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René Bartsch and Harry Poppe

(Received 4 July, 2015)

Abstract. Here we continue to develop a concept, that generalizes the idea of
the second dual space of a normed vector space in a fairly general way. As

in the part before, the main tool is to recognize the ”first dual” as a means

to the end of the second dual. Especially, we will easily prove here some
essential statements on embeddings of noncommutative C∗-algebras in their

second dual, as whose analogues are known in the commutative setting.
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1. Introduction

Duality principles occur in many forms in topology and functional analysis. One
of them is the concept of the dual space Xd for a normed vector space X. From a
more abstract point of view, this is just the idea to attend to each of a class of some
spaces X a space of morphisms into a fixed range space - in fact, a very special
function space. Really fascinating is the power that this concept developes if it is
applied twice: suddenly there are very friendly embeddings of the original space X
into its second dual Xdd !

In order to apply the same process of dualization twice, it seems to be neces-
sary, to transfer the entire kind of structure of the base space X to its dual Xd .
Unfortunately, this is impossible in much other cases than normed vector spaces -
because the algebraic structure hardly struggles.

However, the most interesting results in our perception here, are concerned with
the second dual Xdd . So, in this context we propose to relinquish the idea of
one concept of duality that has to be applied twice to bring out a powerful tool.
Instead, we described in the former two parts [1], [2] of this little series a fairly
general procedure to get very appropriate second duals Xdd using just such first
duals, whose construction is no longer solicitous to reproduce the structure of the
original space X in the function space Xd but to enable such a structure in the
function space Xdd with the same range, but with domain Xd .

Here in part III we want to find out, how this concept works for (even noncommu-
tative) C∗-algebras, and we generalize the solution of the representation problem (as
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given for the special noncommutative matrix-algebras Mn( /C ) in [2]) to arbitrary
C∗-algebras.

2. The Hierarchy of First Dual Spaces for Banach-Algebras and
C∗-Algebras

Let X be a C∗-algebra; X ′ := {h : X → /C | h linear and continuous} the (first)
dual space of the Banach space (X, ||.||). By definition 3.2 of [1] (see also definition
2.1 of [4]) we get:

Xd = {h : X → /C | h linear, continuous, multiplicative}

as dual space of the Banach algebra and

Xd∗ = {h : X → /C | h linear, continuous, multiplicative, involutary}

as dual space of the C∗-algebra X. Now we find at once: Xd∗ ⊆ Xd ⊆ X ′.
The C∗-algebra /C has a zero element 0, hence there exists a zero-functional

0 ∈ Xd∗ , and the question arises: has Xd∗ non-trivial elements, too, meaning
Xd∗ \ {0} 6= ∅ ?

We know that X ′ has many functionals and if X is a commutative Banach algebra
with unit e then Xd has many elements too. But otherwise for the matrix algebras
Mn( /C ), n > 1, non-commutative C∗-algebras with unit, hold (Mn( /C ))d = {0}
(see [2], 3.5, for instance).

Now let

Xd
alg ={h : X → /C | h linear and multiplicative }

Xd∗
alg ={h : X → /C | h linear, multiplicative and involutory },

where we only incorporate the algebraic operations of X and /C and not the topolo-
gies on these spaces. We find

Proposition 2.1.

Xd ⊆ Xd
alg, X

d∗ ⊆ Xd∗
alg

and hence

Xd = Xd
alg, X

d∗ = Xd∗
alg.

Proof. Linear and multiplicative functionals h : X → /C are bounded and hence
continuous. �

For our dual spaces we clearly define algebraic operations pointwise, for instance,
h1, h2 ∈ Xd,∀x ∈ X : (h1h2)(x) := (h1(x))(h2(x)) or h ∈ Xd∗ ,∀x ∈ X : h(x∗) :=

h(x).
Concerning the algebraic structure of our spaces we get:

(1) For the Banach space X, X is a IK-vector space and X ′ is a vector space again.
(2) For the dual spaces Xd, Xd∗ , X is a IK-algebra, especially a /C -algebra, but

in general Xd, Xd∗ are not algebras, for example, if h1, h2 ∈ Xd then h1h2
mostly will fail to belong to Xd, since it may not be additive.

