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RELAXATIONS OF HALL’S CONDITION:

OPTIMAL BATCH CODES WITH MULTIPLE QUERIES

Csilla Bujtás, Zsolt Tuza

Combinatorial batch codes model the storage of a database on a given number
of servers such that any k or fewer items can be retrieved by reading at most t
items from each server. A combinatorial batch code with parameters n, k,m, t
can be represented by a system F of n (not necessarily distinct) sets over an
m-element underlying set X, such that for any k or fewer members of F
there exists a system of representatives in which each element of X occurs
with multiplicity at most t. The main purpose is to determine the minimum
N(n, k,m, t) of total data storage

∑

F∈F
|F | over all combinatorial batch

codes F with given parameters.

Previous papers concentrated on the case t = 1. Here we obtain the first

nontrivial results on combinatorial batch codes with t > 1. We determine

N(n, k,m, t) for all cases with k ≤ 3t, and also for all cases where n ≥

t
( m
⌈k/t⌉ − 2

)

. Our results can be considered equivalently as minimum total

size
∑

F∈F
|F | over all set systems F of given order m and size n, which

satisfy a relaxed version of Hall’s Condition; that is, |
⋃

F ′| ≥ |F ′|/t holds

for every subsystem F ′ ⊆ F of size at most k.

1. INTRODUCTION

Combinatorial batch codes and dual systems. Batch codes were introduced
by Ishai, Kushilevitz, Ostrovsky and Sahai [10]. They represent the dis-
tributed storage of an n-element database on a set of m servers when any k or
fewer data items can be recovered by submitting a limited number t of queries
to each server. This model can be used for amortizing the computational cost in
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private information retrieval. Combinatorial batch code, studied in detail first by
Paterson, Stinson and Wei [13], is the version of a batch code in which each
server stores a subset of the database and decoding simply means reading items
from servers. The latter model admits a purely combinatorial definition as a set
system satisfying a requirement on systems of representatives. Therefore, it is in
close connection with Hall-type conditions.

A set system F over an underlying set X is the collection of some nonempty
subsets of X. Objects x ∈ X are called elements whilst objects F ∈ F are referred
to as members. Moreover, the order and the size of a system F are the number
|X | of elements and the number |F| of members, respectively. The total size of a

system F is defined as
∑

F∈F

|F |. Throughout this paper, ‘set system’ is meant as a

‘multisystem’; that is, repetitions are allowed, distinct members of the system may
correspond to the same subset of the underlying set.

A combinatorial batch code with parameters n, k,m, t can be represented with
its ‘dual’ set system (shortly, CBC∗(n, k,m, t)-system) F , where the m elements of
the underlying set correspond to the m servers and the members of F correspond
to the n items of data. A member Fi ∈ F then means the set of servers where the
ith data item is stored. Hence, the total amount of data collectively stored by the
m servers—which is the object of minimization—equals the total size of system F .
The formal definition of a CBC∗(n, k,m, t)-system can be given as follows.

Definition 1. For positive integers k and t, a set system F is a CBC∗(k, t)-system
if, for every subsystem F ′ = {F1, . . . , Fℓ} ⊆ F of size 1 ≤ ℓ ≤ k, there exist elements

x1, . . . , xℓ such that xi ∈ Fi holds for every 1 ≤ i ≤ ℓ and each element of X has

multiplicity at most t in {x1, . . . , xℓ}. A set system F over the underlying set X
is called a CBC∗(n, k,m, t)-system if |F| = n, |X | = m, and F is a CBC∗(k, t)-

system. Moreover, N(n, k,m, t) := min
F

∑

F∈F

|F | denotes the minimum total size of

a system taken over all CBC∗(n, k,m, t)-systems F , subject to that there exists at

least one such system.

Note that if both mt < k and mt < n hold, no CBC∗(n, k,m, t)-system exists.
Otherwise, the system containing the underlying set X as member with multiplicity
n is a CBC∗(n, k,m, t) and hence N(n, k,m, t) is well-defined. We will assume
throughout that n, k,m and t denote positive integers such that mt ≥ min{n, k}.
Systems which are CBC∗(n, k,m, t) and have minimum total size N(n, k,m, t) will
be called optimal.

