worthwhile to notice that the results are complex 
values, and their physical significance relates to mutual 
impedance, with the real part – the resistance and the 
imaginary part – the reactance.  

Another possibility of solving this improper integral may 
be given by the use of Monte Carlo simulations. For a 
random variable x, with the probability density function g(x) 
(where this function has the primitive equal to 1 on the 
( )∞;0  interval), we have the identity: 

( )
( ) ( )∫∫
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⋅
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x
dxxfedx

xg
xfe  (40) 

Hence, to compute the semi-infinite integral, we have to 
generate N independent random variables, distributed 
accordingly to a probability density function g(x). The 
sample mean below gives an estimate for the integral: 
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IV. INVERSE FORMULATION OF AN 
ELECTROMAGNETIC INTERFERENCE PROBLEM 

A. Proposed approach for solving an electromagnetic 
interference problem  

The input data for all this type of interference problems 
are (see figure 2): power line and pipelines geometrical 
configuration; conductor and pipeline physical 
characteristics (including insulating and coating 
characteristics); environmental parameters (air 
characteristics, soil structure and characteristics); power 
system terminal (or boundary) parameters (power source 
voltages, equivalent source impedances) [9]. 

 
Figure 2. The layered structure AC power lines-metallic pipeline. 

 
We take into consideration, also, the layered soil, with the 

formulas developed in the first part of the paper. 
The results demonstrate the possibility to obtain a precise 

evaluation of the solicitations, if the resistance and the 
adduction current in the pipeline are known. After the 
determination, in each point, of the potentials due to the 
right and left side of the line, the superposition method is 
applied. [11] 

What we propose is the computation of the voltages along 
an underground pipeline using an original algorithm of Monte 
Carlo numerical method. Having a starting base [12], the 
interference model can be introduced and tested.  

In order to determine the place of the Monte Carlo method 
in the synthesis theory, the paper presents the steps that must 
be taken in solving any inverse problem associated with an 
electromagnetic field model. The first step defines the physical 
model, i.e. the known uniqueness conditions are stated, as well 
as the known (imposed) field, so that the unknown variables 
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that are to be determined by synthesis are clearly defined. The 
second step determines the mathematical model, which may be 
differential or integral, depending on the form under which the 
field laws are used. The third step may be called the 
mathematical model processing. After the three steps above, 
we obtain the matrix equation: [A][z]=[u], where [z] is the 
vector including the unknown variables (source vector) and 
[A] is the operator matrix that reflects the relationship source-
effect. 

The fourth step refers to solving the matrix equation by 
methods specific to synthesis as numerical procedures of 
Tikhonov regularization or truncated singular value 
decomposition. [13] 

The Monte Carlo synthesis method is derived from the 
analysis method [14] and it is used in its form under the variant 
of the fixed route, or random route. 

B. Electrostatic model 
The synthesis of the stationary electric field in a sub-

domain of interest, such as a plane or a spatial domain, is 
reduced to the synthesis of the potential in the respective 
sub-domain. That means that some of the boundary 
conditions have to be determined, as well as some of the 
domain sources that assure fixed potential values in a sub-
domain of interest.  

Let us consider a plane domain D, limited by boundary Γ. 
The medium is linear homogeneous or inhomogeneous and 
isotropic. The electrostatic potential satisfies the Poisson or 
Laplace equation. The domain is meshed by means of a 
square network of step h, so that the curve passes through 
the nodes of this network (Fig. 3). 

 
Figure 3. Physical model scheme for demonstrating the synthesis method. 

 
We denote by Sj (j=1 to p+r) the values of the source 

function in the network nodes. These values are unknown 
for j=1 to p and known for j=p+1 to p+r. The boundary 
conditions are of the Dirichlet type, denoted by Vi, and are 
considered unknown from index 1 to n, and known from 
i=n+1 to n+q. The problem of synthesis is reduced to 
determine the unknown sources Sj (j=l to p) and unknown 
potentials on the boundary Vi (i=l to n) that result in the 
given potentials Wk (k=l to m) in the points of the sub-
domain of interest. 

