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ON THE COMPOSITION OF THE DISTRIBUTIONS
x *In™x, AND z

Brian Fisher

Let F be a distribution and let f be a locally summable function. The dis-
tribution F'(f) is defined as the neutrix limit of the sequence {F,(f)}, where
F,(z) = F(z) * 0n(x) and {0n(x)} is a certain sequence of infinitely differen-
tiable functions converging to the Dirac delta-function §(z). The composition
of the distributions z7*In™ x4 and :vi is proved to exist and be equal to
pra P In™ xy for p>0and s,m=1,2,....

1. INTRODUCTION AND PRELIMINARIES

In the following we let p(z) be an infinitely differentiable function having the
following properties:

) o) =0forfal 1, (i) (o) >0,
(i) p(a)=p(-z), (V) / ple)de = 1.

-1
Putting é,(x) = np(nz) for n = 1,2,... , it follows that {d,(x)} is a regular
sequence of infinitely differentiable functions converging to the Dirac delta-function
o(x).

We let D be the space of infinitely differentiable functions with compact
support, let D(a,b) be the space of infinitely differentiable functions with support
contained in the interval [a,b], let D’ be the space of distributions defined on D
and let D’(a,b) be the space of distributions defined on D(a,b). Then if f is an
arbitrary distribution in D’, we define

fa(w) = (f % 0n)(x) = (f (1), (2 — 1))
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forn=1,2,.... It follows that {f,(z)} is a regular sequence of infinitely differen-
tiable functions converging to the distribution f(x).
We now define the distribution xjrl In™ 24 by

(™ )

—17.m
x, In"xy =
+ + m+1
for m =1,2,... and we define the distribution ac;r_l In™ x4 inductively by
me" ™ e, — (27" Iz, )
x+7 ™ T, = + ( + +)
r
for r,m =1,2,.... This is not the same as GEL’FAND and SHILOV [8].

Next, we define the locally summable function :Ef‘|r In™x, for A > —1, and
m=0,1,2,... by

A m
1 m 2 In" 2, >0,
i In x*{ 0, z<0
The distribution 2 2 In™xy is then defined inductively for A < —1, X #
—2,-3,...and m=0,1,2,..., by the equation
(acf‘i_ "™tz ) =\ aci_l ™y + (m+ D2y In™ xy

The distribution 2 In"™ x_ is then defined for A # —1,—-2,...and m =0,1,2,...,
by

2 ™2 = (—x)} In"™(—2)4

and the distribution |z|*In™ |z| is then defined for A # —1,-2,... and m =
0,1,2,..., by

|z|* ™ |z| = 2} ™ 2y + 2 In™ |z].

It follows that if 7 is a positive integer and —r — 1 < A < —r, then

(1) (2} In ac+,<p(x)>=/0 2 In x[go(ac)—kgo(pk! xk}dx

)" mlp® (0)
+Zk' PN

for an arbitrary ¢ in D[—1,1].

If now f(x) is an infinitely differentiable function having a single simple
root at the point z = xg, with f/(z) > 0, then putting ¢ = f(z) and ¢(x) =
f'(@)e(f(x)), we have

/ " b (t)elt) dt = / T 5 (f@) (@) (f () da

— 00

- /_oo On(f (@)1 (x) do = (Gn(f(2)), ¥(x)).
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Defining the distribution §(f(z)) by

U@, v = Jm [ sa(f@)) da
we would get
1
so that
1
6(f(z)) = 7o)l (6(z — z0)

and more generally

) 1 1 dqr
5 (f(x)) = m{m ﬂ} d(z — o)

for r =0,1,2,.... This is of course in agreement with Gel’fand and Shilov’s defini-
tion of 8 (f(x)), see [8].

In order to generalize this definition of §(")(f(x)), the following definition was
given in [2].

Definition 1. Let f be an infinitely differentiable function. We say that the
distribution §) (f(x)) exists and is equal to h on the open interval (a,b) if

N—lim [ 67 (f(2))p(z) dz = (h(x), o (x))
for all functions p(x) in D(a,b), where N is the neutriz, see [1], having domain
N’ the positive integers and range the real numbers, with negligible functions which
are finite linear sums of the functions

)\1 r—1 r

n*In"""n, In"n: A>0,r=1,2,...

and all functions which converge to zero in the usual sense as n tends to infinity.

Note that taking a neutrix limit of a function is equivalent to picking out the
Hadamard finite part from the function and taking the usual limit of Hadamard’s
finite part.