Hall-type conditions. Hall’s Theorem [9] and related results on algorithms serve
as basic tools in several branches of combinatorics and discrete optimization. Also,
nonstandard Hall-type conditions and their consequences were intensively studied
(see, e.g., [6, 7, 8, 11, 12]). Each earlier paper on combinatorial batch codes with
t = 1 applied Hall’s Condition. Here we use a relaxed version whose origin goes
back to the works [7, 8, 12].
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Definition 2. We say that a set system F satisfies the (k, t)-Hall Condition
(shortly, (k, t)-HC) if |

⋃

F ′| ≥ |F ′|/t holds for every subsystem F ′ ⊆ F which

contains at most k members.

Results. In [1, 2, 3, 4, 10, 13] several results on combinatorial batch codes were
obtained, moreover their connections with transversal matroids [2], unbalanced
expander graphs [10] and binary constant-weight codes [1] were also pointed out.
These papers considered—nearly exclusively—the case of t = 1, although some
simple relations between combinatorial batch codes with t > 1 and those with
t = 1 were established in [10].

In this paper we obtain the first nontrivial results for the case of general t. In
Section 2 we prove the Equivalence Theorem, which is a three-sided characteriza-
tion: beside the equivalence of the (k, t)-Hall Condition and the property of being a
CBC∗(k, t)-system, the requirement can also be expressed in a form which implies
that if ⌈k/t⌉ = ⌈k′/t⌉ then a CBC∗(k, t)-system is a CBC∗(k′, t)-system and vice
versa. Some further basic properties and a cardinality-balancing transformation
will be presented, too. In Section 3 and Section 4 we determine the minimum total

size N(n, k,m, t) for all parameters satisfying n ≥ t
(

m
⌈k/t⌉ − 2

)

and for all cases

where k ≤ 3t, respectively. By the Equivalence Theorem, several methods devel-
oped originally for the case t = 1 can be applied for the general setting t ≥ 1. Our
proof techniques used here are similar to those in [3] and occasionally to those in
[1] and [13], too. Some results proved here have been announced without proofs in
[5].

2. SOME BASIC PROPERTIES

In this section we deal with three types of properties. First, we give three
equivalent conditions for a system to be a CBC∗(k, t). Then, we present some
basic inequalities about the size distributions of members in a CBC∗(n, k,m, t),
and finally we show that for every four-tuple of parameters there exists an optimal
CBC∗(n, k,m, t) which either does not contain members larger than ⌈k/t⌉ − 1 or
does not contain members smaller than ⌈k/t⌉ − 1.

In the following theorem, the equivalence of (i) and (ii) is a consequence of
more general results on systems of representatives [8, 12, 7], hence we prove only
the equivalence of (ii) and (iii).

Theorem 3. (Equivalence Theorem) For all positive integers k and t, and for

every set system F , the following statements are equivalent:

(i) F is a CBC∗(k, t)-system.

(ii) F satisfies the (k, t)-Hall Condition.

(iii) For every ℓ < ⌈k/t⌉ and for every ℓ-element subset X ′ of the underlying set,

at most ℓt members of F are subsets of X ′.
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Proof. (ii) ⇔ (iii) We prove the equivalence of the negations of (ii) and (iii). If
(ii) does not hold, there exists a subsystem F ′ ⊆ F of size i ≤ k, for which the
union X ′ =

⋃

F has at most ⌈i/t⌉ − 1 elements. That is, X ′ contains at least
i > t (⌈i/t⌉ − 1) ≥ t|X ′| members of F , and also |X ′| ≤ ⌈k/t⌉ − 1 is valid. This
means that (iii) does not hold either. From the other direction, if a subset X ′ ⊆ X
of cardinality ℓ ≤ ⌈k/t⌉− 1 contains more than ℓt members from F , then the union
of any ℓt+1 ≤ k of these members can contain at most |X ′| = ℓ < ℓ+1 = ⌈(ℓt+1)/t⌉
elements, which contradicts (ii). �

Part (iii) of Theorem 3 expresses the (k, t)-Hall Condition referring only to
⌈k/t⌉ and t as parameters. Hence, if an integer t > 1 is fixed, not the exact value
of k but only ⌈k/t⌉ is that really matters the meaning of (k, t)-HC. Particularly, it
would suffice to determine the optimal total size N(n, k,m, t) only for cases where
k is divisible by t.

Corollary 4. Assume that ⌈k/t⌉ = ⌈k′/t⌉. Then, a system F is a CBC∗(k, t)-
system if and only if it is a CBC∗(k′, t)-system; moreover, F satisfies the (k, t)-
Hall Condition if and only if it satisfies the (k′, t)-Hall Condition. Particularly, if

⌈k/t⌉ = ⌈k′/t⌉ then N(n, k,m, t) = N(n, k′,m, t) is valid for all n and m.

