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Abstract. Here we continue to develop a concept, that generalizes the idea of
the second dual space of a normed vector space in a fairly general way. As
in the part before, the main tool is to recognize the ”first dual” as a means
to the end of the second dual. Especially, we will easily prove here some
essential statements on embeddings of noncommutative C*-algebras in their
second dual, as whose analogues are known in the commutative setting.
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1. Introduction

Duality principles occur in many forms in topology and functional analysis. One
of them is the concept of the dual space X¢ for a normed vector space X. From a
more abstract point of view, this is just the idea to attend to each of a class of some
spaces X a space of morphisms into a fixed range space - in fact, a very special
function space. Really fascinating is the power that this concept developes if it is
applied twice: suddenly there are very friendly embeddings of the original space X
into its second dual X |

In order to apply the same process of dualization twice, it seems to be neces-
sary, to transfer the entire kind of structure of the base space X to its dual X¢ .
Unfortunately, this is impossible in much other cases than normed vector spaces -
because the algebraic structure hardly struggles.

However, the most interesting results in our perception here, are concerned with
the second dual X9 . So, in this context we propose to relinquish the idea of
one concept of duality that has to be applied twice to bring out a powerful tool.
Instead, we described in the former two parts [1], [2] of this little series a fairly
general procedure to get very appropriate second duals X% using just such first
duals, whose construction is no longer solicitous to reproduce the structure of the
original space X in the function space X but to enable such a structure in the
function space X with the same range, but with domain X .

Here in part IIT we want to find out, how this concept works for (even noncommu-
tative) C*-algebras, and we generalize the solution of the representation problem (as
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given for the special noncommutative matrix-algebras M, (€' ) in [2]) to arbitrary
C*-algebras.

2. The Hierarchy of First Dual Spaces for Banach-Algebras and
C*-Algebras

Let X be a C*-algebra; X’ :={h: X — € | h linear and continuous} the (first)
dual space of the Banach space (X, ||.||). By definition 3.2 of [I] (see also definition
2.1 of [4]) we get:

X4 = {h: X — € | h linear, continuous, multiplicative}
as dual space of the Banach algebra and

X% ={h: X — € | h linear, continuous, multiplicative, involutary}

as dual space of the C*-algebra X. Now we find at once: X% C X% C X'.

The C*-algebra ' has a zero element 0, hence there exists a zero-functional
0 € X% and the question arises: has X% non-trivial elements, too, meaning
XEN\{0}#£07

We know that X’ has many functionals and if X is a commutative Banach algebra
with unit e then X% has many elements too. But otherwise for the matrix algebras
M, (€ ), n > 1, non-commutative C*-algebras with unit, hold (M, (€ ))* = {0}
(see [2], 3.5, for instance).

Now let
X;llg ={h: X — €| h linear and multiplicative }
Xgl*g ={h: X — €| h linear, multiplicative and involutory },

where we only incorporate the algebraic operations of X and € and not the topolo-
gies on these spaces. We find

Proposition 2.1.

Xd g Xd )((LF g Xd*

alg’ alg

and hence

Xd = X:zilg7 Xd* = Xgl*g’
Proof. Linear and multiplicative functionals h : X — €' are bounded and hence
continuous. O

For our dual spaces we clearly define algebraic operations pointwise, for instance,
hl,hQ S Xd,V:c e X: (hlhg)(l') = (hl(x))(hg(fﬂ)) or h € Xd*,Vx e X: h(.’t*) =

Concerning the algebraic structure of our spaces we get:

(1) For the Banach space X, X is a IK-vector space and X’ is a vector space again.

(2) For the dual spaces X¢, X% X is a IK-algebra, especially a € -algebra, but
in general X¢, X9 are not algebras, for example, if hi,hy € X9 then hihy
mostly will fail to belong to X?, since it may not be additive.

As mentioned already above, also in this situation we have in [1I] defined a con-
venient second dual space X9 (definitions 4.1, 4.2).