The following definition generalizing Definition 1 was given in [3] and was
originally called the composition of distributions.

Definition 2. Let F be distribution in D’ and let [ be a locally summable function.
We say the neutriz composition F(f(x)) exists and is equal to h on the open interval

(a,b) if

N-lim [ F,(f(z))e(z)dz = (h(z), o(2))

n—oo
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for all functions o(x) in D(a,b), where F,,(x) = F(x) % 0,(x) forn=1,2,....
In particular, we say that the composition F(f(x)) exists and is equal to h
on the open interval (a,b) if

oo

lim Fo(f(2))p(x) de = (h(x), p(x))

n—oo J_
for all functions ¢ in D(a,b).
The following theorems were proved in [9], [6] and [5] respectively.

Theorem 1. The neutriz composition (z")~° exists and
(x’l")fS — I*TS
forr,s=1,2,....

Theorem 2. If Fi(x) denotes the distribution x~°In|z|, then the neutriz compo-
sition Fs(x") exists and

Fo(2") =rz™ " In|z|
forr,s=1,2,....

Theorem 3. If F,,(z) denotes the distribution x> In™ |z|, then the neutriz com-
position Fy,(x") exists and

Fp(z") =r"z7"In™ |z]
form,r=1,2,....
The next theorem was proved in [7].

Theorem 4. If F) ,,(z) denotes the distribution acf; In™ x4, then the neutriz com-
position Fy y,,(x*) exists and

() = pma o™ .,
form=1,2,..., =1 <A<0, pu>0and A\, Ap#—1,—-2,....
Theorem 4 was then generalized in [4] with the following theorem.

Theorem 5. If Fy ,,(z) denotes the distribution acﬁ‘r In™ x4, then the neutriz com-
position Fy y,(x*) exists and

Fam () = pma ™ .y

form=1,2,....A<0, pu>0and X\, \p#—-1,-2,....

The following lemma can be proved easily by induction.
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Lemma 1.
1 )
i () — 07 0<i< T,
[1U P (v) dv { (=1)"rl, i=r
forr=0,1,2,....
The next two lemmas can be proved easily by induction.

Lemma 2. If ¢ is an arbitrary function in D with support contained in the interval
[—1,1], then

ol gt = [ o [t - 3 20 ]
- k=0
[1 (— )7+k]m'

(k)
k=0

form,r=1,2 ..., where the second sum is empty when r = 1.

Lemma 3.

(S = et
/1 u*In" udu = (ot Dy + E(Inn),

fora# =1 and r =1,2,..., where E(Inn) denotes a sum of negligible functions,

each containing a positive power of Inn.

2. MAIN RESULTS

We now prove the following extension of Theorem 5.

Theorem 6. If Fy ,,(x) denotes the distribution x* In™ x, then the neutriz com-
position Fy m(ach) exists and

(2) Fom(a) = pma " In™ xy

form=0,1,2,...,s=1,2,..., 0 >0 and sp #1,2,....

Proof. We first of all put Gy, (z) = (In""! 2,)®) and note that G, (z) is of the
form

m
(3) Gs,m(x) = Z Cs,m,ixjrs In’ T+,
=0

where ¢ i = 0if i < m—s. Since z° In’ x4 is an infinitely differentiable function
on any closed interval not containing the origin, it follows that

Fu(a) = pla 7" n' oy
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and then
(4) Gsm 1'_;’_ ZCSm'L‘LLI'_,’_SMln T4
=0

on any closed interval not containing the origin.
Putting

Gsmn(z) = (In™*? x4)®) % On ()
1/n
= / In"™ (2 — ), 60 (¢) dt

—1/n
1 m S
f{’;nl iz — )68 (1) dt, 1/n < =,
=\ ST @ el @ dt, —1/n<z<1/n,
0, x < —1/n,
we have
S @ — 6 () dt,  1/n < at,
Gs,m,n(zi) = f:/n lnm+1(x/‘ o t) 5n5) (t) dt, 0<zt < l/n,
SO (=) 68 (1) dt, z < 0.
Our problem now is to evaluate
n=l/n P
/ Ga m n(er)x dx = / zk / lnerl(IM - t) (57(;) (t) dtdx
—1/n