As mentioned already above, also in this situation we have in [1] defined a con-
venient second dual space Xdd (definitions 4.1, 4.2).

By the canonical map J (see [1]) we can embed X into Xdd. This was for
commutative algebras done by Gelfand and Naimark long times ago, we only give
here an interpretation via the notions of a first and a second dual space as defined
in [1].
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For C∗-algebras we still mention two (known) special facts. If X, Y are C∗-
algebras, then according to definition [1], 3.2.,

Xd∗ = {h ∈ Y X | h linear, multiplicative, involutary, continuous }
= {h ∈ Y X | h is ∗-homomorphism and continuous}

is the dual space of X w.r.t. Y .
Let again be Xd∗

alg = {h ∈ Y X | h is ∗-homomorphism}.

Proposition 2.2. Let X, Y be unital C∗-algebras. Then hold
(a) Xd∗ = Xd∗

alg

(b) If Y = /C and X is commutative, then Xd∗ = Xd.

Proof. (a) By our assumptions, a ∗-homomorphism is continuous (see [2], prop.
3.1; [5], prop. 5.2).

(b) We must show: Xd ⊆ Xd∗ , i.e. if h ∈ Xd is linear and multiplicative, then
h is involutary, too. If h = 0 is the zero functional, then it is involutary; so, let
h ∈ Xd, h 6= 0. We have ∀x ∈ X : x = x1 + ix2, where x1, x2 ∈ X are self-adjoint;
now, if y ∈ X is self-adjoint and σ(y) is the spectrum then σ(y) ⊆ IR holds and
for an arbitrary element x ∈ X : σ(x) = {h(x)| h ∈ Xd, h 6= 0}. Hence we get
x = x1 + ix2 =⇒ x∗ = x∗1 − ix∗2 = x1 − ix2 =⇒ h(x∗) = h(x1)− ih(x2) ∈ /C and

thus h(x∗) = h(x1) + ih(x2) = h(x).
�

Corollary 2.3. By the assumtions of proposition 2.2 (b) we get: Since Xd has
enough elements, Xd∗ has also enough elements.

Now we present some useful results.

Proposition 2.4. Let X,Y be Banach algebras or C∗-algebras, respectively, and
Xd or Xd∗ the dual spaces of X with respect to Y ; for Y X we consider the pointwise
topology τp, where τp coincides with the Tychonoff product topology, if we identify

Y X ≡
∏
x∈X

Yx ,

where Yx := Y for all x ∈ X. Then hold
(a) Xd

alg and Xd∗
alg are closed subsets of (Y X , τp).

(b) If X,Y are unital, then Xd∗ is a closed subset of (Y X , τp).
(c) If Y = /C and X is commutative and unital, then Xd is a closed subset of

(Y X , τp).
(d) If Y = /C and X is a commutative and unital C∗-algebra, then Xd∗ is a closed

subset of (Y X , τp) = ( /C X , τp).
Note, that all duals Xd , Xd∗ contain 0.

Proof. (a) Y is a metric space and hence it is Hausdorff, moreover, all algebraic
operations of Y , (including the involution in case, that Y is a C∗-algebra) are

continuous. Thus by [4], proposition 3.1 (see also [1], 4.9) Xd
alg and Xd∗

alg are closed

in (Y X , τp).
Assertions (b), (c) and (d) now follow from proposition 2.2. �

Concluding remark: our dual spaces are subsets of the Banach space dual X ′. In
X ′ we can define the operator norm: ∀h ∈ X ′ : ||h|| := sup{|h(x)| | ||x|| ≤ 1}, and
hence for Xd , Xd∗ we can use this norm, too.
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3. Simultaneous Proof of the Theorems of Gelfand and
Gelfand-Naimark for Commutative Algebras

Let X be a commutative /C -Banach algebra with unit e and Xd the dual space
of X. From section 2 we know that in general Xd (with pointwise defined algebraic
operations) is not an algebra again. Hence according to definition 4.1. of [1], Xd

has the defect D. Thus by definition 4.2. of [1] we get the second dual space of X
as

Xdd =
(
C
(
(Xd, τp), ( /C , τ|.|)

)
, µ
)

,

where µ is a topology for C(Xd, /C ) with τp ⊆ µ and τ|.| denotes the Euclidian
topology on /C .

