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Abstract. In this paper, a class of Shannon-McMillan theorems for the nonho-
mogeneous Markov chains field on a homogeneous tree are discussed by con-

structing a nonnegative martingale. As corollaries, some Shannon-Mcmillan

theorems for the homogeneous Markov chains field on a homogeneous tree and
the nonhomogeneous Markov chain are obtained. A result which has been

obtained is extended.

1. Introduction
Let T be a homogeneous tree on which each vertex has N + 1 neighboring

vertices. We first fix any vertex as the ”root” and label it by 0. Let σ, τ be vertices
of a tree. Write τ ≤ σ if τ is on the unique path connecting 0 to σ, |σ| for the
number of edges on this path. For any two vertices σ, τ , denote σ ∧ τ the vertex
farthest from 0 satisfying

σ ∧ τ ≤ σ, and σ ∧ τ ≤ τ.
If σ 6= 0, then we let σ̄ stand for the vertex satisfying σ̄ ≤ σ and |σ̄| = |σ| − 1 (we
refer to σ as a son of σ̄). It is easy to see that the root has N + 1 sons and all other
vertices have N sons.

If |σ| = n, it is said to be on the nth level on a tree T . We denote by T (n) the
subtree of T containing the vertices from level 0 (the root) to level n, and Ln set of
all vertices on the level n. Let B be a subgraph of T . Denote XB = {Xσ, σ ∈ B},
and denote by |B| the number of vertices of B. Let S(σ) be the set of all sons of
vertices σ. It is easy to see that |S(0)| = N + 1 and |S(σ)| = N , where σ 6= 0.

Definition 1(see[6]). Let T be a homogeneous tree, S = {s0, s1, s2, · · · } be a
countable state space, {Xσ, σ ∈ T} be a collection of S−valued random variables
defined on the measurable space {Ω,F}. Let

p = {p(x), x ∈ S} (1)

be a distribution on S, and

Pn = (Pn(y|x)), ∀x, y ∈ S, n ≥ 1 (2)

be a strictly positive stochastic matrix on S2. If for any vertices σ, τ , σ ∈ Ln,

P (Xσ = y|Xσ̄ = x, and Xτ for σ ∧ τ ≤ σ̄) (3)

2010 Mathematics Subject Classification : 60F15.
Key words and phrases: Shannon-McMillan theorem, the homogeneous tree, Markov random field,
relative entropy density.
The work is supported by the Natural Science Foundation of Higher Schools of Jiangsu Province

of China (09KJD110002).



46 KANGKANG WANG

= P (Xσ = y|Xσ̄ = x) = Pn(y|x) ∀x, y ∈ S,
and

P (X0 = x) = p(x), ∀x ∈ S. (4)

{Xσ, σ ∈ T} will be called S−valued Markov chains indexed by a homogeneous
tree with the initial distribution (1) and transition matrix (2).

Two special finite tree-indexed Markov chains are introduced in Kemeny et
al.(1976[10]), Spitzer (1975[11]), and there the finite transition matrix is assumed
to be positive and reversible to its stationary distribution, and this tree-indexed
Markov chains ensure that the cylinder probabilities are independent of the direc-
tion we travel along a path. In this paper, we have no such assumption.

Let Ω = ST , ω = ω(·) ∈ Ω, where ω(·) is a function defined on T and taking
values in S, and F be the smallest Borel field containing all cylinder sets in Ω, µ
be the probability measure on (Ω,F). Let X = {Xσ, σ ∈ T} be the coordinate
stochastic process defined on the measurable space (Ω,F); that is, for any ω =
{ω(t), t ∈ T}, define

Xt(ω) = ω(t), t ∈ T (n)

XT (n) ∆
= {Xt, t ∈ T (n)}, µ(XT (n)

= xT
(n)

) = µ(xT
(n)

). (5)

Now we give a definition of Markov chain fields on the tree T by using the cylin-
der distribution directly, which is a natural extension of the classical definition of
Markov chains (see[9]).

Definition 2. Let Pn = Pn(j|i) and p = (p(s1), p(s2), · · · ) be defined as before,
µP be a nonhomogeneous Markov measure on (Ω,F). If

µP (x0) = p(x0) (6)

µP (xT
(n)

) = p(x0)

n−1∏
k=0

∏
σ∈Lk

∏
τ∈S(σ)

Pk+1(xτ |xσ) n ≥ 1, (7)

then µP will be called a Markov chains field on the homogeneous tree T determined
by the stochastic matrix Pn and the distribution p.