By the canonical map J (see [I]) we can embed X into X. This was for
commutative algebras done by Gelfand and Naimark long times ago, we only give
here an interpretation via the notions of a first and a second dual space as defined
in [d].
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For C*-algebras we still mention two (known) special facts. If X, Y are C*-
algebras, then according to definition [1], 3.2.,

X% = {h € Y| h linear, multiplicative, involutary, continuous }

= {h € Y¥| h is *-homomorphism and continuous}

is the dual space of X w.r.t. Y.
Let again be Xgl*g = {h € YX| h is *~homomorphism}.

Proposition 2.2. Let X, Y be unital C*-algebras. Then hold
(a) X% = X7,
(b) If Y =€ and X is commutative, then X% = X9,

Proof. @ By our assumptions, a *-homomorphism is continuous (see [2], prop.

3.1; [5], prop. 5.2).

@ We must show: X? C X% ie. if h € X? is linear and multiplicative, then
h is involutary, too. If h = 0 is the zero functional, then it is involutary; so, let
he X% h+#0. Wehave Vo € X : = 21 + iz, where 1,29 € X are self-adjoint;
now, if y € X is self-adjoint and o(y) is the spectrum then o(y) C IR holds and
for an arbitrary element z € X : o(z) = {h(x)| h € X9 h # 0}. Hence we get
r=x1+ iy = ¥ =z —ix =11 —ixe = h(z*) = h(r1) —ih(z2) € € and
thus h(z*) = h(x1) + ih(xe) = h(x).

O

Corollary 2.3. By the assumtions of proposition @ we get: Since X has
enough elements, X% has also enough elements.

Now we present some useful results.

Proposition 2.4. Let X,Y be Banach algebras or C*-algebras, respectively, and
X or X% the dual spaces of X with respect to Y ; for YX we consider the pointwise
topology T,, where T, coincides with the Tychonoff product topology, if we identify

yX = HYI,

zeX

where Y, :=Y for all x € X. Then hold

(a) Xglg and Xgl*g are closed subsets of (Y, 1,).

(b) If X,Y are unital, then X% is a closed subset of (YX,7,).

(c) If Y = €@ and X is commutative and unital, then X? is a closed subset of
(YXan)-

(d) IfY = € and X is a commutative and unital C*-algebra, then X% is a closed
subset of (YX,7,) = (€ X, 7,).

Note, that all duals X¢ , X% contain 0.

Proof. @ Y is a metric space and hence it is Hausdorff, moreover, all algebraic
operations of Y, (including the involution in case, that Y is a C*-algebra) are
continuous. Thus by [4], proposition 3.1 (see also [1], 4.9) X¢, , and Xgl*g are closed
in (YX,7,).

Assertions and @ now follow from proposition O

Concluding remark: our dual spaces are subsets of the Banach space dual X’. In
X' we can define the operator norm: Yh € X’ : ||h|| := sup{|h(x)]| | ||z|| < 1}, and
hence for X% , X% we can use this norm, too.
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3. Simultaneous Proof of the Theorems of Gelfand and
Gelfand-Naimark for Commutative Algebras

Let X be a commutative ¢ -Banach algebra with unit e and X¢ the dual space
of X. From section [2| we know that in general X¢ (with pointwise defined algebraic
operations) is not an algebra again. Hence according to definition 4.1. of [1], X¢
has the defect D. Thus by definition 4.2. of [I] we get the second dual space of X
as

X = (C ((Xd’Tp)’ (¢ 77-\.|)) ) M) )
where 1 is a topology for C(X?,€ ) with 7, C p and 7, denotes the Euclidian
topology on €' .

We will show now, that (X, Tp) is compact Hausdorff, but we don’t use here the

Alaoglu theorem as is usually done.

Proposition 3.1. Let X be an unital commutative € -Banach algebra. Then
(Xd,Tp) is a compact and Hausdorff topological space.

Proof. (€ X, 7,) is Hausdorff, because €' is. For z € X let o(z) be the spectrum
and let 6(x) := o(z) U {0}; then 6(x) is compact, too, and of course Hausdorff. By
the Tychonoff theorem [], . 6(x) with product topology is a compact Hausdorff
subspace of (€' X,7,). Using Vo € X : o(z) 2 {h(z)| 0 # h € X7} and identify-
ing Vh € X% just h = (h(x)),cx, We recognize X? as a subspace of [] .y 6(z),
which is closed in (€' X, 7,) by Proposition and so is closed in [,y (z),
consequently it is compact, and of course Hausdorff. O

Corollary 3.2. Let X be a commutative unital C*-algebra. Then (X%, 7,) is a
compact Hausdorff topological space.