We will show now, that (Xd, τp) is compact Hausdorff, but we don’t use here the
Alaoglu theorem as is usually done.

Proposition 3.1. Let X be an unital commutative /C -Banach algebra. Then
(Xd, τp) is a compact and Hausdorff topological space.

Proof. ( /C X , τp) is Hausdorff, because /C is. For x ∈ X let σ(x) be the spectrum
and let σ̃(x) := σ(x)∪ {0}; then σ̃(x) is compact, too, and of course Hausdorff. By
the Tychonoff theorem

∏
x∈X σ̃(x) with product topology is a compact Hausdorff

subspace of ( /C X , τp). Using ∀x ∈ X : σ(x) ⊇ {h(x)| 0 6= h ∈ Xd} and identify-
ing ∀h ∈ Xd just h ≡ (h(x))x∈X , we recognize Xd as a subspace of

∏
x∈X σ̃(x),

which is closed in ( /C X , τp) by Proposition 2.4 (c), and so is closed in
∏

x∈X σ̃(x),
consequently it is compact, and of course Hausdorff. �

Corollary 3.2. Let X be a commutative unital C∗-algebra. Then (Xd∗ , τp) is a
compact Hausdorff topological space.

Proof. Follows from proposition 3.1 since by 2.2 (b) Xd∗ = Xd holds. �

Corollary 3.3. Let X be a commutative /C -Banach algebra or a C∗-algebra with
unit. Then hold
(a) Xdd = C

(
(Xd, τp), /C

)
= Cb

(
(Xd∗ , τp), /C

)
- the bounded continuous func-

tions. Hence we chose for µ the uniform topology of C(Xd, /C ), which is gen-
erated by the supremum norm ||.||sup.

(b)
((
Cb(X

d, τp), /C
)
, ||.||sup

)
is a commutative Banach algebra or C∗-algebra with

unit.
(c) The zero functional 0 is an isolated point of (Xd, τp) and of (Xd∗ , τp), respec-

tively and (Xd \ {0}, τp), (Xd∗ \ {0}, τp) are compact Hausdorff, too.

Proof. (a) is evident, (b) follows from proposition 4.2 of [1], and (c) follows from
lemmas 4.3, 4.4 of [1]. �

Remark 3.4 It is appropriate to exclude the zero functional from Xd, since for
instance ker(0) = X and X is not a proper ideal. Compare also section 4.7 of [1],
lemma 4.2.: furtheron we will use the set Xd \ {0} and denote it by the symbol Xd

again. ”0 6∈ Xd” emphasizes, that Xd is not an algebra.

As already mentioned, according to [1] we denote the canonical map from X to
Xdd (Gelfand map w.r.t. Banach algebras) by J : X → Xdd, Jx = ω(x, ·), ω(x, ·) :
Xd → /C : ∀h ∈ Xd : ω(x, ·)(h) = ω(x, h) = h(x), with the evaluation map ω.
J means Jx = ω(x, ·) : Xd → Y , if X,Y are Banach algebras and Xd, Xdd mean

the first an the second dual space with respect to Y , as was developed in [1].

We still come back to some known facts and we will prove a lemma.

Proposition 3.5. 1. Let X be a commutative Banach algebra with unit. Then
holds:

∀x ∈ X : ||Jx||sup = r(x) ,
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where r(x) denotes the spectral radius.
2. Now let X be a C∗-algebra with unit. We have:

(a) ∀x ∈ X, x normal: ||x2|| = ||x||2.
(b) If x is normal and n ∈ IN, n ≥ 1, then xn is normal.

