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DISCRETE HILBERT TYPE INEQUALITY WITH

NON–HOMOGENEOUS KERNEL

B. Draščić Ban, T.K. Pogány

Dedicated to the Memory of Professor D. S. Mitrinović (1908–1995)

A new version of discrete Hilbert type inequality is given where the kernel
function is non–homogeneous. The main mathematical tools are the repre-
sentation of the Dirichlet series by means of the Laplace integral, and
the Hölder inequality with non–conjugated parameters. Numerous special
cases are treated and conditional best constants are discussed.

1. INTRODUCTION AND PRELIMINARIES

Let `p be the space of all complex sequences x = (xn)∞n=1 with ‖x‖p :=
(

∞
∑

n=1

|xn|
p

)1/p

< +∞. The famous Hilbert’s double series theorem, frequently

called a discrete Hilbert inequality too, reads as follows. Let a = (an)∞n=1 ∈ `p,
b = (bn)∞n=1 ∈ `q be nonnegative sequences and 1/p+ 1/q = 1, p > 1. Then

(1)

∞
∑

m,n=1

ambn
m+ n

<
π

sin(π/p)
‖a‖p‖b‖q ,

where constant
π

sin(π/p)
is the best possible [5, p. 253].

Fundamental contributions have been given to this classical inequality by
Hardy [4], Mulholland [14], [15], Bonsall [1] and Levin [12]. Discrete
Hilbert inequalities with non–homogeneous kernels were studied in [2], [3], [7],
[8]–[11], [16], [17], [19]–[24].

As already pointed out in [17], the standard way in deriving Hilbert’s in-
equality is to apply the Hölder inequality to a suitably transformed Hilbert type
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double sum expression, that is, to the bilinear form

(2) H
a,b
K :=

∞
∑

m,n=1

K(m,n) ambn

where a, b are nonnegative; K(·, ·) we call kernel function of the double series (2).
So, to obtain discrete Hilbert type inequalities (or in other words - double series

theorems) one derives sharp upper bounds for H
a,b
K in terms of weighted `p–norms

of a, b.

In this article we use an approach different from [17] to get more general and
in the same time simpler discrete Hilbert type inequalities. Namely, our main
goal here will be to establish simplest possible sharp upper bounds over H

a,b
K in

terms of ‖a‖p, ‖b‖q, when K(m,n) = (λm + ρn)−µ is non–homogeneous, that is,
we are looking for a sharp estimate of the form

(3)

∞
∑

m,n=1

ambn
(λm + ρn)µ

≤ C
? ‖a‖p‖b‖q .

Additionally, we will obtain inequalities like (3) by Hölder inequality with non–
conjugate parameters, i.e. when p, q > 1 and p−1 + q−1 ≥ 1, introducing the new
incremental parameter

∆ :=
1

p
+

1

q
− 1 ≥ 0 .

The non–conjugated parameters were already considered in the literature (see [1] or
Levin [12], for instance). However, our strong reduction requirements have to be
balanced by sharp, but fairly complicated constant C? in (3). Therefore, specifying
the functions λ and ρ from one, and p, q from other hand we simplify the Hilbert

type inequality step–by–step into a set of Corollaries. All our derived upper bounds
are new and sharp when ∆ = 0.

Note that here, and in what follows I(x) = x denotes the identity and the
Laplace integral of the Dirichlet series reads [18, §5]

(4) Dλ(x) =

∞
∑

n=1

ane
−λnx = x

∫

∞

0

e−xt

(

[λ−1(t)]
∑

n=1
an

)

dt

for positive monotone increasing (λn)∞n=1 satisfying (5).

2. MAIN RESULT

We are ready to state our principal inequality result.

Theorem. Suppose p, q > 1, µ > 0, a = (an)n∈N ∈ `p, b = (bn)n∈N ∈ `q are non-

negative sequences and λ, ρ are positive monotone increasing functions satisfying

the condition

(5) lim
x→∞

λ(x) = lim
x→∞

ρ(x) = ∞ .