Proof. Follows from proposition since by @ X% = X% holds. ]

Corollary 3.3. Let X be a commutative € -Banach algebra or a C*-algebra with

unit. Then hold

(a) X4 = C((X47,),C) = Cp ((X¥,7),C) - the bounded continuous func-
tions. Hence we chose for u the uniform topology of C(X?, @), which is gen-
erated by the supremum norm ||.||sup-

(b) ((Co(X4,7), € ), ||||sup) is a commutative Banach algebra or C*-algebra with
unit.

(¢) The zero functional 0 is an isolated point of (X¢,7,) and of (X%, 7,), respec-
tively and (X?\ {0},7,), (X% \ {0},7,) are compact Hausdorff, too.

Proof. [(a)]is evident, [(b)] follows from proposition 4.2 of [I], and follows from
lemmas 4.3, 4.4 of [I]. O

Remark 3.4 It is appropriate to exclude the zero functional from X¢, since for
instance ker(0) = X and X is not a proper ideal. Compare also section 4.7 of [1],
lemma 4.2.: furtheron we will use the set X¢\ {0} and denote it by the symbol X
again. 70 ¢ X% emphasizes, that X< is not an algebra.

As already mentioned, according to [I] we denote the canonical map from X to
X4 (Gelfand map w.r.t. Banach algebras) by J : X — X%, Jr = w(x,), w(z,-) :
X4 — ¢ :Vhe X?:w(z,)(h) =w(z,h) = h(x), with the evaluation map w.

J means Jr = w(x, ) : X? = Y, if X,Y are Banach algebras and X9, X9 mean
the first an the second dual space with respect to Y, as was developed in [1].

We still come back to some known facts and we will prove a lemma.

Proposition 3.5. 1. Let X be a commutative Banach algebra with unit. Then
holds:
Ve e X : ||Jz||sup = 7(2) ,
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where r(x) denotes the spectral radius.
2. Now let X be a C*-algebra with unit. We have:

(a) Vz € X, @ normal: ||2?|| = ||z||?.
(b) If x is normal and n € IN,n > 1, then " is normal.
(c) If z is normal and k € IN, k > 1, then ||z || = ||=||2".

)
(d) Using[(c) and the spectral radius formula, one gets: r(z) = ||z||.

Lemma 3.6. Let X,Y be sets and s,t unitary algebraic operations in X and Y,
respectively:

VeeX:s:x—2°€eX,
VyeY t:y—y cy.

Now let ) # A C X be s-closed, i.e. Vx € A:x°5 € A; andleth: X =Y bea
s-t-homomorphism, i.e. Vo € X : h(z®) = (h(z))".
Then h(A) is t-closed.

Proof. Vy e h(A) : Jx € A:h(z)=y; 2 € A = 2°€ A = h(z®) € h(A).
h(z®) = (h(x))' =y" = y' € h(A). O

Corollary 3.7. Let X,Y be algebras, each with an involution *, and let h: X — Y
be a *-preserving map, i.e. YV € X : h(z*) = (h(z))*. Then h(X) C Y is self-
adjoint, i.e. Vy € h(X) : y* € h(X).

Theorem 3.8 (Gelfand; Gelfand-Naimark). Let X be a commutative Banach alge-
bra or a C*-algebra, respectively, with unit e.

1. If X is just a Banach algebra, then (Xd,Tp) s a compact and Hausdorff topo-
logical space.

If X is a C*-algebra, then (X%, 1,) = (X9,7,) is a compact and Hausdorff
topological space.

2. X = (Cy (X% 7). @) [ laup) = (Co (X% 7). @) [ ]aup) i @ commor
tative Banach algebra, if X is. It is a commutative C*-algebra, if X is. X
has the constant function 1 as unit.

