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1 Abstract—In this paper, based on Kernel Principal 

Component Analysis (KPCA) of Phasor Measurement Units 
(PMU) data, a nonlinear method is proposed for fault location 
in complex power systems. Resorting to the scaling factor, the 
derivative for a polynomial kernel is obtained. Then, the 
contribution of each variable to the T2 statistic is derived to 
determine whether a bus is the fault component. Compared to 
the previous Principal Component Analysis (PCA) based 
methods, the novel version can combat the characteristic of 
strong nonlinearity, and provide the precise identification of 
fault location. Computer simulations are conducted to 
demonstrate the improved performance in recognizing the 
fault component and evaluating its propagation across the 
system based on the proposed method. 
 

Index Terms—power systems, fault location, phasor 
measurement units, kernel, principal component analysis. 

I. INTRODUCTION 

According to the trend of global energy internet, 
renewable energy has been introduced and widely adopted 
with high efficiency and large quantities in the world [1]. 
System structures and operation modes of power systems 
are increasingly complex [2]. Meanwhile, with the rapid 
development of industrialization and growth of population, 
electric energy demand has rapidly increased to make the 
system reach to its limits, thereby the sensitivity to faults in 
power systems is required urgently [3-4]. The blackout in 
North East American on the 14th August 2003 where 63 
GW of load was interrupted, 531 generators were removed, 
and about $7 billion were lost, which indicates that low 
speed of abnormal data acquisition and failure of fault 
location technology are the main reasons to cause a large 
scope and long time blackout [5]. 

To cope with the above problems, many countries have 
put emphasis on the development of the Wide Area 
Monitoring System (WAMS) which consists of a network of 
PMUs including GPS-synchronized technology [6-9]. PMUs 
can offer all kinds of electrical information at the rate of 30 
or 60 samples per second. These intelligent systems make 
wide-area online monitoring of the operational status of 
power systems possible and have potential to greatly 
enhance wide-area visibility [10]. While PMUs offer 
massive data to describe operational status, how to reduce 
dimension and extract useful information efficiently 
becomes a major challenge.  

Multivariate statistical techniques with the ability of 
dimension reduction are introduced in power systems to 

estimate fault location [11-13], detect islanding [14] and 
event at an early stage [15], and identify system coherence 
[16]. In 2013, Barocio proposed a multivariate statistical 
projection method based on PCA with both the T
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2 statistic 
and the Q statistic to estimate security operating margin and 
detect system disturbances [13]. However, the parameter 
causing fault can’t be identified precisely which is one of 
the problems by PCA-based fault localization [17] .  

Consider nonlinearity arising in complex power systems, 
nonlinear methods should be proposed [15]. In 2016, with 
the large online synchrophasor data, Liu proposed an 
adaptive nonlinear approach which was applied to detect 
islanding [14]. Unfortunately, it can’t provide the useful 
information of fault location for operators to prevent 
overspreading of event. In this paper, considering the 
fundamental nonlinearity arising in power systems, we 
firstly derive the expression of the derivative of polynomial 
kernel. Then the contribution of each PMU to T2 statistic is 
defined. Finally, a novel nonlinear method is proposed for 
fault location in power systems one compared PCA method 
which can recognize fault component and evaluate its 
propagation across the system without knowledge of the 
system model/topology. 

The rest of the paper is organized as follows: Section 2 
introduces the principles of kernel principal component. 
Section 3 proposes a novel fault location algorithm with 
PMU data in complex power systems based on the KPCA 
model. In section 4, the simulated voltage event case 
demonstrates the effectiveness of proposed algorithm. 
Section 5 presents the conclusion of the whole paper. 

II. BASIC KERNEL PRINCIPAL COMPONENT ANALYSIS 

(KPCA) ALGORITHM  

In this paper, using KPCA maps PMU data from original 
space to feature space, we can extract the main information 
with minimum loss of nonlinear data. 

Given a set of centered PMUs data P NR Y
N

, wherein 

 presents the number of PMUs and are samples: P
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KPCA maps the observations into feature space with a 

possibly nonlinear map : P FR R   y z . One can 

get the covariance matrix, 

       37
1582-7445 © 2017 AECE

Digital Object Identifier 10.4316/AECE.2017.04005

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:09:47 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 17, Number 4, 2017 

1 1

1
( ( ) ( )) ( ( ) ( ))

N N
T

i i
i i

E E
N

   
 

   S y Y y Y (2)                       

where
1

1
( ) ( )

N

i
i

E
N




 Y  y represents the sample mean 

and T  denotes transpose. 
The eigenvalues and eigenvectors of S are calculated as 

follows: 

1

1

1
( ) ( )

1
( ( ) ) ( )

N
T

i i
i

N
T

i i
i

N

N



 

 















V SV

y y V

y V y

            (3) 

In (3), all eigenvectors V corresponding eigenvalues are 

orthogonal and ( ) ( ) ( ), 1, ,i i E i N     Y

N

y y .  