90 B. Draščić Ban, T.K. Pogány

Then

(6)
∞
∑

m,n=1

ambn
(λm + ρn)µ

≤ C
µ,∆
p,q (λ, ρ) ‖a‖p‖b‖q ,

where

C
µ,∆
p,q (λ, ρ) =

q1/qp1/p

Γ(µ)

∫

∞

0

xµ+∆

(

∫

∞

λ1

e−qxt[λ−1(t)] dt

)1/q

(7)

×

(

∫

∞

ρ1

e−pxu[ρ−1(u)] du

)1/p

dx .

The equality in (6) appears for λ = ρ = I, p = q = 2 when

(8)
am

bn
= C δmn

(

m,n ∈ N
)

,

where C is an absolute constant and δmn denotes the Kronecker’s delta.

Proof. First, we transform the double series by means of the Gamma function
formula Γ(µ)A−µ =

∫

∞

0
xµ−1e−Ax dx. After splitting the kernel function into two

Dirichlet series, we evaluate these Dirichlet series by the Hölder inequality
with non–conjugated parameters p, q, min{p, q} > 1, p−1 + q−1 ≥ 1 [13, p. 57].
These transformations result in

∞
∑

m,n=1

ambn
(λm + ρn)µ

=
1

Γ(µ)

∫

∞

0

xµ−1

(

∞
∑

m=1
ame

−λmx

)(

∞
∑

n=1
bne

−ρnx

)

dx(9)

≤
‖a‖p‖b‖q

Γ(µ)

∫

∞

0

xµ−1

(

∞
∑

m=1
e−λmqx

)1/q (
∞
∑

n=1
e−ρnpx

)1/p

dx .

Now, the inner–most Dirichlet series

Dλ(x) =

∞
∑

m=1

e−λmqx, Dρ(x) =

∞
∑

n=1

e−ρnpx,

via (4) clearly become

Dλ(x) = xq

∫

∞

0

e−xqt

(

[λ−1(t)]
∑

j=1

1

)

dt = xq

∫

∞

0

e−xqt[λ−1(t)] dt,

that is

Dρ(x) = xp

∫

∞

0

e−xpu[ρ−1(u)] du .
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Collecting all these expressions the upper bound in (9) becomes

∞
∑

m,n=1

ambn
(λm + ρn)µ

≤
‖a‖p‖b‖q

Γ(µ)

∫

∞

0

xµ−1

(

qx

∫

∞

λ1

e−qxt[λ−1(t)] dt

)1/q

×

(

px

∫

∞

ρ1

e−pxu[ρ−1(u)] du

)1/p

dx

=
q1/qp1/p ‖a‖p‖b‖q

Γ(µ)

∫

∞

0

xµ+∆

(

∫

∞

λ1

e−qxt[λ−1(t)]dt

)1/q

×

(

∫

∞

ρ1

e−pxu[ρ−1(u)]du

)1/p

dx .

Finally, we discuss when equality holds in (6). Let us denote L,R the left, respec-
tively right side of (6). Then making use of am bn = C δmn when λ = ρ = I, p =
q = 2, we get

L =
∞
∑

m,n=1

am/bn · b 2
n

(m+ n)µ
=

∞
∑

m,n=1

C δmnb
2
n

(m+ n)µ
=

∞
∑

m,n=1

b 2
n

(2m)µ
=
ζ(µ)

2µ
‖b‖ 2

2 = R .

This completes the proof of the theorem. �

3. SPECIAL CASES

In this chapter we specify the parameters p, q and the functions λ, ρ getting
a set of corollaries of Theorem.

3.1. If we take λ(x) = Axq, ρ(x) = Bxp, their inverses are λ−1(x) = (x/A)1/q ,
ρ−1(x) = (x/B)1/p and the related constant becomes

C
µ,∆
p,q (Axq , Bxp) =

p1/pq1/q

Γ(µ)

∫

∞

0

xµ+∆

(
∫

∞

A

e−qtx

[(

t

A

)1/q ]

dt

)1/q

×

(
∫

∞

B

e−pux

[(

u

B

)1/p ]

du

)1/p

dx

=
(Aq)1/q(Bp)1/p

Γ(µ)

∫

∞

0

xµ+∆

(
∫

∞

A

e−qAtx[t1/q] dt

)1/q

×

(
∫

∞

B

e−pBux[u1/p]du

)1/p

dx.

