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ON THE LAPLACIAN ESTRADA INDEX OF A GRAPH

Jianxi Li, Wai Chee Shiu, An Chang

Abstract Let G be a graph of order n. Let λ1, λ2, . . . , λn be the eigenvalues
of the adjacency matrix of G, and let µ1, µ2, . . . , µn be the eigenvalues of the
Laplacian matrix of G. Much studied Estrada index of the graph G is defined

as EE = EE(G) =
n
∑

i=1

eλi . We define and investigate the Laplacian Estrada

index of the graph G, LEE = LEE(G) =
n
∑

i=1

e(µi−
2m
n

). Bounds for LEE

are obtained, as well as some relations between LEE and graph Laplacian
energy.

1. INTRODUCTION

Let G = (V, E) be a graph without loops and multiple edges. Let n and m be
the number of vertices and edges of G, respectively. Such a graph will be referred
to as an (n, m)-graph. For v ∈ V (G), let d(v) be the degree of v.

In this paper, we are concerned only with undirected simple graphs (loops
and multiple edges are not allowed). Let G be a graph with n vertices and the
adjacency matrix A(G). Let D(G) be a diagonal matrix with degrees of the cor-
responding vertices of G on the main diagonal and zero elsewhere. The matrix
L(G) = D(G) − A(G) is called the Laplacian matrix of G. Since A(G) and L(G)
are real symmetric matrices, their eigenvalues are real numbers. So we can as-
sume that λ1 ≥ λ2 ≥ · · · ≥ λn, and µ1 ≥ µ2 ≥ · · · ≥ µn = 0 are the adjacency
and the Laplacian eigenvalues of G, respectively. The multiset of eigenvalues of
A(G) (L(G)) is called the adjacency (Laplacian) spectrum of G. Other undefined
notations may be referred to [1].

The basic properties of the eigenvalues and Laplacian eigenvalues of the graph
can be found in the book [2].
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The energy of the graph G is defined in [8, 9] as:

(1) E = E(G) =
n

∑

i=1

|λi|.

The Estrada index of the graph G is defined in [4−6] as:

(2) EE = EE(G) =
n

∑

i=1

eλi .

Denoting by Mk = Mk(G) the k-th spectral moment of the graph G ([4] equal
to the number of closed walks of length k of the graph G),

Mk = Mk(G) =

n
∑

i=1

(λi)
k,

and bearing in mind the power-series expansion of ex, we have

(3) EE =

∞
∑

k=0

Mk

k!
.

The quantity defined by (2) or (3) appears in Physics and Chemistry; for
details see the surveys [4−6]. Recently much work on the Estrada index of the
graph appeared also in the mathematical literature (see, for instance, [3, 10]).

It is evident from (3) that if graph G can be transformed to another graph
G′, such that Mk(G′) ≥ Mk(G) holds for all values of k, and Mk(G′) > Mk(G)
holds for at least some values of k, then EE(G′) > EE(G). We assume that graph
transformation G → G′, where G′ = G+e be the graph obtained from G by adding
a new edge e into G. By adding a new edge e into G, the number of closed walks
of length k will certainly not decrease, and in some cases (e.g., for k = 2) will
strictly increase. Bearing that in mind, we conclude that the n-vertex with as few
as possible and as many as possible edges has the minimum and the maximum EE,

respectively. From (2), we find that EE(Kn) = n and EE(Kn) = en−1 +(n−1)
1

e
.

Hence, for any graph G of order n, different from the complete graph Kn and from
its (edgeless) complement Kn, we have

n = EE(Kn) < EE(G) < EE(Kn) = en−1 + (n − 1)
1

e
.

Recently, J. A. de la Peña et al. [3] established lower and upper bounds
for EE in terms of the number of vertices and number of edges, and also obtained
some inequalities between EE and the energy of G. Their results are as follows.

Theorem 1. [3] Let G be an (n, m)-graph. Then the Estrada index of G is bounded
as

(4)
√

n2 + 4m ≤ EE(G) ≤ n − 1 + e
√

2m.

Equality on both sides of (4) is attained if and only if G ∼= Kn.
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Theorem 2. [3] Let G be a regular graph of degree r and of order n. Then its
Estrada index is bounded as

er +
√

n + 2nr − (2r2 + 2r + 1) + (n − 1)(n − 2)e−2r/(n−1)

≤ EE(G) ≤ n − 2 + er + e
√

r(n−r).

Theorem 3. [3] Let G be an (n, m)-graph. Then

(5) EE(G) − E(G) ≤ n − 1 −
√

2m + e
√

2m.

Or

(6) EE(G) ≤ n − 1 + eE(G).

Equality (5) or (6) is attained if and only if G ∼= Kn.

Theorem 4. [3] Let G be a regular graph of degree r and of order n. Then

EE(G) − E(G) ≤ n − 2 + er − r −
√

r(n − r) + e
√

r(n−r).