3. For the canonical map J : X — @ X" holds J(X) € X4 and J : X —
X s an algebra homomorphism, if X is a Banach algebra. It is also a *-
homomorphism, if X is a C*-algebra.

4. Vr e X :||Jx|lsup < ||z|| holds, if X is a Banach algebra.

Vo e X :||Jx||sup = ||z|| holds, if X is a C*-algebra.
J is uniformly continuous and hence continuous.
6. J(X) is a subalgebra of X9 | if X is a Banach algebra. J(X) is a (). ] sup ~Closed
and self-adjoint subalgebra of X9 | if X is a C*-algebra.
7. J(e)=1€ J(X)CC, ((X47), C).
J(X) separates the points of X¢ = X .
9. If X is a commutative C*-algebra with unit e, then hold:
(a) J(X) = X% = G, (X7, 7,), € ),
(b) J yields an isometry and an isomorphy between X and (X, ||.||sup)-

Proof. [I] comes from proposition [3.1] and corollary

For 2] compare the proof of corollary

Corollary 4.1. of [1] shows that J(X) C X9 holds and by the general
homomorphy theorem for the canonical map J, theorem 4.1. of [I], J has the
asserted propertiesﬂ

ot

®

'Don’t worry about the number 4.1.: in [I] occur (in chronological order) a definition 4.1., a
subsection 4.1., a lemma 4.1., a corollary 4.1., a theorem 4.1. and a proposition 4.1. - probably
caused by a forgotten optional parameter in the definition of the TEX environments for such
statements. We prefer to think of it as a record attempt.
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It is well-known that r(z) < ||z|| holds, and by proposition holds
||JZ||sup = 7(x); in case of a C*-algebra by 2Jd)] of proposition [3.5 we have r(z) =
||z|| and hence [|Jz|[sup = ||zl

[6] Since especially .J is linear:

Yo,y € X : 12— Tyllsup = 17 = 9)llsup < 2 — ]I

Since J is a homomorphism, it is evident, that .J(X) is a subalgebra of X ; if
X is a C*-algebra, then by J is an isometric map and thus J is injective (see for
instance corollary 3.2. of [2]). Being an isometry, J is also an uniform isomorphism.
Completeness is an invariant of uniform isomorphy, yielding that J(X) is a complete
subspace of (X9, ||.||sup) and hence a closed subspace, too, because (X, ||.||sup)
is Hausdorff. Self-adjointness follows from corollary

All functionals h € X? = X% are multiplicative: Yh € X9 : h(e) =1 € C .
Now, J(e) = w(e,-) : Vh € X4 :w(e,)(h) =h(e) =1 = J(e) =1 € J(X).

We know that X¢ = X% has enough elements: Vhy, ho € X% hy #* hy =
Jz € X : ha(z) # hao(x). Jr € J(X) and Jx(h1) = h1(z) # ha(z) = Jz(he). Thus
J(X) separates the points of X¢ .

[(2)] Since J(X) has the properties mentioned in and [8] the Stone-
Weierstrass-theorem yields J(X) = C, (X%, 7,), € ) = X%. (Remark: Since we
know that (X9 7,) is compact Hausdorff, we also can write Cj, ((Xd,Tp), @) =
C (X% 7)), €))

We know that .J is injective and a *-homomorphism. Then J~!: X9 — X
J~1(X?) = X, is a *~homomorphism, too. O

4. Representation of Unital Noncommutative C*-Algebras by Closed
Subsets of Spaces of Bounded Continuous Functions

Let X,Y be unital C'*-algebras, let X be noncommutative. If Y is commutative,
then it is possible that the dual space X% of X w.r.t. Y contains only the zero
function. For example, at the beginning of section [2] we mentioned that for X =
M, (€ ) and Y = € follows (M, (C ))¢ = {0}. To avoid such a situation we set
Y = X. In [2] we considered a concrete example: we defined X =Y = M, (C).
Here we study the general case.

According to definition 3.2 of [1I] the dual space of X (w.r.t. X) is given by:

Definition 4.1. Let X be a noncommutative C*-algebra with unit e.

X4 = {h:X — X|h is a*-homomorphism and is continuous}
= {h:X — X| his a *-homomorphism}.