/ / n™ (zH — 1) 60 () dt dx
n- 1/“ 1/n
+ / zF / I (—t) 6 () dt da

—1 —1/n

ns—(k—i—l)/;t

1 1
= 7/ p(s)(u)/ w” PR/ ™ (p — ) /n) du do
H -1 0

ns_(k"l'l)//t 1 ) n 1
+7/ p(é)(u)/ o~ RO/ (y — ) /n] du du
1

K -1
0 0
—l—n_s/ ack/ I (—u/n)p') (u) du dz
-1 —1/n
=h+1L+1s,

on using the substitutions u = nt and v = na*.
It is easily seen that

(6) N—-limI; = N-lim I3 =0,

n—oo n—oo
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fork=0,1,2....
Now,
s—(k1)/p p1 n
(7) I, = nT/ p®) (u)/ v~ RO/ (1 — u/v)
—1 1

+Inv —Inn]™ ™ dvdu

m+1 s—(k+1 1 n
_ Z <m+1)n ( )/“/ p(s)(u)/ p—(=k=1)/p
g -1 1

: 7
i=1
x In'(1 —u/v) In™ "y dvdu + E(Inn)
m+1
= Z Ji + E(Inn),
i=1

where E(Inn) denotes the terms containing powers of Inn and so are negligible and
the term containing In™ ! u is zero, since f_ll p(s)(v) dv =0 for s = 1,2,..., by
Lemma 1.

We note that In’(1 — u/v) can be expanded in the form

a; puP
?

In‘(1 —u/v) = Z

()4
p=0

where a;, = 0 for p=0,1,...,7 —1 and then

1 n
ns~(ktD)/n / p(s) (u) / p~(=k=1)/n In"(1 —u/v) In™ "y dodu
1

-1

[e’e] 1 n
=3 ne /g, , / WP p) (1) / == (=E=1) /1 1y dy du
=0 ~1 1

oo —q . - S 1

aip(—1)"" " (m — i+ 1) [n57P — n® (k+1)/u]/ p (5)

= : — uPp'¥ (u) du + E(Inn)
pz:; [-p—(p—k—1)/p+1]m—+2 1 ( (

on using Lemma 3.
Using Lemma 1, it follows that

(8) N—lim J; = 0,
n—oo
if ¢ > s and
. m 1y s (=15 (m — i+ 1)t sl it
(9) Ni:léom JZ B ( Z ) (S/,L — k _ 1)m—i+2

if 1 <s.
It then follows from equations (7) to (9) that

m+1 s+1 : —i+1
. m+ 1\ a;s(=1)*TH(m — i+ 1)l sl ™
(10) N-liml =Y ( Z, ) G :

n— 00 £
=1
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for k=0,1,2,... and it then follows from equations (5), (6) and (10) that

1
(11)  N-lim [ Ggmn(2t)s® do

n— oo -1
B m+1 (m + 1) ai,s(_l)s+1(m — i+ 1)! s! 'um—i-i-l
P i (sp— k — 1)m—i+2
_ i (m + 1) am_i+17s(—1)s+1i! s! ,ui
- gt i (spp— k —1)i+1
for k=0,1,2,....

We now consider the case k = r, where r is chosen so that sy —r —1 < 0,
and let ¥ (x) be an arbitrary continuous function. Then

n=l/k ns—('r‘—i—l)/;t

1 v
/O 2" Y(2)Gsmn(2h) do = T/O p(rt1)/p=1 /_1w[(v/n)1/lt]

x [In(v — u) — Inn]™ " dudv
and it follows that
nl/n

(12) lim z"P(x) de G p (2h) = 0.

n—oo 0

When z < 0, we have

/ ' 2"Y(2)Gomon (2) do = / ' 2" (z) / ' It (—)6%) (¢) dt

-1 -1 —1/n

0 0
e [ [ i) - ) du e

—1 -1

and it follows that

0
(13) N—lim [ z"¢(2)Gsmn(z)y)dz =0.

n—oo —1

Next, when z# > 1/n, we have

1 m—+1
=n / 1n:c“+ln 1,L)] P (u) du

naH

! W m+1 U
— m+1 _pu m—i+1 _u v (s)
=n / [ xt + E ( ; )1 2" In’ ( mc“)]p (u) du

=1
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1
=n*In" g / P (u) du
-1

S m+]~ m—i+1 _u alpu
+n Z( )in wZ e P (W) A

=1
m—+1
_ m+1 m—itl AipWh”  (s)
_z;( i )hl Z/lnpsxup (u) du
i=
m+1 m+1 )
— (—1)88! Z ( ) )Hm—z+1 is zSH 1nm71+1 z+ O(n_l)
i=1

