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ON THE DISTRIBUTION OF A LINEAR SEQUENCE

ASSOCIATED TO SUM OF DIVISORS EVALUATED AT

POLYNOMIAL ARGUMENTS

Mehdi Hassani

Following the recent method of Deshouillers and the author in the theory

of distribution modulo 1, we show that the sequence with general term bn =∑

m≤n

(m2 + 1)/σ(m2 + 1) is dense modulo 1.

1. INTRODUCTION

In 2010, J-M. Deshouillers and the author [2] introduced a method to

prove density modulo 1 of the sequence
(∑

m≤n

ϕ(m2 + 1)

m2 + 1

)

n≥1
, where ϕ is the Euler

function. We recall that a sequence of real numbers (an)n≥1 is said to be dense
modulo 1 if the sequence of its fractional parts ({an})n≥1 is dense in the interval
[0, 1). In this paper we study similar sequence defined over

sm =
m2 + 1

σ(m2 + 1)
,

where σ(m) =
∑

d|m

d is the sum of positive divisors of m. More precisely, we show

the following result.

Theorem 1.1. The sequence (bn)n≥1 with general term defined by bn =
∑

m≤n

sm is

dense modulo 1.
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In comparison with the case of Euler function, we note that the function
ϕ(n)

n
is strongly multiplicative (i.e., its values on the powers of the prime factor p of n

depends only on p). But, the function
n

σ(n)
is not strongly multiplicative.

2. SOME LEMMAS

To prove the theorem above we recall some lemmas. The working engine of
the present paper is the following sieve result which is Proposition 2.1 in [2].

Lemma 2.2. Assume that M is a sufficiently large integer. Let {Pm}1≤m≤M be a

family of finite and disjoint sets of primes p with p ≡ 1 (mod 4) and p > M2 + 1,

and put Pm =
∏

p∈Pm

p. Then there exist infinitely many integers n such that for

every integer m = 1, 2, . . . ,M the integer (n+m)2 + 1 is divisible by (m2 + 1)Pm,

and its prime factors that do not divide (m2 + 1)Pm are larger than n
1

6M .

In order to make the lemma applicable to our method we need an appropriate
family {Pm}1≤m≤M of primes which fulfills a certain containment property. For the
construction of this family we in turn require the following lemma and its corollary.

Lemma 2.3. Assume that (an)n≥1 is a sequence of positive real numbers converging

to 0 and that
∞∑

n=1

an = ∞. Then the set of numbers
∑

n∈F

an, where F runs over all

finite subsets of N, is dense in the positive real numbers.

Proof. Let α be a positive real number. We construct a sequence (Fk)k≥1 of

finite subsets of N with lim
k→∞

∑

n∈Fk

an = α. Let s1 ≥ 1 be such that as1 < α and

let t1 ≥ s1 be maximal such that
t1∑

n=s1

an < α. Put F1 = {s1, . . . , t1}. Assume that

finite subsets F1 ⊆ · · · ⊆ Fk−1 ⊆ N are already defined such that
∑

n∈Fk−1

an < α.

There exists an index sk > tk−1 such that ask < α −
∑

n∈Fk−1

an. Choose tk ≥ sk

maximal such that
tk∑

n=sk

an < α−
∑

n∈Fk−1

an and put Fk = Fk−1 ∪ {sk, . . . , tk}. Note

that
∑

n∈Fk

an < α ≤
∑

n∈Fk

an + atk+1, that is 0 < α−
∑

n∈Fk

an ≤ atk+1. As this tends

to 0 with k →∞ we get the assertion of the Lemma.

Corollary 2.4. For N ≥ 1 let PN be the set of primes p ≡ 1 (mod 4) with p ≥ N.

Then, the set of numbers
∏

p∈F

(

1 −
1

p

)

where F runs over all finite subsets of PN ,

is dense modulo 1.
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Proof. It is enough to prove that the set of numbers −
∑

p∈F

log
(

1 −
1

p

)

where F

runs over all finite subsets of PN , is dense in the positive real numbers. This follows
from the facts

−
∑

p∈PN

log

(

1−
1

p

)

= +∞, and lim
p→∞
p∈PN

log

(

1−
1

p

)

= 0,

and from Lemma 2.3.

Also, we need some sharp bounds for the function σ(n). It is known [3] that
for n ≥ 7 we have σ(n) < 2.59n log log n. By an easy computation we can modify
this bound for our purpose as below.

Lemma 2.5. For n ≥ 2 we have n < σ(n) < 2.6n log log(n+ 4).

Lemma 2.6. Assume that A is any non-empty subset of prime numbers p with the

property p > N ≥ 1. Then, we have

1 <
∏

p∈A

(

1 +
1

p2 − 1

)

< 1 +
2

N
.

Proof. Since for x > 0 we have log(1 + x) < x, we imply

0 < log
∏

p∈A

(

1 +
1

p2 − 1

)

=
∑

p∈A

log

(

1 +
1

p2 − 1

)

<
∑

p∈A

1

p2 − 1
<

∞
∑

n=N+1

1

n2 − 1
=

2N + 1

2N(N + 1)
<

1

N
.