In X% the addition of two operators and multiplication of an operator from
X% with a scalar A € ¢ we must define pointwise. But for the multiplication of
operators we have two possibilities:

(a) the composition of two operators hq, hs € X% hihg := hy o hy, or
(b) we define the product pointwise.
What can we say about the space X% ?

At first we need two well-known results. By proposition 3.1. of [2], proposition
9.1., theorem 11.1 of [6] we get:

Proposition 4.2. Let X,Y be unital C*-algebras, h: X —Y a *-homomorphism.
Then hold

(1) Vo € X : [|h(@)]| < [[al].

(2) h(X) is a C*-subspace of Y.

Corollary 4.3. Let X,Y be unital C*-algebras, h : X — Y a *-homomorphism.
Then the operator norm ||h|| of h exists and ||h|| < 1 holds.
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Proof. h € L(X,Y) = ||h|| exists and ||h|| = sup{||h(2)||| z € X,]||z|] < 1}
< sup{|fz[|| [[«]] <1} < 1. .

Now we consider X% .

(a) X% # : the identity operator 1x : X — X belongs to X% | and also each
further *-automorphism: Vu € X, u unitary : hy, : Vo € X : hy(2) := uzu® is
an element of X% . That means, if X has enough unitary elements, then X9
has enough elements. Here 1x = he.

(b) X% is not a vector space: let h € X% h # 0, then by corollary |4.3| we
find 0 < ||h]| < 1. If X% would be a vector space, then —2-h € X% but

1Al
||ﬁh|| =2 > 1, a contradiction to corollary

(c) Moreover, as we know (see again Lemma 4.2. of [1]), we must use X% \ {0}
instead of X% | and concerning notations we again identify X% = X% \ {0}.

(d) Following our general duality approach, we choose the pointwise defined mul-
tiplication in X% . It turns out by @ that X7 has the defect D according
to definition 4.1. of [I]. Hence by definition 4.2. of [1I] we get the second dual
space as X% := (C’ ((Xd*,Tp),X) , u). Which topology p should we use in
X9 ? The answer is given by the following lemma.

By corollary 4.1. of [1I] we have J(X) C X% but we get more:

Lemma 4.4. Let X be a unital (noncommutative) C*-algebra. Then J(X) C
Cyp ((Xd*,Tp>,X) holds. Hence for p can take the uniform topology, which is gen-
erated by the sup-norm.

Proof. J(X) = {w(z,")| z € X} C XX"_ We will show that w(z, )(X%) is
bounded in X for every z € X: we have Vh € X% : w(z,-)(h) = w(z,h) = h(x),

implying |jw(z,-)(h)|| = [|h(x)|| < ||z|| by proposition since each h is a *-
homomorphism. So, w(x,-)(X%) is a subset of the ball with radius ||z|| in X,
meaning that w(x,-) is a (continuous) bounded map. O

Theorem 4.5. Let X be a noncommutative C*-algebra with unit e. Then hold
L X% = (C((X%,7,), X)), ||llsup) is a (noncommutative) C*-algebra with unit
1.

2. J: X — X% 45 g *-homomorphism.

3. J(X) is a C*- subspace of (X ||.||sup)-

4. J is an isometric map from X onto J(X).

5. J is uniformly continuous and hence continuous.

6. J(e) = 1.

7. J(X) separates the points of X% .

8. J is an isometric and isomorphic map from X onto J(X).

Proof. [1.| Follows from proposition 4.2. of [I].
The general homomorphy theorem 4.1 of [1] ensures that .J is a *~homomorphism.
Follows from proposition
By proposition 4.5. of [1], J is injective if and only if X separates the points
of X. But we have 1x € X%. Now, an injective *-homomorphism between two
C*-algebras is isometric (see, for instance, corollary 3.2. of [2]).

An isometric map is automatically uniformly continuous.

For [6] [7] compare the proof of theorem

The proof of §] we obtain from [T] 2] (] B] and [6] O

Question 4.6. Which topological properties has (X%, 1,)?

Question 4.7. J(X) is uniformly closed in the second dual. Is the pointwise closed-
ness of J(X) equivalent to X being a v.-Neumann-algebra?
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