(c) If x is normal and k ∈ IN, k ≥ 1, then ||x2k || = ||x||2k .
(d) Using (c) and the spectral radius formula, one gets: r(x) = ||x||.

Lemma 3.6. Let X,Y be sets and s, t unitary algebraic operations in X and Y ,
respectively:

∀x ∈ X : s : x 7→ xs ∈ X,
∀y ∈ Y : t : y 7→ yt ∈ Y .

Now let ∅ 6= A ⊆ X be s-closed, i.e. ∀x ∈ A : xs ∈ A; and let h : X → Y be a
s-t-homomorphism, i.e. ∀x ∈ X : h(xs) = (h(x))t.
Then h(A) is t-closed.

Proof. ∀y ∈ h(A) : ∃x ∈ A : h(x) = y; x ∈ A =⇒ xs ∈ A =⇒ h(xs) ∈ h(A).
h(xs) = (h(x))t = yt =⇒ yt ∈ h(A). �

Corollary 3.7. Let X,Y be algebras, each with an involution ∗, and let h : X → Y
be a ∗-preserving map, i.e. ∀x ∈ X : h(x∗) = (h(x))∗. Then h(X) ⊆ Y is self-
adjoint, i.e. ∀y ∈ h(X) : y∗ ∈ h(X).

Theorem 3.8 (Gelfand; Gelfand-Naimark). Let X be a commutative Banach alge-
bra or a C∗-algebra, respectively, with unit e.

1. If X is just a Banach algebra, then (Xd, τp) is a compact and Hausdorff topo-
logical space.
If X is a C∗-algebra, then (Xd∗ , τp) = (Xd, τp) is a compact and Hausdorff
topological space.

2. Xdd =
(
Cb

(
(Xd, τp), /C

)
, ||.||sup

)
=
(
Cb

(
(Xd∗ , τp), /C

)
, ||.||sup

)
is a commu-

tative Banach algebra, if X is. It is a commutative C∗-algebra, if X is. Xdd

has the constant function 11 as unit.

3. For the canonical map J : X → /C Xd

holds J(X) ⊆ Xdd and J : X →
Xdd is an algebra homomorphism, if X is a Banach algebra. It is also a ∗-
homomorphism, if X is a C∗-algebra.

4. ∀x ∈ X : ||Jx||sup ≤ ||x|| holds, if X is a Banach algebra.
∀x ∈ X : ||Jx||sup = ||x|| holds, if X is a C∗-algebra.

5. J is uniformly continuous and hence continuous.
6. J(X) is a subalgebra of Xdd , if X is a Banach algebra. J(X) is a τ||.||sup

-closed

and self-adjoint subalgebra of Xdd , if X is a C∗-algebra.
7. J(e) = 11 ∈ J(X) ⊆ Cb

(
(Xd, τp), /C

)
.

8. J(X) separates the points of Xd = Xd∗ .
9. If X is a commutative C∗-algebra with unit e, then hold:

(a) J(X) = Xdd = Cb

(
(Xd, τp), /C

)
,

(b) J yields an isometry and an isomorphy between X and (Xdd, ||.||sup).

Proof. 1. comes from proposition 3.1 and corollary 3.3
For 2. compare the proof of corollary 3.3.
3. Corollary 4.1. of [1] shows that J(X) ⊆ Xdd holds and by the general

homomorphy theorem for the canonical map J , theorem 4.1. of [1], J has the
asserted properties1.

1Don’t worry about the number 4.1.: in [1] occur (in chronological order) a definition 4.1., a

subsection 4.1., a lemma 4.1., a corollary 4.1., a theorem 4.1. and a proposition 4.1. - probably
caused by a forgotten optional parameter in the definition of the TEX environments for such
statements. We prefer to think of it as a record attempt.
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4. It is well-known that r(x) ≤ ||x|| holds, and by proposition 3.5 1. holds
||Jx||sup = r(x); in case of a C∗-algebra by 2.(d) of proposition 3.5 we have r(x) =
||x|| and hence ||Jx||sup = ||x||.