In this paper, we define and investigate the Laplacian Estrada index of G as

LEE = LEE(G) =
n
∑

i=1

e(µi−
2m
n

), and get some analogy between the properties of

EE(G) and LEE(G), but also some significant differences.

2. THE LAPLACIAN ESTRADA INDEX CONCEPT

The first Zagreb index of G is defined in [7] as M = M(G) =
∑

u∈V (G)

d2(u).

Lemma 1. [12] Let G be an (n, m)-graph. Then,

M ≤ m
( 2m

n − 1
+ n − 2

)

,

with equality if and only if G is Sn or Kn.

Lemma 2. [13] If G is a triangle-free and a quadrangle-free graph, then

M ≤ n(n − 1),

with equality if and only if G is the star or a Moore graph of diameter 2.

Lemma 3. Let G be an (n, m)-graph with maximum degree ∆ and minimum degree
δ, then

(7)
4m2

n
≤ M ≤ 2m(∆ + δ) − nδ∆.
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Equality on both sides of (7) is attained if and only if G is regular.

Proof. By the Cauchy-Schwarz inequality, we have

M =
∑

u∈V (G)

d2(u) ≥

(

∑

u∈V (G)

d(u)
)2

n
=

4m2

n
.

Equality holds if and only if G is regular.

Summing the inequality
(

d(u) − δ
)(

d(u) − ∆
)

≤ 0 for every u ∈ V (G), we
have that

∑

u∈V (G)

d2(u) − (∆ + δ)
∑

u∈V (G)

d(u) + nδ∆ ≤ 0.

Then,
M ≤ 2m(∆ + δ) − nδ∆.

Equality holds if and only if G is regular. This ends the proof. �

The Laplacian energy of the graph G is defined in [11] as:

(8) LE = LE(G) =

n
∑

i=1

∣

∣

∣
µi −

2m

n

∣

∣

∣
.

Definition. If G is an (n, m)-graph, and its Laplacian eigenvalues are µ1 ≥ µ2 ≥
· · · ≥ µn = 0, then the Laplacian Estrada index of G, denoted by LEE(G), is equal
to

(9) LEE = LEE(G) =

n
∑

i=1

e(µi−
2m
n

).

And let

M ′

k =

n
∑

i=1

(

µi −
2m

n

)k

.

Then M ′

0 = n; M ′

1 = 0; M ′

2 = M +2m
(

1− 2m

n

)

(where M is the first Zagreb

index of G as above). And bearing in mind the power-series expansion of ex, we
have

(10) LEE =

∞
∑

k=0

M ′

k

k!
.

Lemma 4. If the graph G is regular, then M2k(G) = M ′

2k (k ∈ Z), LE(G) = E(G),

LEE(G) =
n
∑

i=1

e−λi . Further, if the regular graph G is bipartite, then Mk(G) = M ′

k,

LEE(G) = EE(G).
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Proof. If an (n, m)-graph is regular of degree r, then r = 2m/n and [2], we have

µi − r = −λn−i+1, i = 1, 2, . . . , n,

and from the definition of Mk, M ′

k, E, LE, EE and LEE of the graph G, respec-

tively. We have M2k(G) = M ′

2k (k ∈ Z), LE(G) = E(G), LEE(G) =
n
∑

i=1

e−λi .

If the regular graph G is a bipartite graph, from [2], we have

λi = −λn+1−i, i = 1, 2, . . . , n

Then,
n
∑

i=1

λk
i =

n
∑

i=1

(−λi)
k and

n
∑

i=1

e−λi =
n
∑

i=1

eλi . We have Mk(G) = M ′

k, LEE(G) =

EE(G). �

Theorem 5. Let G be an (n, m)-graph with maximum degree ∆ and minimum
degree δ, then the Laplacian Estrada index of G is bounded as

(11)
√

n2 + 4m ≤ LEE(G) ≤ n − 1 + e
√

2m(∆+δ+1− 2m
n

)−nδ∆.

Equality on both sides of (11) is attained if and only if G ∼= Kn.

Proof. Lower bound. Directly from (9), we get

(12) LEE2(G) =

n
∑

i=1

e2(µi−
2m
n

) + 2
∑

i<j

e(µi−
2m
n

)e(µj−
2m
n

).

In view of the inequality between the arithmetic and geometric means,

2
∑

i<j

e(µi−
2m
n

)e(µj−
2m
n

) ≥ n(n − 1)

(

∏

i<j

e(µi−
2m
n

)e(µj−
2m
n

)

)2/[n(n−1)]

= n(n − 1)

[( n
∏

i=1

e(µi−
2m
n

)

)n−1 ]2/[n(n−1)]

= n(n − 1)(eM ′

1)2/n

= n(n − 1).(13)

By means of a power-series expansion, and M ′

0 = n, M ′

1 = 0 and M ′

2 =

M + 2
(

1 − 2m

n

)

, we get

n
∑

i=1

e2(µi−
2m
n

) =

n
∑

i=1

∑

k≥0

[

2(µi − 2m
n )

]k

k!