Besides we can get a useful consequence by [18] that 

existing coefficients , 1, ,i i   can show the linear 

combination between the eigenvectors V and the feature 

space data 1( ), , ( )N y y : 

1

( )
N

j j
j

 


V y                           (4) 

Combining (3) and (4),  
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and left multiplying ( ), 1, ,n n N y  to both sides of 

(5), we can get 
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where is the inner-product.  
Actually, the F can be infinite so that it is infeasible to 

compute ( )i y  directly. We can define a kernel function 

 that just depends on the inner-product of feature space 
data [19], 
k

,( ) ( ) (i j i jk )    y y y y                    (7) 

where k used in this paper is polynomial kernel, 

,( ) ( d
i j i jk     y y y y )c                     (8) 

in which is the order of polynomial, and d 0c  or 

respectively represents homogeneous kernels and 
nonhomogeneous kernels.  

1c 

The centered kernel matrix K can be computed as 
follows: 

   K K Kln lnK lnKln   (9)  

where  

and

1 1( ( ), , ( )) ( ( ), , ( ))T
N N   K y y y y 

1/ , , 1, ,N iij j N  ln . 

Substituting (9) into (6), we can obtain  

1
1, ,i i i i i iN i N

N
     KKβ Kβ Kβ β  (10) 

 So the eigenvalue decomposition of covariance matrix S  
is transformed into the eigenvalue decomposition of kernel 

matrix K . Subsequently, the eigenvectors  can 

be normalized by the following equation, more details being 
given in [20]: 
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where is the number of PCs obtained by cumulative 

percent variance. 

k

,j i is defined as the jth element of the ith 

eigenvalue of K . 

III. ON-LINE MONITORING IN POWER SYSTEMS BASED ON 

KERNEL PRINCIPAL COMPONENT ANALYSIS  

In this section, we propose such an event localization 
algorithm with the following features: 1) it is a nonlinear 
analysis version; 2) it can provide the accurate localization 
information of the fault bus. 

For the purpose of fault location, both the T2 statistic and 
the Q statistic are firstly used to identify the normal or 
unusual operating situation under the PMUs synchrophasor 
data. Secondly, based on the derivative of a polynomial 
kernel, getting the contribution of each variable to the T2 
statistic, we can achieve an accurate localization result and 
evaluate dynamic behavior of fault.  

A. Detection of System Disturbances 

On the basis of the (1), (9), (11), (12), we use the test data 
P

test Ry  to calculate  and  statistics at current 

by  

2
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2 1 T
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and 1( , , )kdiag     . is the number of nonzero 

eigenvalues. Subsequently, and are compared to 

the given threshold [18] when one of the statistics is above it 
to present occurring of event.  

d
2

newT newQ

B. Estimation of Fault Localization based on Contributions 
Plots 

1) Calculating the derivative of kernel function 
Kernel used in this paper is a polynomial kernel. Similar 
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to [21], introducing a scaling factor v  to the kernel 
function: 
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where is the componentwise vector product.  ( )
Consequently, one obtains the following derivative for a 

polynomial kernel by 
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2) Obtaining the contribution of the 2
newT  statistic 

The partial derivative of a function for a particular 
variable can represent the importance of the corresponding 
variable for the function [22]. Using the individual 
contribution defined in [23], we can estimate the influence 

of each PMU to  statistic denoted as follows: 2
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where .  1( , , )k μ β β

We respectively calculate kernel matrix testK of the test 

data and the partial derivative test
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where 11 / [1, ,1] NN R  L  .  
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Besides, it is essential to derive the partial derivative of 
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Substituting (21) into (17), the contribution of the 

i

2
,new iT

C

th PMU to  statistic is obtained. If a PMU has a 

maximum value of contribution , the corresponding 

bus is the source of event. The proposed algorithm for fault 
localization is summarized in Table I. 

2
newT

2
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C

 
TABLE I. THE STEP OF FAULT LOCALIZATION ALGORITHM BASED ON 

KERNEL PRINCIPAL COMPONENT ANALYSIS 
Once the fault is detected, the proposed algorithm is executed. 
1: Use  (16) to calculate the derivative for a polynomial kernel; 
2: According to the derivative, the training matrix Y, the test 

vector testy , and (21), the each element of 
T

test test
iv




K K can be got, 

where ; 1, ,i P
3: Substituting the leading eigenvalues 1( , , )kdiag     , the 

corresponding eigenvectors , and 1, , kβ β T
test test

iv




K K  into (17), 

we can successively obtain ; 2 2
,newT T,1

, ,
new

C C
p

4: Selecting the most value of ,the corresponding 

bus is the fault component. 