5. Since especially J is linear:
∀x, y ∈ X : ||Jx− Jy||sup = ||J(x− y)||sup ≤ ||x− y||.

6. Since J is a homomorphism, it is evident, that J(X) is a subalgebra of Xdd ; if
X is a C∗-algebra, then by 4. J is an isometric map and thus J is injective (see for
instance corollary 3.2. of [2]). Being an isometry, J is also an uniform isomorphism.
Completeness is an invariant of uniform isomorphy, yielding that J(X) is a complete
subspace of (Xdd, ||.||sup) and hence a closed subspace, too, because (Xdd, ||.||sup)
is Hausdorff. Self-adjointness follows from corollary 3.7.

7. All functionals h ∈ Xd = Xd∗ are multiplicative: ∀h ∈ Xd : h(e) = 1 ∈ /C .
Now, J(e) = ω(e, ·) : ∀h ∈ Xd : ω(e, ·)(h) = h(e) = 1 =⇒ J(e) = 11 ∈ J(X).

8. We know that Xd = Xd∗ has enough elements: ∀h1, h2 ∈ Xd : h1 6= h2 =⇒
∃x ∈ X : h1(x) 6= h2(x). Jx ∈ J(X) and Jx(h1) = h1(x) 6= h2(x) = Jx(h2). Thus
J(X) separates the points of Xd .

9. (a) Since J(X) has the properties mentioned in 6., 7. and 8. the Stone-
Weierstrass-theorem yields J(X) = Cb

(
(Xd∗ , τp), /C

)
= Xdd. (Remark: Since we

know that (Xd∗ , τp) is compact Hausdorff, we also can write Cb

(
(Xd, τp), /C

)
=

C
(
(Xd, τp), /C

)
.)

(b) We know that J is injective and a ∗-homomorphism. Then J−1 : Xdd → X,
J−1(Xdd) = X, is a ∗-homomorphism, too. �

4. Representation of Unital Noncommutative C∗-Algebras by Closed
Subsets of Spaces of Bounded Continuous Functions

Let X,Y be unital C∗-algebras, let X be noncommutative. If Y is commutative,
then it is possible that the dual space Xd of X w.r.t. Y contains only the zero
function. For example, at the beginning of section 2 we mentioned that for X =
Mn( /C ) and Y = /C follows (Mn( /C ))d = {0}. To avoid such a situation we set
Y = X. In [2] we considered a concrete example: we defined X = Y = Mn( /C ).
Here we study the general case.

According to definition 3.2 of [1] the dual space of X (w.r.t. X) is given by:

Definition 4.1. Let X be a noncommutative C∗-algebra with unit e.

Xd∗ := {h : X → X| h is a ∗-homomorphism and is continuous}
= {h : X → X| h is a ∗-homomorphism}.

In Xd∗ the addition of two operators and multiplication of an operator from
Xd∗ with a scalar λ ∈ /C we must define pointwise. But for the multiplication of
operators we have two possibilities:
(a) the composition of two operators h1, h2 ∈ Xd∗ : h1h2 := h1 ◦ h2, or
(b) we define the product pointwise.

What can we say about the space Xd∗ ?

At first we need two well-known results. By proposition 3.1. of [2], proposition
9.1., theorem 11.1 of [6] we get:

Proposition 4.2. Let X,Y be unital C∗-algebras, h : X → Y a ∗-homomorphism.
Then hold
(1) ∀x ∈ X : ||h(x)|| ≤ ||x||.
(2) h(X) is a C∗-subspace of Y .