The kernel K is obviously non–homogeneous for all p 6= q. So we have the following
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Corollary 1. Suppose p, q > 1, µ > 0, and a = (an)n∈N ∈ `p, b = (bn)n∈N ∈ `q
nonnegative sequences. Then

(10)

∞
∑

m,n=1

ambn
(Amq +Bnp)µ

≤ C
µ,∆
p,q (Axq , Bxp)‖a‖p‖b‖q

where the constant

C
µ,∆
p,q (Axq , Bxp) =

(Aq)1/q(Bp)1/p

Γ(µ)

∫

∞

0

xµ+∆

(
∫

∞

A

e−qAtx[t1/q] dt

)1/q

×

(
∫

∞

B

e−pBux[u1/p] du

)1/p

dx .

3.2. Furthermore, if we take λ = ρ = I the kernel is homogeneous. The inequality
becomes

∞
∑

m,n=1

ambn
(m+ n)µ

≤
‖a‖p‖b‖q

Γ(µ)

∫

∞

0

xµ−1

(

∞
∑

m=1
e−mqx

)1/q (
∞
∑

n=1
e−npx

)1/p

dx

=
‖a‖p‖b‖q

Γ(µ)

∫

∞

0

xµ−1

(eqx − 1)1/q(epx−1)1/p
dx .

Corollary 2. Suppose p, q > 1, µ > ∆+1 and let a = (an)n∈N ∈ `p, b = (bn)n∈N ∈
`q be nonnegative sequences. Then

(11)
∞
∑

m,n=1

ambn
(m+ n)µ

≤ C
µ,∆
p,q (I, I)‖a‖p‖b‖q

where

C
µ,∆
p,q (I, I) =

1

Γ(µ)

∫

∞

0

xµ−1

(eqx − 1)1/q(epx−1)1/p
dx .

3.3. When λ(x) = ρ(x) = x2, the kernel K(m2, n2) is homogeneous.

Corollary 3. Suppose p, q > 1, µ > ∆+1 and let a = (an)n∈N ∈ `p, b = (bn)n∈N ∈
`q be nonnegative sequences. Then

(12)

∞
∑

m,n=1

ambn
(m2 + n2)µ

≤ C
µ,∆
p,q (x2, x2)‖a‖p‖b‖q .

In this case

C
µ,∆
p,q (x2, x2) =

1

2∆+1Γ(µ)

∫

∞

0

xµ−1
(

ϑ3(0, e
−px) − 1

)1/p(
ϑ3(0, e

−qx) − 1
)1/q

dx .
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Here ϑ3(· , ·) stands for the Jacobi Theta function

ϑ3(u, q) = 1 + 2
∞
∑

n=1

qn2

cos(2nπu)
(

|q| < 1
)

.

Proof. By direct calculation we deduce

C
µ,∆
p,q (x2, x2) =

1

Γ(µ)

∫

∞

0

xµ−1

(

∞
∑

n=1
e−n2px

)1/p (
∞
∑

m=1
e−m2qx

)1/q

dx

=
1

Γ(µ)

∫

∞

0

xµ−1
(ϑ3(0, e

−px) − 1

2

)1/p(ϑ3(0, e
−qx) − 1

2

)1/q

dx

=
1

21/p+1/qΓ(µ)

∫

∞

0

xµ−1
(

ϑ3(0, e
−px) − 1

)1/p(
(ϑ3(0, e

−qx) − 1
)1/q

dx ,

which proves the desired statement. �

We point out that the case p = q = 2 (such that means a fortiori ∆ = 0),
results in reduced constant

(13) Cµ,0
2,2 (x2, x2) =

1

2Γ(µ)

∫

∞

0

xµ−1
(

ϑ3(0, e
−2x) − 1

)

dx =
ζ(2µ)

2µ

such that can be easily verified by the formula [6]
∫

∞

0

tα−1
(

ϑ3(0, e
−At) − 1

)

dt =
2Γ(α)

Aα
ζ(2α)

(

<{A} > 0, <{α} > 1/2
)

.

3.4. If we take λ ≡ ρ, p = q = 2, the homogeneity of the kernel depends on the
nature of λ(x). The constant reduces to

(14) C
µ,0
2,2 (λ, λ) =

2

Γ(µ)

∫

∞

0

xµ

(
∫

∞

λ1

e−2tx[λ−1(t)]dt

)

dx =
µ

2µ

∫

∞

λ1

[λ−1(t)]

tµ+1
dt .