Also, we note that ex < 1+2x is valid for 0 < x ≤ 1. This completes the proof.

We need all the results above to obtain the following key lemma. It is a
starting point of the proof of Theorem 1.1. We denote by P the set of primes p ≡ 1
(mod 4).

Lemma 2.7. Let δ > 0 be sufficiently small and put M =
⌊

1

δ

⌋

+1. Then there exists

a family {Pm}1≤m≤M of pairwise disjoint finite sets of primes p ≡ 1 (mod 4), all
of which are > M2 + 1 such that for 1 ≤ m ≤M

(2.1)
Pm

σ(Pm)
∈

(

5δ

4sm
,
7δ

4sm

)

.

Proof. Note that
4

2.6 log log(M2 + 1)
> 7δ, and that

2

M2 + 1
<

δ

8
, for δ sufficiently

small. By Lemma 2.5, for 1 ≤ m ≤M we have

4sm >
4

2.6 log log(m2 + 5)
≥

4

2.6 log log(M2 + 1)
> 7δ,
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and therefore
(

5δ

4sm
,

7δ

4sm

)

⊆ (0, 1). By Corollary 2.4, there is a finite set P1 ⊆ P of

primes all of which are strictly larger than M2 + 1 with
∣

∣

∣

∣

∏

p∈P1

(

1−
1

p

)

−
3δ

2s1

∣

∣

∣

∣

<
1

8s1
.

Assume that the finite pairwise disjoint sets P1, . . . ,Pm ⊆ P of primes are already
chosen, andm < M. By Corollary 2.4, there is a finite set Pm+1 ⊆ P−(P1∪· · ·∪Pm)
of primes all of which are strictly larger than M2 + 1 such that

∣

∣

∣

∣

∏

p∈Pm+1

(

1−
1

p

)

−
3δ

2sm+1

∣

∣

∣

∣

<
1

8sm+1
.

For 1 ≤ m ≤M we have, say

Pm

σ(Pm)
=

∏

p∈Pm

p

p+ 1
=

∏

p∈Pm

(

1−
1

p
+

1

p(p+ 1)

)

=
∏

p∈Pm

(

1−
1

p

)

∏

p∈Pm

(

1 +
1

p2 − 1

)

= c(Pm)
∏

p∈Pm

(

1−
1

p

)

.

Note that, by Lemma 2.6, c(Pm) ∈
(

1, 1 +
2

M2 + 1

)

is a constant depending on

Pm. Recall that Pm =
∏

p∈Pm

p. Thus, for 1 ≤ m ≤M we obtain

∣

∣

∣

∣

Pm

σ(Pm)
−

3δ

2sm

∣

∣

∣

∣

=

∣

∣

∣

∣

c(Pm)
∏

p∈Pm

(

1−
1

p

)

−
3δ

2sm

∣

∣

∣

∣

≤

∣

∣

∣

∣

∏

p∈Pm

(

1−
1

p

)

−
3δ

2sm

∣

∣

∣

∣

+
2

M2 + 1
≤

δ

8sm
+

δ

8
≤

δ

4sm
.

This gives validity of the containment (2.1).

3. PROOF OF THEOREM 1.1

We take δ > 0 to be a small positive number, and choose M =
⌊

1

δ

⌋

+ 1. For

δ sufficiently small we apply Lemma 2.7 to end up with a family {Pm}1≤m≤M . By
Lemma 2.2 there is an infinite set N of positive integers n such that for n ∈ N and
1 ≤ m ≤M we get (m2+1)Pm|(n+m)2+1 and for all primes p with p|(n+m)2+1,
p ∤ (m2 + 1)Pm we have p > n1/6M . Hence

∏

p|(n+m)2+1

p∤(m2+1)Pm

(

1−
1

p

)

=
(

1 +O
(

n−1/6M
)

)ω((n+m)2+1)−ω((m2+1)Pm)

,
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where ω(n) =
∑

p|n

1. Remember that ω(n)≪
log n

log log n
. Thus, we obtain

ω((n+m)2 + 1)≪
log(n+m)

log log(n+m)
≤

log(n+M)

log log n
, (as n→∞).

We put fα(p) =
pα

σ(pα)
= 1 −

1

p
+ O(p−2), where the O-constant does not depend

on α. For n ∈ N, n→∞ we conclude

∏

p|(n+m)2+1

p∤(m2+1)Pm

(

1−
1

p

)

= 1 +O

(

log(n+m)

n1/6M log log n

)

= 1 + o(1).

For every prime divisor p of (n+m)2+1 let αp be maximal such that pαp |(n+m)2+1.
We get

(3.2)
∏

p|(n+m)2+1

p∤(m2+1)Pm

fαp
(p) = 1 + o(1), (for n ∈ N,n→∞).

Remember that (m2 + 1)Pm|(n+m)2 + 1. gcd
(

(m2 + 1), Pm

)

= 1 implies

∏

p|(m2+1)Pm

fαp
(p) =

m2 + 1

σ(m2 + 1)

Pm

σ(Pm)
= sm

Pm

σ(Pm)
.