Corollary 4.3. Let X,Y be unital C∗-algebras, h : X → Y a ∗-homomorphism.
Then the operator norm ||h|| of h exists and ||h|| ≤ 1 holds.
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Proof. h ∈ L(X,Y ) =⇒ ||h|| exists and ||h|| = sup{||h(x)||| x ∈ X, ||x|| ≤ 1}
≤ sup{||x||| ||x|| ≤ 1} ≤ 1. �

Now we consider Xd∗ .
(a) Xd∗ 6= ∅: the identity operator 11X : X → X belongs to Xd∗ , and also each

further ∗-automorphism: ∀u ∈ X,u unitary : hu : ∀x ∈ X : hu(x) := uxu∗ is
an element of Xd∗ . That means, if X has enough unitary elements, then Xd∗

has enough elements. Here 11X = he.
(b) Xd∗ is not a vector space: let h ∈ Xd∗ , h 6= 0, then by corollary 4.3 we

find 0 < ||h|| ≤ 1. If Xd∗ would be a vector space, then 2
||h||h ∈ Xd∗ , but

|| 2
||h||h|| = 2 > 1, a contradiction to corollary 4.3.

(c) Moreover, as we know (see again Lemma 4.2. of [1]), we must use Xd∗ \ {0}
instead of Xd∗ , and concerning notations we again identify Xd∗ ≡ Xd∗ \ {0}.

(d) Following our general duality approach, we choose the pointwise defined mul-
tiplication in Xd∗ . It turns out by (b) that Xd∗ has the defect D according
to definition 4.1. of [1]. Hence by definition 4.2. of [1] we get the second dual
space as Xdd :=

(
C
(
(Xd∗ , τp), X

)
, µ
)
. Which topology µ should we use in

Xdd ? The answer is given by the following lemma.
By corollary 4.1. of [1] we have J(X) ⊆ Xdd, but we get more:

Lemma 4.4. Let X be a unital (noncommutative) C∗-algebra. Then J(X) ⊆
Cb

(
(Xd∗ , τp), X

)
holds. Hence for µ can take the uniform topology, which is gen-

erated by the sup-norm.

Proof. J(X) = {ω(x, ·)| x ∈ X} ⊆ XXd∗
. We will show that ω(x, ·)(Xd∗) is

bounded in X for every x ∈ X: we have ∀h ∈ Xd∗ : ω(x, ·)(h) = ω(x, h) = h(x),
implying ||ω(x, ·)(h)|| = ||h(x)|| ≤ ||x|| by proposition 4.2, since each h is a ∗-
homomorphism. So, ω(x, ·)(Xd∗) is a subset of the ball with radius ||x|| in X,
meaning that ω(x, ·) is a (continuous) bounded map. �

Theorem 4.5. Let X be a noncommutative C∗-algebra with unit e. Then hold
1. Xdd :=

(
C
(
(Xd∗ , τp), X

)
, ||.||sup

)
is a (noncommutative) C∗-algebra with unit

11.
2. J : X → Xdd is a ∗-homomorphism.
3. J(X) is a C∗- subspace of (Xdd, ||.||sup).
4. J is an isometric map from X onto J(X).
5. J is uniformly continuous and hence continuous.
6. J(e) = 11.
7. J(X) separates the points of Xd∗ .
8. J is an isometric and isomorphic map from X onto J(X).

Proof. 1. Follows from proposition 4.2. of [1].
2. The general homomorphy theorem 4.1 of [1] ensures that J is a ∗-homomorphism.
3. Follows from proposition 4.2(2).
4. By proposition 4.5. of [1], J is injective if and only if Xd∗ separates the points

of X. But we have 11X ∈ Xd∗ . Now, an injective ∗-homomorphism between two
C∗-algebras is isometric (see, for instance, corollary 3.2. of [2]).

5. An isometric map is automatically uniformly continuous.
For 6., 7. compare the proof of theorem 3.8
The proof of 8. we obtain from 1., 2., 4., 3. and 6.. �

Question 4.6. Which topological properties has (Xd, τp)?

Question 4.7. J(X) is uniformly closed in the second dual. Is the pointwise closed-
ness of J(X) equivalent to X being a v.-Neumann-algebra?
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