Let µ be an arbitrary probability measure defined as (5), log is the natural
logarithm. Let

fn(ω) = − 1

|T (n)|
logµ(XT (n)

). (8)

fn(ω) is called the entropy density on subgraph T (n) with respect to µ. If µ = µP ,
then by (7),(8) we have

fn(ω) = − 1

|T (n)|
[log p(X0) +

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

logPk+1(xτ |xσ)]. (9)

The convergence of fn(ω) in a sense (L1 convergence, convergence in probability,
or almost sure convergence) is called the Shannon-McMillan theorem or the asymp-
totic equipartition property(AEP) in information theory. The Shannon-McMillan
theorem on the Markov chain has been studied extensively (see [7], cite2). In the
recent years, with the development of information theory scholars get to study the
Shannon-McMillan theorems for random field on the tree graph(see [3]). The tree
models have recently drawn increasing interest from specialists in physics, proba-
bility and information theory. Berger and Ye (see [1]) have studied the existence
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of entropy rate for G-invariant random fields. Recently, Ye and Berger (see [2])
have also studied the ergodic property and Shannon-McMillan theorem for PPG-
invariant random fields on trees. But their results only relate to convergence in
probability. Yang and Liu (see [12], [9]) have recently studied a.s. convergence
of Shannon-McMillan theorem for Markov chains indexed by a homogeneous tree
and the generalized Cayley tree. But Yang and Liu’s results only relate to the case
of homogeneous Markov chains fields on trees in a finite state space, they haven’t
consider the case of nonhomogeneous Markov chains field on trees in a countable
state space.

In this paper, we study a class of Shannon-McMillan theorem for nonhomoge-
neous Markov chains field which takes values in a countable alphabet set on the
homogeneous tree. As corollaries, several Shannon-McMillan theorems for a homo-
geneous Markov chains field on a homogeneous tree and the general nonhomoge-
neous Markov chain are obtained. A result which has been obtained is extended.

2. Main Results and its Proof

Theorem 1. Let X = {Xσ, σ ∈ T} be a nonhomogeneous Markov chains field
on a homogeneous tree, fn(ω) be defined as (9). Denote α > 0. Let Hk(Xτ |Xσ) be
the random conditional entropy of Xτ relative to Xσ on the measure µP , that is

Hk(Xτ |Xσ) = −
∑
xτ∈S

Pk+1(xτ |Xσ) logPk+1(xτ |Xσ) σ ∈ Lk, τ ∈ S(σ), k ≥ 0.

(10)
Set

bα = lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

E[(logPk+1(Xτ |Xσ))2Pk+1(Xτ |Xσ)−α|Xσ] <∞.

(11)
Then

lim
n→∞

[fn(ω)− 1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

Hk(Xτ |Xσ)] = 0. µP − a.s. (12)

Proof. On the probability space (Ω,F , µP ), Let λ > 0 be a constant, let

Qk(λ) = E[Pk+1(Xτ |Xσ)−λ|Xσ = xσ] =
∑
xτ∈S

Pk+1(xτ |xσ)1−λ, (13)

qk(λ;xτ , xσ) =
Pk+1(xτ |xσ)1−λ

Qk(λ)
, xτ , xσ ∈ S. (14)

g(λ;xT
(n)

) = p(x0)

n−1∏
k=0

∏
σ∈Lk

∏
τ∈S(σ)

qk(λ;xτ , xσ). (15)

Hence g(λ;xT
(n)

), n = 1, 2, · · · are a set of distribution functions. Set

tn(λ, ω) =
g(λ;XT (n)

)

µP (XT (n))
. (16)
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Apparently {tn(λ, ω), Fn, n ≥ 1} is a nonnegative martingale which converges al-
most surely (see [4]). Thus, by Doob’s martingale convergence theorem we have

lim
n→∞

tn(λ, ω) = t∞(λ, ω) <∞, µP − a.s. (17)

By (17) we have

lim sup
n→∞

1

|T (n)|
log tn(λ, ω) ≤ 0. µP − a.s. (18)

By (13)-(16), we have

1

|T (n)|
log tn(λ, ω)

=
1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

[−λ logPk+1(Xτ |Xσ)− logE(Pk+1(Xτ |Xσ)−λ|Xσ)]. (19)

By (18) and (19) we have

lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

[−λ logPk+1(Xτ |Xσ)− logE(Pk+1(Xτ |Xσ)−λ|Xσ)] ≤ 0.