Corollary 4. Suppose that µ > 0, a = (an)n∈N, b = (bn)n∈N ∈ `2 are nonnegative

sequences, and λ a positive and monotone function that satisfies (5). Then

(15)

∞
∑

m,n=1

ambn
(λm + λn)µ

≤ C
µ,0
2,2 (λ, λ)‖a‖2‖b‖2 .

Here C
µ,0
2,2 (λ, λ) is given by (14).

3.5. Finally, if we specify λ = ρ = I, p = q = 2, by Corollary 4. we get

Corollary 5. Suppose that µ > 1, and a = (an)n∈N, b = (bn)n∈N ∈ `2 be nonneg-

ative sequences. Then

(16)
∞
∑

m,n=1

ambn
(m+ n)µ

≤ 2−µ ζ(µ) ‖a‖2‖b‖2 .

Proof. This conclusion follows immediately by [18, p. 97, Corollary 6]. �
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4. HOW SHARP IS C
µ,∆
p,q (λ, ρ)?

It is of a great interest to find the best constant in non–conjugated para-
meter Hilbert type inequalities, generated by the Hölder inequality with the
non–conjugated parameters. Unfortunately, our approach does not solve this well–
known open problem.

I. Perić gave us the following remark: “Being µ > 1, p = q = 2, by means
of (1) the following straightforward estimates hold

(17)
∞
∑

m,n=1

ambn
(m+ n)µ

<
∞
∑

m,n=1

ambn
m+ n

≤ π‖a‖2‖b‖2 .

On the other hand

C1.1,0
2,2 (I, I) =

ζ(1.1)

21.1
≈ 4.937797 > π,

that is, (17) is sharper than (16)”. Obviously, Cµ,0
2,2 (I, I) decreases in µ. Let µ0 be

the unique root of

ζ(µ) = π 2µ .

Then, for all µ > µ0 the upper bound (16) is sharper then (17), while for µ ∈ [1, µ0),
the reverse result holds true. Let us mention that µ0 ≈ 1.156.

However, the used estimation method is not efficient for general non–conjuga-
ted p, q > 1 (discussed in 3.2. too). Indeed, we deduce

(18)

∞
∑

m,n=1

ambn
(m+ n)µ

<

∞
∑

m,n=1

ambn
m+ n

≤
π

sin(π/p)
‖a‖p‖b‖q .

Now, by the Bernoulli inequality we get

Cµ,∆
p,q (I, I) =

1

Γ(µ)

∫

∞

0

xµ−1e−2x
(

1 − e−px
)−1/p(

1 − e−qx
)−1/q

dx

≤
1

Γ(µ)

∫

∞

0

xµ−1e−2x
(

1 −
1

p
e−px

)(

1 −
1

q
e−qx

)

dx

=
1

2µ
−

1

p(2 + p)µ
−

1

q(2 + q)µ
+

1

pq(2 + p+ q)µ

<
1

2µ

(

1 +
1

2µ

)

<
π

sin(π/p)
.

Accordingly, (11) is superior to (1) for all µ > 1.
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5. FINAL REMARKS

1. According to the authors’ best knowledge, except (1), only (6) includes
non–weighted norms ‖a‖p, ‖b‖q in the literature. Moreover, applying different pa-
rameter Hölder inequalities in evaluating the Dirichlet series in (9), that is,
first p, q, p−1 + q−1 ≥ 1, then r, s, r−1 + s−1 ≥ 1 we can easily (but artificially)
generalize Theorem.

2. One of our main tasks was to express the upper bound upon H
a,b
K with non–

homogeneous K in terms of ‖a‖, ‖b‖. Transforming both Dirichlet series in (9)
in the manner:

∞
∑

n=1

ane
−λnx =

∞
∑

n=1

( an

φ(n)

)

·
(

φ(n)e−λnx
)

,

φ certain convenient function, we can proceed to apply the Hölder inequality to
the right–hand sum.

3. Taking in (6) an 7→ φ(an), bm 7→ ψ(bm), φ, ψ suitable functions, one gener-
alizes Theorem in another way.
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8. M. Krnić, J. Pečarić: General Hilbert’s and Hardy’s inequalities. Math. Ineq. Appl.,

8 (1) (2005), 29–51.
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