The solution by means of the Monte Carlo synthesis 
method is done in several steps. Some N(k) aleatory routes 
are considered, having as starting node the point where the 
potential has the value Wk. The absorbent nodes will be 
those situated on the boundary, in order that the Vi potential 
node represents the absorbent state for Ni

(k) routes (i=1 to 
n+q). We denote by Mj

(k) the number of passing of the N(k) 
aleatory routes through the interior node of value Sj of the 
source function. We repeat the same procedures m times, for 

each interior node of given potential, and the result (after 
adequately grouping the unknown values in the left 
member) is the system of m equations with n+p unknowns, 
as shown in relation (42): 
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A reduced system [A][z]=[u] can then be written and 

regularization techniques applied, in order to achieve precise 
and stable solutions. 

For a given geometry of an electrostatic problem, let the 
imposed potentials W to be in the interior of the domain (see 
figure 4). In order to synthesize these potentials, we must 
evaluate the upper boundary potentials, the other having the 
zero value. 

 
Figure 4. Imposed potentials W and unknown potentials V. 

 
The previous Monte Carlo model applies to this 

geometry, considering a set of random routes starting from 
the imposed potentials, with the reach the boundary as 
stopping criteria. 

A Monte Carlo numerical tool was created in order to 
generate the random routes and to count their destination in 
respect to each of the boundary nodes. As it is shown below, 
this Monte Carlo instrument gives the possibility to set the 
number of the random routes, to state the type of moving, to 
define the geometry, imposed potential locations, some 
sources location if they exist and the associated mesh. 
Before any calculation may start, the user has the 
opportunity to save the model. Afterwards, in a matter of up 
to two minutes, for a magnitude of 106 random routes, the 
program retrieves a matrix of results, namely the route 
counters of each boundary and source nodes. With this 
coefficient matrix, any solving method may be applied using 
dedicated software like MathCAD, Matlab or Mathematica.  

The interface of the Monte Carlo instrument was captured 
in figure 5: 

 

 
Figure 5. Monte Carlo instrument - developed software. 
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As it was highlighted above, there is an increased 
flexibility in handling numerical results given by the 
program. The output matrix is exported in .txt format, easily 
to import in any calculus program. For the earlier considered 
example and some 5000 random routes, the output Monte 
Carlo matrix looks like in figure 6: 

 

 
Figure 6. Numerical results from the Monte Carlo simulation. 

C. Numerical aspects of the problem 
In this stage, the matrix equation [A][z]=[u], yielded from 

the Monte Carlo simulation, may be extremely difficult to 
solve because it is an ill-posed problem. Such problem is 
characterized by the fact that arbitrarily small perturbations 
of the right hand side [u] may lead to arbitrarily large 
perturbations of the solution [z]. In other words, the solution 
is extremely sensitive to perturbations. An important tool for 
this kind of problems is the condition number of the 
coefficients matrix [A]. This mathematical instrument 
applies to the linear systems of equations, as suggested, and 
reflects the stability of the solution when a perturbation 
occurs. 

A general definition of the condition number involves the 
use of the singular values corresponding to the studied matrix, 
as relation (43) defines: 

( )
min

maxAK
σ
σ

=   (43) 

There is a wide choice in evaluating the singular values of 
a matrix. σmax represents the first singular value and σmin the 
last one. A large value of the condition number indicates 
instability in the solution and, therefore, an incorrectly 
formulated problem. [15]  

When the condition number reflects a weak stability of the 
problem, special solving methods have to be applied, in order 
to accomplish the physical achievement and the stability of 
the solution. The numerical procedure was stated as 
regularization, and regards a reformulation of the initial 
problem, which consists in adding or losing some of the 
given information. [16] 