2
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IV.  EVALUATION USING SIMULATED CASES 

In this section, we use an illustrative example to identify 
the efficacy of fault location of the proposed algorithm, and 
compare its performance with the PCA based method in 
[13]. A 9-bus 3-generator model is used to generate 

synchrophasor data shown in Fig. 1, where a PMU is placed 
at each bus and the sampling rate is 50Hz. The significance 
level of two statistics T2 and Q is set to 0.01. In order to 
mimic the industry-grade PMUs, noise is added to this 
simulated data so that the signal-to-noise(SNR) is 92dB [15].

 
Figure 1. Electric diagram of IEEE 9-bus system 

 

Fig. 3 and Fig. 4 show both the statistic and the 

 statistic for detection of single-phase to ground fault 

based on the PCA model in [13] . Fig. 5 and Fig. 6 show 

both the statistic and the  statistic for detection of 

single-phase to ground fault based on the KPCA model. It is 
clear that KPCA has fewer false alarms than PCA. Besides, 
two operating conditions can be identified that the first 20 
seconds of the simulation are normal operating region and 
the last 20 seconds are the fault. However, the above two 
ways can fail to identify the new stable operating conditions 
after fault because the models and corresponding thresholds 
are not adaptive. 

2
newT
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2
newT newQ

As Fig. 2 displays, a single-phase to ground fault is 
applied at bus 6 cleared in 200ms by opening the line 
between buses 6 and 4. We assume the training matrix 
is 9 1000R Y collected from normal operating conditions 

and the simulated time changes from 120s to 160s. 
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Figure 2. Voltage variation indicating a single-phase to ground fault 
 

120 124 128 132 136 140 144 148 152 156 160
10

-2

10
0

10
2

10
4

10
6

10
8

10
10

Time(sec)

T ne
w

2

PCA

 

 

99%

 

Figure 4. The Q statistic for detection of the single-phase to ground fault 
based on the PCA model in [13] 

 

When a fault is occurring in the system, the proposed 
algorithm can be operated to estimate the source. Comparing 
the Fig. 7 with Fig. 8, it can be effectively proved that the 
proposed algorithm in this paper can offer more accurate 
result of fault location than [13]. Figure 3. The T  statistic for detection of the single-phase to ground fault 

based on the PCA model in [13] 

2

Fig. 7 shows that the 6th, 9th buses are mainly responsible 
for event occurrence. As previously noted, the PCA  
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approach proposed by [13] can not obtain a precise result for 
fault parameter. 
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Figure 5. The T  statistic for detection of the single-phase to ground fault 
based on the KPCA model 

2

 

Unlike Fig. 7, Fig. 8 shows the 6th bus is mainly 
responsible for event occurrence and it is the biggest one to 
represent the event source. As previously noted, the 
proposed algorithm can exact veracious achieve the goal of 
event location. Furthermore, the results of two algorithms 
are summarized clearly in Table II.  
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Figure 6. The Q statistic for detection of the single-phase to ground fault 
based on the KPCA model 

 

To improve the visualization of event evolution, Fig. 9 
shows the contribution map during the first 20 seconds after 
the fault is cleared. It shows that buses 3, 6, 8, 9, present the 

highest contributions, followed by PMUs located at buses 1, 
2, 4, 5, 7. The results suggest intense dynamic participation 
of the generators from different areas of the system and 
confirm that the fault is spreading across the system. 

 

TABLE II. THE SUMMARY OF LOCATION RESULT 
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Figure 7. Contribution plot to the T  statistic for location of the single-phase 
to ground fault based on the PCA model at fault inception point 
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Figure 8. Contribution plot to the T  statistic for location of the single-phase 
to ground fault based on the KPCA model at fault inception point 
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Figure 9. Contribution map visualization to T  statistic for location of the single-phase to ground fault based on the KPCA model 2
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V. CONCLUSIONS 

In this paper, a nonlinear method for fault location in 
power systems is proposed. Based on KPCA, the nonlinear 
analysis of wide-area synchronized PMUs data is realized. 
According to the derived contribution of each variable to T2 
statistic under a polynomial kernel, the novel version can 
offer a good estimation about the fault location and 
propagation across the power systems. Comparative analysis 
between the proposed algorithm and PCA based methods 
reveal that the former has superior reliability to identify fault 
source and evaluate system behaviour. 

In the future, the research includes the following aspects: 
1) more robust algorithm will be developed to reveal the 
effect of characteristic of time-varying of power systems 
and detect equilibrium point adaptively to reduce the false 
alarm. 2) It is meaningful to use more realistic data to verify 
the performance of the proposed algorithm. 
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