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ON THE COEFFICIENTS OF AN ASYMPTOTIC

EXPANSION RELATED TO SOMOS’ QUADRATIC

RECURRENCE CONSTANT

Gergő Nemes

In this paper we study the coefficients of an asymptotic expansion related

to Somos’ Quadratic Recurrence Constant. We develop recurrence relations

and an asymptotic estimation for them. We also show that these coefficients

are related to the Ordered Bell Numbers.

1. INTRODUCTION

Somos’ Quadratic Recurrence Constant, named after M. Somos [2, p. 446]
[5], is the number

σ =

√

1

√

2

√

3
√
4 · · · = 1.6616879496 . . .

The constant σ arose when he had examined the asymptotic behavior of the se-
quence

(1) g0 = 1, gn = ng 2

n−1
, n ≥ 1,

with first few terms 1, 1, 2, 12, 576, 1658880, . . . Somos showed that gn has an
asymptotic series as follows:

(2)
σ2

n

ngn
∼ a0 +

a1

n
+

a2

n2
+

a3

n3
+

a4

n4
+ · · · , n → +∞,
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where the first few coefficients ak are 1, 2,−1, 4,−21, 138, . . . (this is sequence
A116603 in the On-line Encyclopedia of Integer Sequences). From (1) it can be
shown that the generating function

A(x) =
∑

k≥0

akx
k

satisfies the functional equation

(3) A2(x) = (1 + x)2 A

(

x

1 + x

)

.

J. Sondow and P. Hadjicostas [6] showed that for x ≥ 0

(4) A(x) =
∏

k≥1

(1 + kx)
1/2k

.

The purpose of this paper is to develop recurrence relations and an asymptotic
approximation for the ak’s.

2. MAIN RESULTS

Our first theorem gives a recurrence relation for the coefficients ak in the
asymptotic expansion (2).

Theorem 1. The coefficients ak satisfy the recurrence relation for k ≥ 3.

a0 = 1, a1 = 2, a2 = −1, ak =

k−1
∑

j=1

(

(−1)
k−j

(

k − 3

k − j

)

aj − ak−jaj

)

.

In the second theorem we show that the generating function A (x) can be
expressed in terms of the Ordered Bell Numbers [7, p. 189], i.e., the number of
ordered partitions of the set {1, . . . , n} . The Ordered Bell Numbers bk have the
following exponential generating function

1

2− ex
=
∑

k≥0

bk

k!
xk .

They are given explicitly by the formula

bk =
∑

j≥0

jk

2j+1
.

From (4) we will prove
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Theorem 2. The generating function of the coefficients ak has the following rep-
resentation

(5) A(x) = exp

(

∑

k≥1

(−1)k−1 2bk
k

xk

)

.

Note that this is only a formal expression due to the rapid growth of the bk’s
(see (10)). As a corollary we represent the generating function of the Ordered Bell
Numbers in terms of the logarithmic derivative of A (x) .

Corollary 1. The generating function B(x) of the Ordered Bell Numbers is given
by

B(x) = 1 +
x

2

A′ (−x)

A (−x)
=
∑

k≥0

bkx
k .

Theorem 2 allows us to obtain a recurrence relation for the coefficients ak
using the Ordered Bell Numbers.

Theorem 3. For every k ≥ 1 we have

(6) a0 = 1, ak =
1

k

k
∑

j=1

(−1)
j−1

2bjak−j .

Finally, from a theorem of E. A. Bender [1, Theorem 2] (quoted in [4,
Theorem 7.3]), we give an asymptotic estimation for the ak’s.

Theorem 4. We have the following asymptotic approximation

(7) ak = (−1)
k−1 (k − 1)!

logk+1 2

(

1 +O

(

1

k

))

as k → +∞.

The table below shows the exact and the approximate values (rounded to the
nearest integer) given by (7) of the coefficients ak for some k. Relative errors are
displayed as well.

k Exact Approximation Relative error

1 2 2 0.00
2 −1 −3 2.00
5 138 216 0.57
10 −17070418 −20449513 0.20
15 27552372478592 30704425463714 0.11
20 −247772400254700937149 −267768779624438420309 0.08

Table 1. The exact and the estimated values of the coefficients ak for some values of k.
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3. THE PROOFS OF THE THEOREMS

Proof of Theorem 1. A formal manipulation gives

A

(

x

1 + x

)

=
∑

k≥0

ak

(

x

1 + x

)k

=
∑

k≥0

akx
k
∑

j≥0

(

−k

j

)

xj

=
∑

k≥0

(

k
∑

j=0

(

−j

k − j

)

aj

)

xk =
∑

k≥0

(

k
∑

j=0

(−1)k−j

(

k − 1

k − j

)

aj

)

xk.

Let

Ak,j := (−1)k−j

(

k − 1

k − j

)

aj ,

then we find

(1 + x)
2
A

(

x

1 + x

)

− a0 − (2a0 + a1)x =

=
∑

k≥2

(

k
∑

j=0

Ak,j + 2
k−1
∑

j=0

Ak−1,j +
k−2
∑

j=0

Ak−2,j

)

xk

=
∑

k≥2

(

ak − (k − 3) ak−1 +

k−2
∑

j=0

(Ak,j + 2Ak−1,j +Ak−2,j)

)

xk

=
∑

k≥2

(

ak − (k − 3) ak−1 +

k−2
∑

j=0

(−1)
k−j

(

k − 3

k − j

)

aj

)

xk

=
∑

k≥2

(

k
∑

j=0

(−1)
k−j

(

k − 3

k − j

)

aj

)

xk.