= n + 2
[

2m
(

1 − 2m

n

)

+ M
]

+

n
∑

i=1

∑

k≥3

[

2(µi − 2m
n )

]k

k!
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We use a multiplier r ∈ [0, 8], as to arrive at,

n
∑

i=1

e2(µi−
2m
n

) ≥ n + 2
[

2m
(

1 − 2m

n

)

+ M
]

+ r

n
∑

i=1

∑

k≥3

(

µi − 2m
n

)k

k!

= (1 − r)n + (4 − r)
[

m
(

1 − 2m

n

)

+
M

2

]

+ rLEE

Further, by Lemma 7, we get

n
∑

i=1

e2(µi−
2m
n

) ≥ (1 − r)n + (4 − r)
[

m
(

1 − 2m

n

)

+
2m2

n

]

+ rLEE

i.e.,

(14)
n

∑

i=1

e2(µi−
2m
n

) ≥ (1 − r)n + (4 − r)m + rLEE

By substituting (13) and (14) back into (12), and solving for LEE, we have

LEE ≥ r

2
+

√

(

n − r

2

)2

+ (4 − r)m

It is elementary to show that for n ≥ 2 and m ≥ 1 the function

f(x) :=
x

2
+

√

(

n − x

2

)2

+ (4 − r)m

monotonically decreases in the interval [0, 8]. Consequently, the best lower bound
for LEE is attained for r = 0. Then we arrive at the first half of Theorem 5.

Upper bound. Starting from the following inequality, we get

LEE = n +

n
∑

i=1

∑

k≥1

(

µi − 2m
n

)k

k!
≤ n +

n
∑

i=1

∑

k≥1

∣

∣µi − 2m
n

∣

∣

k

k!

= n +
∑

k≥1

1

k!

n
∑

i=1

[(

µi −
2m

n

)2]k/2

≤ n +
∑

k≥1

1

k!

[ n
∑

i=1

(

µi −
2m

n

)2
]k/2

= n +
∑

k≥1

1

k!

[

M + 2m
(

1 − 2m

n

)]k/2

= n − 1 +
∑

k≥0

(
√

M + 2m(1 − 2m
n )

)k

k!

= n − 1 + e
√

M+2m(1− 2m
n

).(15)
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By Lemma 3, we have

LEE ≤ n − 1 + e
√

2m(∆+δ+1− 2m
n

)−nδ∆,

which directly leads to the right-hand side inequality in (11).

From the derivation of (11) it is evident that equality will be attained if and
only if the graph G has all zero eigenvalues. This happens only in the case of the
edgeless graph Kn, [2].

The proof is completed. �

Remark. If in inequality (15) we utilize the upper bound of M in Lemma 1, we have the
upper bound for LEE in terms of the number of vertices and number of edges as follows,

LEE ≤ n − 1 + e

√

m(n+ 2m
n−1

−

4m
n

)
.

Further, if the (n, m)-graph is a triangle-free and a quadrangle-free graph, by Lemma 2,
we have,

LEE ≤ n − 1 + e
√

n(n−1)+2m(1− 2m
n

)
.

Since µn = 0, if we consider LEE − e2m/n =
n−1
∑

i=1

e(µi−2m/n) in the same way

as in Theorem 5, we have the following bounds of LEE(G):

Theorem 6. Let G be an (n, m)-graph with maximal degree ∆ and minimal degree
δ, then the Laplacian Estrada index of G is bounded as

e−2m/n +

√

(n − 1)
[

1 + (n − 2)e
4m

n(n−1)
]

+ 4m
(

1 +
1

n
− 2m

n2

)

≤ LEE(G) ≤ n − 2 + e
−2m

n + e

√

2m(1+∆+δ− 2m
n

−
2m

n2 )−n∆δ
.(16)

Equality on both sides of (16) is attained if and only if G ∼= Kn.

If G is regular, by Lemma 4, Theorem 2 and Theorem 6, the following result
is obviously.

Theorem 7. Let G be a regular graph of degree r and of order n. Then its
Laplacian Estrada index is bounded as

e−r +
√

n + 2nr − (2r2 − 2r + 1) + (n − 1)(n − 2)e2r/(n−1)

≤ LEE(G) ≤ n − 2 + e−r + e
√

r(n−r).