µP − a.s. (20)

It follows from (20) that

lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

[−λ logPk+1(Xτ |Xσ)− E(−λ logPk+1(Xτ |Xσ)|Xσ)]

≤ lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

[
logE(Pk+1(Xτ |Xσ)−λ|Xσ)

− E(−λ logPk+1(Xτ |Xσ)|Xσ)]. µP − a.s. (21)

By the inequality ex − 1− x ≤ (1/2)x2e|x|, we have

x−λ − 1− (−λ) log x ≤ (1/2)λ2(log x)2x−|λ|, 0 ≤ x ≤ 1. (22)

Hence by (11), (21), (22) and the inequality log x ≤ x − 1, (x ≥ 0), in the case of
|λ| < α we have

lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

[−λ logPk+1(Xτ |Xσ)− E(−λ logPk+1(Xτ |Xσ)|Xσ)]

≤ lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

[
E(Pk+1(Xτ |Xσ)−λ|Xσ)− 1

−E(−λ logPk+1(Xτ |Xσ)|Xσ)]

≤ lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

E[
1

2
λ2 log2 Pk+1(Xτ |Xσ)Pk+1(Xτ |Xσ)−|λ||Xσ]
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≤ 1

2
λ2 lim sup

n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

E[log2 Pk+1(Xτ |Xσ)Pk+1(Xτ |Xσ)−α|Xσ]

=
1

2
λ2bα <∞ µP − a.s. (23)

In the case of 0 < λ < α, by (23) we have

lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

[− logPk+1(Xτ |Xσ)− E(− logPk+1(Xτ |Xσ)|Xσ)] ≤ 1

2
λbα,

µP − a.s. (24)

Choose 0 < λi < α, (i = 1, 2, · · · ) such that λi → 0 (i→∞), then for all i we have
by (24) that

lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

[− logPk+1(Xτ |Xσ)− E(− logPk+1(Xτ |Xσ)|Xσ)] ≤ 0.

µP − a.s. (25)

When −α < λ < 0, by virtue of (25) it can be shown in a similar way that

lim inf
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

[− logPk+1(Xτ |Xσ)− E(− logPk+1(Xτ |Xσ)|Xσ)] ≥ 0.

µP − a.s. (26)

It follows from (25) and (26) that

lim
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

[− logPk+1(Xτ |Xσ)− E(− logPk+1(Xτ |Xσ)|Xσ)] = 0.

µP − a.s. (27)

Noticing that

Hk(Xτ |Xσ) = −
∑
xτ∈S

Pk+1(xτ |Xσ) logPk+1(xτ |Xσ)

= E(− logPk+1(Xτ |Xσ)|Xσ), k ≥ 0.

It follows from (9) and (27) that

lim
n→∞

[fn(ω)− 1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

Hk(Xτ |Xσ)]

= lim
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

[− logPk+1(Xτ |Xσ)

−E(− logPk+1(Xτ |Xσ)|Xσ)] = 0. (28)

We complete the proof of the theorem.
{Xσ, σ ∈ T} will be called S−valued homogeneous Markov chains field indexed

by a homogeneous tree if for all n,

Pn = P = (P (y|x)), ∀x, y ∈ S. (29)
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Corollary 1. Let {Xσ, σ ∈ T} be a homogeneous Markov chains field indexed
by a homogeneous tree, fn(ω) and Hk(Xτ |Xσ) be defined by (9) and (10). Denote
0 < α < 1, if ∑

h∈S

∑
l∈S

log2 P (l|h)P (l|h)1−α <∞. (30)

Then

lim
n→∞

[fn(ω)− 1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

Hk(Xτ |Xσ)] = 0. µP − a.s. (31)

Proof. By (11), (29) and (30) we have

bα = lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

E[(log(P (Xτ |Xσ))2P (Xτ |Xσ)−α|Xσ]

= lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

∑
xτ∈S

(log(P (xτ |Xσ))2P (xτ |Xσ)1−α

= lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

∑
h∈S

∑
l∈S

δh(Xσ) log2 P (l|h)P (l|h)1−α

≤ lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

∑
h∈S

∑
l∈S

log2 P (l|h)P (l|h)1−α

≤
∑
h∈S

∑
l∈S

lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

log2 P (l|h)P (l|h)1−α

≤
∑
h∈S

∑
l∈S

lim sup
n→∞

|T (n)| − 1

|T (n)|
log2 P (l|h)P (l|h)1−α

=
∑
h∈S

∑
l∈S

log2 P (l|h)P (l|h)1−α <∞. (32)

Therefore, (31) follows from Theorem 1.