By the regularization process, the condition number of 
the given coefficients matrix improves its value. Truncated 
singular value decomposition yields such a regularization 
procedure. The initial coefficients matrix, with an ill-
conditioned character, suffers a decomposition of the 
following kind: 

T
TSVD VUA ⋅Σ⋅=   (44) 

The two left and right matrices U and V are orthogonal. 
The middle diagonal matrix includes all the singular values of 
the A matrix, that are higher than an imposed limit (see the 
relation below): 
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Instead of those values that are lower than an imposed 
limit μ, one may consider a predefined number nr, with a 
value in the same range with the maximum singular value 
σ1. Thus, the immediate effect in the computation of the 
coefficients matrix with truncated singular value 
decomposition appears in a better condition number: 

( )
n

11
TSVD nr

AK
σ
σ

<<
σ

=   (46) 

But this improvement also brings an information loss in 
the coefficients matrix, when TSVD re-computation applies 
to the initial matrix.  

The paper presents a TSVD calculation. It can be shown 
that the information loss is insignificantly, as related to the 
efficiency brought by the SVD stabilization process. It can 
be clearly seen that for a regularized solution, the impact of 
the perturbation has almost no significance at all, while for 
the initial system of equations, no physical solution can be 
achieved.  

D. Monte Carlo synthesis method applied in 
electromagnetic interference problems 

Let us now consider the simplified model of an 
interference problem between an AC power line and a 
buried metallic structure sharing a common corridor with 
the power line, as shown in figure 2. From the analysis 
problem, we assume as known the magnetic vector potential 
on the boundary of the considered domain, as Dirichlet type, 
and let us impose homogeneous Neumann conditions on the 
vertical and bottom sides.  

A similar procedure as in the electrostatic case may be 
performed by Monte Carlo synthesis method. Here the 
unknown sources are represented by the induced voltages 
and eddy current densities on the buried pipeline and the 
known sources are the power line wires (see figure 7). 

 

 
Figure 7. The model of the electromagnetic interference problem. 

 
The authors’ contribution relates to the exposure and 

implementation of a robust Monte Carlo simulation method, 
in an original approach, for solving ill-posed synthesis 
magnetic or electric field problems.  
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From this ground base model, we wish to demonstrate 

that the algorithm may be applied in an inverse approach to 
the interference problem of the power line – underground 
pipeline coexistent structures. Further evaluations of the 
present paper tend to offer an alternative solution for the 
inductive interference problem of AC power lines and 
affected underground metallic structures. 

V. CONCLUSIONS 
In the present paper are exposed some analytical and 

numerical approaches of how to determine the level of 
influence that soil layers with different resistivity have on 
the induced current densities level. New analytical formulas 
for the induced current densities in the two-layer soil case 
are derived, based on some mathematical analytical 
developments.  

The determined formulas contain semi-infinite integral 
terms that are calculated by a stable and efficient numerical 
integration scheme, in order to overcome the problems 
arising from the oscillatory form of the infinite integrals. A 
choice of numerical integration may be given, by the use of 
a family of orthogonal polynomials that generates a 
Gaussian quadratic rule. In our case, we choose the weight 
function, the reduced decaying exponential, so the 
orthogonal polynomial family that we need to use is the 
fourth-order Laguerre family. The weight integrals are 
computed using a numerical integration routine, such as the 
Simpson rule. For an imposed test parameter, regarding the 
weight integrals and the parameter h, a matrix of results is 
achieved. We presented, also, another possibility of solving 
this improper integral by the use of Monte Carlo 
simulations.  

In the second part of the paper, the authors’ contribution 
relates to the exposure and implementation of a robust Monte 
Carlo simulation method, in an original approach, for solving 
ill-posed synthesis magnetic or electric field problems. Further 
evaluations of the present paper tend to offer an alternative 
solution method for the inductive and conductive interference 
problems of an AC power lines and underground metallic 
pipelines placed in a homogeneous or layered soil structure. 
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