Further, if the regular graph G is a bipartite graph , then its Laplacian Estrada index
is bounded as

er +
√

n + 2nr − (2r2 + 2r + 1) + (n − 1)(n − 2)e−2r/(n−1)

≤ LEE(G) ≤ n − 2 + er + e
√

r(n−r).
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3. BOUNDS FOR THE LAPLACIAN ESTRADA INDEX

INVOLVING GRAPH LAPLACIAN ENERGY

Theorem 8. Let G be an (n, m)-graph with maximum degree ∆ and minimum
degree δ, then

(17) LEE−LE ≤ n−1−
√

2m
(

∆ + δ + 1 − 2m

n

)

− nδ∆+e
√

2m(∆+δ+1− 2m
n

)−nδ∆,

or

(18) LEE(G) ≤ n − 1 + eLE(G).

Equality (17) or (18) is attained if and only if G ∼= Kn.

Proof. In the proof of Theorem 5, we have the following inequality,

LEE = n +

n
∑

i=1

∑

k≥1

(

µi − 2m
n

)k

k!
≤ n +

n
∑

i=1

∑

k≥1

∣

∣µi − 2m
n

∣

∣

k

k!
.

Taking into account the definition of graph Laplacian energy (8), we have

LEE ≤ n + LE +

n
∑

i=1

∑

k≥2

∣

∣µi − 2m
n

∣

∣

k

k!
,

which, as in Theorem 5, leads to

LEE − LE ≤ n +
n

∑

i=1

∑

k≥2

∣

∣µi − 2m
n

∣

∣

k

k!

≤ n − 1 −
√

M + 2m
(

1 − 2m

n

)

+ e
√

M+2m(1− 2m
n

) .(19)

It is elementary to show that the function f(x) := ex − x monotonically increases
in the interval [0, +∞]. Consequently, the best upper bound for LEE − LE is
attained for M = 2m(∆ + δ) − nδ∆ by Lemma 3. Then we have

LEE − LE ≤ n − 1 −
√

2m
(

∆ + δ + 1 − 2m

n

)

− nδ∆ + e
√

2m(∆+δ+1− 2m
n

)−nδ∆.

This inequality holds for all (n, m)-graphs. Equality is attained if and only if
G ∼= Kn.

Another route to connect LEE and LE, is the following:

LEE ≤ n +
n

∑

i=1

∑

k≥1

∣

∣µi − 2m
n

∣

∣

k

k!
≤ n +

∑

k≥1

1

k!

( n
∑

i=1

∣

∣

∣
µi −

2m

n

∣

∣

∣

)k

= n +
∑

k≥1

LEk

k!
= n − 1 +

∑

k≥0

LEk

k!
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implying, LEE(G) ≤ n − 1 + eLE(G).

Also on this formula equality occurs if and only if G ∼= Kn. �

Remark. If in inequality (19) we utilize the upper bound of M in Lemma 1, we have the
upper bound for LEE − LE in terms of the number of vertices and number of edges as
follows,

LEE − LE ≤ n − 1 − m
(

n +
2m

n − 1
− 4m

n

)

+ e

√

m(n+ 2m
n−1

−

4m
n

)
.

Further, if the (n, m)-graph is a triangle-free and a quadrangle-free graph, by Lemma 6,
we have,

LEE − LE ≤ n − 1 − n(n − 1) + 2m
(

1 − 2m

n

)

+ e
√

n(n−1)+2m(1− 2m
n

)
.

Since µn = 0, if we consider LEE − e2m/n =
n−1
∑

i=1

e(µi−2m/n) in the same way

as in Theorem 8, we have the following results:

Theorem 9. Let G be an (n, m)-graph with maximum degree ∆ and minimum
degree δ, then

LEE − LE ≤ n − 2 + e−
2m
n − 2m

n
−

√

2m
(

∆ + δ + 1 − 2m

n
− 2m

n2

)

− nδ∆

+ e

√

2m(∆+δ+1− 2m
n

−
2m

n2 )−nδ∆
,(20)

or

(21) LEE(G) ≤ n − 2 + e−
2m
n (1 + eLE(G)).

Equality (20) or (21) is attained if and only if G ∼= Kn.

By Lemma 4 and Theorem 9, a similar formula is deduced for regular graphs,

Theorem 10. Let G be a regular graph of degree r and of order n. Then

LEE − LE ≤ n − 2 + e−r − r −
√

r(n − r) + e
√

r(n−r),

or
LEE(G) ≤ n − 2 + e−r(1 + eLE(G)).
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13. B. Zhou, D. Stevanović: A note on Zagreb indices. MATCH Commun. Math.

Comput. Chem., 56 (2006), 571–578.

Department of Mathematics, (Received June 11, 2008)
Hong Kong Baptist University, (Revised December 11, 2008)
Kowloon, Hong Kong,
P.R. China

E–mails: fzjxli@tom.com

wcshiu@hkbu.edu.hk

Software College/Center of Discrete Mathematics,
Fuzhou University,
Fuzhou, Fujian, 350002,
P.R. China

E–mail: anchang@fzu.edu.cn