3. Some Shannon-McMillan Theorems on a Finite States Space

Corollary 2. Let X = {Xσ, σ ∈ T} be a nonhomogeneous Markov chains
field on a homogeneous tree which takes values in the finite alphabet set S =
{1, 2, · · · , N}, fn(ω) be defined as (9). Denote 0 < α < 1. Let Hk(Xτ |Xσ) be the
random conditional entropy of Xτ relative to Xσ on the measure µP , that is

Hk(Xτ |Xσ) = −
N∑

xk=1

Pk+1(xτ |Xσ) logPk+1(xτ |Xσ), σ ∈ Lk, τ ∈ S(σ), k ≥ 0.

Then

lim
n→∞

[fn(ω)− 1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

Hk(Xτ |Xσ)] = 0. µP − a.s. (33)
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Proof. Let 0 < α < 1 , consider the function

φ(x) = (log x)2x1−α, 0 < x ≤ 1, 0 < α < 1. (φ(0) = 0)

Let φ
′
(x) = 0, we get x = e2/(α−1). Therefore

max{φ(x), 0 ≤ x ≤ 1} = φ(e2/(α−1)) = (
2

α− 1
)2e−2. (34)

By (11) and (34) we have

bα = lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

E[(log(Pk+1(Xτ |Xσ))2Pk+1(Xτ |Xσ)−α|Xσ]

= lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

∑
xτ∈S

(log(Pk+1(xτ |Xσ))2Pk+1(xτ |Xσ)1−α

≤ lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

N∑
xτ=1

(
2

α− 1
)2e−2

= lim sup
n→∞

|T (n)| − 1

|T (n)|

N∑
xτ=1

(
2

α− 1
)2e−2 = N(

2

α− 1
)2e−2 <∞, µP − a.s. (35)

Hence (11) holds naturally. (33) follows from (12).
Corollary 3[7]. Let {Xn, n ≥ 0} be a nonhomogeneous Markov chain with the

initial distribution and the transition probabilities as follows:

p(i) > 0, i ∈ S.

Pk(j|i) > 0, i, j ∈ S, k = 1, 2, · · · .
Set

fn(ω) = − 1

n+ 1
[log p(X0) +

n−1∑
k=0

logPk(Xk+1|Xk)],

Hk(Xk+1|Xk) = −
N∑

xk+1=1

Pk+1(xk+1|Xk) logPk+1(xk+1|Xk).

Then

lim
n→∞

[fn(ω)− 1

n+ 1

n−1∑
k=0

Hk(Xk+1|Xk)] = 0. a.s. (36)

Proof. Letting |S(0)| = |S(σ)| = 1, at this time the nonhomogeneous Markov
chains field on the homogeneous tree is just the general nonhomogeneous Markov
chain. (36) follows from Theorem 1.

4. Derivation Results

Theorem 2. Let X = {Xσ, σ ∈ T} be a nonhomogeneous Markov chains
field on a homogeneous tree which takes values in the countable alphabet set S =
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{s1, s2, · · · }, fn(ω) be defined as (9). Denote α ≥ 0, 0 < C < 1. Set

Cα = lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

E[Pk+1(Xτ |Xσ)−(2+α)I{Pk+1(Xτ |Xσ)≤C}|Xσ] <∞,

µP − a.s. (37)

Then

lim
n→∞

[fn(ω)− 1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

Hk(Xτ |Xσ)] = 0. µP − a.s. (38)

Proof. By (11) and (37), noticing 0 ≥ log x ≥ 1 − 1/x, (1 > x > 0), denote
Pk+1(Xτ |Xσ) = Pk+1 in brief, we have

bα = lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

E[log2 Pk+1(Xτ |Xσ)Pk+1(Xτ |Xσ)−α|Xσ]

= lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

E
[
(logPk+1)2P−αk+1(I{Pk+1(Xτ |Xσ)≤C}

+I{Pk+1(Xτ |Xσ)>C}|Xσ

]
≤ lim sup

n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

E[(logPk+1)2P−αk+1I{Pk+1(Xτ |Xσ)≤C}|Xσ]

+ lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

C−α(logC)2

≤ lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

E[(1− 1

Pk+1
)2P−αk+1I{Pk+1(Xτ |Xσ)≤C}|Xσ]

+ lim sup
n→∞

|T (n)| − 1

|T (n)|
C−α(logC)2

= lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

E[(Pk+1 − 1)2P
−(2+α)
k+1 I{Pk+1(Xτ |Xσ)≤C}|Xσ]

+ C−α(logC)2

≤ lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

E[P
−(2+α)
k+1 I{Pk+1(Xτ |Xσ)≤C}|Xσ]

+ C−α(logC)2 <∞. µP − a.s. (39)

Therefore (38) follows from Theorem 1.
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