This results in

sn+m =
∏

p|(n+m)2+1

fαp
(p)

=
∏

p|(m2+1)Pm

fαp
(p)

∏

p|(n+m)2+1

p∤(m2+1)Pm

fαp
(p) = sm

Pm

σ(Pm)
(1 + o(1)) ∈

(

δ,
9

5
δ

)

for 1 ≤ m ≤ M and n ∈ N, n large enough. We obtain 1 ≤ Mδ ≤
M∑

m=1

sn+m <

9

5
Mδ ≤

9

5
(δ + 1) <

9

5
+ 2δ < 2. Remember that bn =

n∑

k=1

k2 + 1

σ(k2 + 1)
. Hence bn+M −

bn =
M∑

m=1

sn+m. We get 1 ≤ bn+M − bn < 2. Therefore we have ⌊bn⌋+ 1 < bn+M <

⌊bn⌋+ 3. We distinguish two cases:

Case 1. Assume that ⌊bn⌋ + 2 ≤ bn+M . Then we take u such that bn+u <

⌊bn⌋ + 1 ≤ bn+u+1, and v such that bn+v < ⌊bn⌋ + 2 ≤ bn+v+1. So, we have
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⌊bn⌋+1 ≤ bn+u+1 < · · · < bn+v < ⌊bn⌋+2. By reducing all terms bn+u+1, . . . , bn+v

modulo 1, we obtain 0 ≤ {bn+u+1} < · · · < {bn+v} < 1, with

max

{

{bn+u+1}, 1− {bn+v}, max
u+2≤m≤v

({bn+m} − {bn+m−1})

}

< 2δ.

This implies that for each subinterval I of [0, 1] with length larger than 2δ there
exist i ∈ {u+ 1, . . . , v} such that {bn+i} ∈ I.

Case 2. Assume that bn+M < ⌊bn⌋ + 2. We set u such that bn+u < ⌊bn⌋ +
1 ≤ bn+u+1. Also, we let v such that bn+v < bn + 1. This is possible, because
bn+M − bn > 1. If we reduce all terms bn, . . . , bn+v modulo 1, then we obtain

0 ≤ {bn+u+1} < · · · < {bn+v} < {bn} < · · · < {bn+u} < 1,

with max {{bn+u+1}, 1− {bn+u}, ({bn} − {bn+v})} < 2δ, and also

max

{

max
u+2≤m≤v

({bn+m} − {bn+m−1}) , max
1≤m≤u

({bn+m} − {bn+m−1})

}

< 2δ.

Again, we imply that for each subinterval I of [0, 1] with length larger than 2δ there
exists i ∈ {0, . . . , v} such that {bn+i} ∈ I.

In both of above cases, since δ > 0 was arbitrary small, we get our desired
density result.

4. SOME OBSERVATIONS ON THE DISTRIBUTION OF THE

VALUES OF bn

Let us study the distribution of the sequence bn modulo 1. In Figure 1 we
have pictured the pointset (n, {bn}) for 1 ≤ n ≤ 1000. It strikes us that there is
some pattern cognoscible. Our first question refers to the mathematical background
of this pattern.
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Figure 1. Graph of the pointset (n, {bn}) for 1 ≤ n ≤ 1000



112 Mehdi Hassani

It may very well be that the sequence bn is not only dense but even uniformly
distributed modulo 1. This means that for every subinterval [a, b] of I = [0, 1]

lim
N→∞

1

N
#
{

n ≤ N : {bn} ∈ [a, b]
}

= b− a.

The following criterion of Weyl [4] allows us to characterizes uniform distribution
modulo 1 of a given sequence.

Theorem 3.8 (Weyl criterion - 1914). The sequence {an}
∞
n=1 is uniformly dis-

tributed modulo 1 if and only if, for every positive integer h we have

∑

n≤N

e(han) = o(N),

as N tends to infinity. Here e(x) = e2πix.

In 1981, F. Dekking and M. Mendès France [1] introduced the idea of

making visible the Weyl sums
∑

n≤N

e(han) for a given real sequence an and given

positive integer h. Indeed, for given h,N ∈ N they draw in R2 a plane curve
generated by successively connected lines segment, which joint the point Vn to
Vn+1 with

Vn =

(

n
∑

k=1

cos(2πhak),

n
∑

k=1

sin(2πhak)

)

,

for 1 ≤ n ≤ N.
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Figure 2. Graph of Weyl sums
∑

n≤1000

e(bn) and
∑

n≤5000

e(bn), respectively left and right

Note that the length of each line segment is 1. Thus, if 1 ≤ n ≤ N, then the
frame that includes the Dekking - Mendès France curve has the size not exceeding
N × N, and geometrically, the Weyl criterion asserts that the related sequence
is uniformly distributed modulo 1 if and only if height and width of the frame
= o(N) as N tends to infinity. Figure 2 shows the Dekking - Mendès France curve
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of the Weyl sums
∑

n≤1000

e(bn) and
∑

n≤5000

e(bn). By considering very small frames we

conjecture that the sequence is uniformly distributed modulo 1.
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