Hence

(8) (1 + x)
2
A

(

x

1 + x

)

=
∑

k≥0

(

k
∑

j=0

(−1)
k−j

(

k − 3

k − j

)

aj

)

xk.

On the other hand we have

(9) A2(x) =

(

∑

k≥0

akx
k

)2

=
∑

k≥0

(

k
∑

j=0

ak−jaj

)

xk.

Thus from (8) and (9) by (3) it follows that

k
∑

j=0

ak−jaj =
k
∑

j=0

(−1)k−j

(

k − 3

k − j

)

aj ,
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and hence

ak =

k−1
∑

j=1

(

(−1)
k−j

(

k − 3

k − j

)

aj − ak−jaj

)

,

for k ≥ 3.

Proof of Theorem 2. Simple formal manipulation gives

logA(x) = log

(

∏

j≥1

(1 + jx)
1/2j

)

=
∑

j≥1

1

2j
log (1 + jx)

=
∑

j≥1

1

2j

∑

k≥1

(−1)
k−1

jk

k
xk =

∑

k≥1

(

∑

j≥1

jk

2j+1

)

(−1)
k−1

2

k
xk

=
∑

k≥1

(−1)
k−1

2bk
k

xk. �

Proof of Corollary 1. From (5) we find

1 +
x

2

A′ (−x)

A (−x)
= 1 +

x

2

∑

k≥1

(−1)
k−1

2bk
k

k (−x)
k−1

= 1 +
∑

k≥1

bkx
k =

∑

k≥0

bkx
k. �

Proof of Theorem 3. From (5) we have

exp

(

∑

k≥1

(−1)k−1 2bk
k

xk

)

=
∑

k≥0

akx
k.

By differentiating each side with respect to x, we obtain
(

∑

k≥1

(−1)
k−1

2bkx
k−1

)

exp

(

∑

k≥1

(−1)
k−1

2bk
k

xk

)

=
∑

k≥0

kakx
k−1,

(

∑

k≥0

(−1)
k
2bk+1x

k

)(

∑

k≥0

akx
k

)

=
∑

k≥0

(k + 1) ak+1x
k,

∑

k≥0

(

k
∑

j=0

(−1)
j
2bj+1ak−j

)

xk =
∑

k≥0

(k + 1) ak+1x
k .

Equating the coefficients in both sides gives (6). �

Theorem 5 (E. A. Bender). Suppose that

α (x) =
∑

k≥1

αkx
k, F (x, y) =

∑

h,k≥0

fhkx
hyk,

β (x) =
∑

k≥0

βkx
k = F (x, α (x)) , D(x) =

∑

k≥0

δkx
k =

∂F (x, y)

∂y

∣

∣

∣

∣

y=α(x)

.
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Assume that F (x, y) is analytic in x and y in a neighborhood of (0, 0) , αk 6= 0 and

1. αk−1 = o (αk) as k → +∞,

2.

k−r
∑

j=r

|αjαk−j | = O(αk−r) for some r > 0 as k → +∞.

Then βk =
r−1∑

j=0

δjαk−j +O(αk−r) as k → +∞.

Proof of Theorem 4. We apply Theorem 5 to the functions

α(x) :=
∑

k≥1

(−1)
k−1

2bk
k

xk, F (x, y) := ey.

It follows that β(x) = D(x) = A(x) =
∑

k≥0

akx
k.

H. S. Wilf [7, p. 190] showed that

(10) bk =
k!

2 logk+1 2

(

1 +O
(

(0.16 log2)k
)

)

=
k!

2 logk+1 2

(

1 +O
(

0.12k
))

as k → +∞ (a complete asymptotic expansion can be found in [3, p. 269]). Hence

αk :=
(−1)

k−1
2bk

k
= (−1)

k−1 (k − 1)!

logk+1 2

(

1 +O
(

0.12k
))

and

(11) c1
(k − 1)!

logk+1 2
< |αk| < c2

(k − 1)!

logk+1 2

for some c2 > c1 > 0. Since αk 6= 0 and

lim
k→+∞

αk−1

αk

= lim
k→+∞

(−1)
k (k − 2)!

logk 2

(

1 +O(0.12k−1)
)

(−1)
k−1 (k − 1)!

logk+1 2

(

1 +O(0.12k)
)

= − lim
k→+∞

log 2

k − 1

(

1 +O(0.12k−1)
)

= 0,
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the condition (2) of Theorem 5 holds. From (11)

k−1
∑

j=1

|αjαk−j |

< c 2

2

k−1
∑

j=1

(j − 1)!

logj+1 2

(k − j − 1)!

logk−j+1 2
=

c 2
2

log2 2

(k − 2)!

logk 2

k−1
∑

j=1

(j − 1)! (k − j − 1)!

(k − 2)!

=
c 2
2

log2 2

(k − 2)!

logk 2

k−2
∑

j=0

1(
k − 2

j

) = O

(

(k − 2)!

logk 2

)

= O (αk−1) .

Hence condition (2) holds with r = 1. Since F (x, y) = ey is analytic in x and y, it
follows that

ak = a0αk +O(αk−1) = (−1)k−1 (k − 1)!

logk+1 2

(

1 +O(0.12k)
)

+O

(

(k − 2)!

logk 2

)

= (−1)k−1 (k − 1)!

logk+1 2

(

1 +O

(

1

k

))

as k → +∞.
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