= (—=1)%s! Z (mj 1)#iamfi+1,sfﬂ_s” In'z+O(n™").
=0

Letting n tend to infinity, it follows that

m
. " ; m+1 i s i
(15) I Gupn(e) = Gon(@) = (1"t Y (" T ) it e 0
for x > 0. =
Comparing equations (4) and (15) we see that

(16) comi = (18 (" D i

fori=0,1,2,...,m
We also see from equation (14) that

l/n m . ;
‘/ ) 0™ (@t — )60 (¢) dt| < s Z (m:r 1)M |am—i+1,s2” % In" 2| + O(n™1),
L/n i=0

for o > 1/n.
If now n~Y/# < < 1, then

n 1/n
/ zH / It (zk — )6 (¢) dt
n—1/n

—1/n

<ty (" Dt anseral [l de O
i—0 ? n—1/np

dx

m
m+1\ i - i — -
= a3 (" el 0 )+ O

=O0(n|I™ nl) + O(n=/").

It follows that if v is an arbitrary continuous function, then

n 1/n
(17) lim x () / I (z# — ) 6$) (¢) dt dzz = O(n| In™ n])

n—oo [ _1/u —1/n
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forr=1,2,....
Now let ¢ be an arbitrary function in D[—1,1]. Then by Taylor’s Theorem
we have

pla) = Z o0 (0) + 2o ex),

(o (@), () = / ()G () da

=l k) 1 nTHE ()
:Z@ (0)/ kas,m,n(xi)dI‘f'/ Ty (gx)

0 7!

n r . (r) 1 "G mn By o (s)
n—1/u T n T

Gsmon(xh)de

Using equations (1), (11) to (13) and (15) to (17), it follows that
N_Hm<Gs,m,n($i)a (p(I))

n—oo

—1 m

<

m+1 (1)l st il ag—ig1 s
(" )= £ L09(0) + O] In™ 1)

(us — k — 1)1kl

=0 i=

1 4 . pSH % (s)
1)35! Z (mj‘ 1) / M am—it1,sT n ry (fx) da
i=0 n

7!
r—1 m m 1 i (s)
csmzu z' *) / Cs.mip" In" ') (Ex)
== d

since 1 can be made arbitrarily small. It now follows that

N_Hm<Gs,m,n (xz-)a @($)>

n—oo

r—1

- Cs ,m, ZN Z' ( )
Z Z ( k — 1)Z+1k' ¢ (0)

k=0 i=0

- —1) 4!
2 = (+ k )+ )ik - (O)}
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on using Lemmas 2 and 3. This proves that Gy ,,, (2!, ) and the sum

m . .
Z Comyi ' 2 In" @y
i=0
exist and
m .
(18) Gs,m (xi) = Z Cs7m,i /,[/’L x;sﬂ lnz Ty
i=0
on the interval [—1, 1] for m,r, s = 1,2, .... However, equation (1) clearly holds on

any closed interval not containing the origin.
Now suppose that
(19) Fyi(zh) = pial® In' oy

fori=0,1,...,m — 1 for some m and s = 1,2,.... This is true when m = 1 since
we then have Fyo(x} ) = G ().
Note that equation (18) can be rewritten in the form

m
(20) Gs,m(xi) = Z Cs,m,i l,LZ Fs,z(xi)
i=0
Since G, (2!} exists and Fy ; () exists by our assumption for ¢ = 0,1,...,m—1,
it follows that Fi ,,(z}) exists and
m—1
Gs,m(zi) = Cs,m,m ﬂiFS,m(xi) + Z Cs,m,i Fs,i(zi)
i=0
m—1 )
= Cs,m,m NZFs,m (xi) + Z Cs,m,i ,LLZIJ_FSH In* T4
i=0
m .
= Z Comyi ey In" ay

i=0
on using equations (19) and (20). It follows that

—Sp

Fom(ah) = p™ 2 ® In™ x
and so equation (19) holds for m. Equation (1) now follows by induction, completing
the proof of the theorem.
Replacing z by —z in Theorem 4, we get

Theorem 7. If F; ,,,(x) denotes the distribution x_°In™ x_, then the neutriz com-
position Fs () exists and

(21) Fym(z")=pm " In" o

form=0,1,2,...,s=1,2,..., u >0 and sp #1,2,....
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