From now on, also requirement (iii) from the Equivalence Theorem will be
referred to as (k, t)-HC. Applying Theorem 3, the next necessary condition for
systems satisfying (k, t)-HC is easy to verify. The analogous result for the special
case of t = 1 first appeared in a proof of [13], and later it was stated in [1] and [3]
as well.

Theorem 5. Let F be a CBC∗(n, k,m, t) and let ℓi denote the number of i-element

members of F , for every 1 ≤ i ≤ ⌈k/t⌉. Then,

⌈k/t⌉−1
∑

i=1

ℓi

(

m− i

⌈k/t⌉ − 1− i

)

≤ t

(⌈

k

t

⌉

− 1

)(

m

⌈k/t⌉ − 1

)

.

Proof. We are going to estimate the number z of pairs (F,A) with F ∈ F , F ⊆ A ⊆
X and |A| = ⌈k/t⌉ − 1. Every i-element member F from F is contained in exactly
(

m− i
⌈k/t⌉ − 1− i

)

such subsets A. Consequently, z =
⌈k/t⌉−1∑

i=1

ℓi

(

m− i
⌈k/t⌉ − 1− i

)

. On the

other hand, since F satisfies (k, t)-HC, every (⌈k/t⌉ − 1)-element A ⊆ X contains

at most t(⌈k/t⌉ − 1) members from F . Therefore, z ≤ t(⌈k/t⌉ − 1)
(

m
⌈k/t⌉ − 1

)

and

the inequality stated in the theorem follows.

Corollary 6. Every CBC∗(n, k,m, t) contains at most t (⌈k/t⌉ − 1)
(

m
⌈k/t⌉ − 1

)

members of size not exceeding ⌈k/t⌉ − 1.

Due to the Equivalence Theorem, we can take some observations on exten-
sions of a CBC∗(k, t)-system F with a new member F ⊆ X. First, since the fulfil-
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ment of (k, t)-HC depends only on members of size at most ⌈k/t⌉− 1, the following
statement clearly holds.

Observation 7. If F is a CBC∗(k, t)-system and |F | ≥ ⌈k/t⌉, then F ∪ {F} is

a CBC∗(k, t)-system, as well. Therefore, an optimal CBC∗(n, k,m, t)-system does

not contain members of size greater than ⌈k/t⌉.

Second, since a member F of size ⌈k/t⌉− 1 is not contained in a (⌈k/t⌉− 1)-
element subset of X other than itself, the following statement is valid.

Proposition 8. Let F be a CBC∗(k, t)-system and |F | = ⌈k/t⌉−1. Then, F ∪{F}
is a CBC∗(k, t)-system if and only if F contains fewer than t(⌈k/t⌉ − 1) members

from F . Moreover, if ℓi denotes the number of members of size i in F (for each

1 ≤ i ≤ ⌈k/t⌉ − 1), then F can be extended with L appropriately chosen new

members each of cardinality ⌈k/t⌉ − 1, such that the system remains a CBC∗(k, t),
if and only if

L ≤ t

(⌈

k

t

⌉

− 1

)(

m

⌈k/t⌉ − 1

)

−

⌈k/t⌉−1
∑

i=1

ℓi

(

m− i

⌈k/t⌉ − 1− i

)

.

Next, we present a transformation which is applicable for two members of a
CBC∗(n, k,m, t) if one of them contains the other. Then, some (any) elements from
the larger member can be transferred to the smaller one and the system remains a
CBC∗(n, k,m, t) with the same total size. This transformation was introduced in
[3] (Proposition 1) for the case t = 1. In fact the proof remains the same for the
general case t ≥ 1, hence it is omitted here.

Proposition 9. [3] Let F be a CBC∗(n, k,m, t) with two members F1 ⊂ F2 for

which |F1| + 2 ≤ |F2| and let A be a nonempty set such that A ⊂ F2 \ F1. Then,
replacing F1 and F2 with F ′

1
= F1 ∪ A and F ′

2
= F2 \A, the obtained system F ′ is

a CBC∗(n, k,m, t) as well, and the two systems F and F ′ have the same total size.

We say that a CBC∗ is of type [a, b] if the size of each F ∈ F satisfies
a ≤ |F | ≤ b. Due to Observation 7, every optimal CBC∗(n, k,m, t)-system is of
type [1, ⌈k/t⌉]. By Proposition 9 we can prove a stronger result for ⌈k/t⌉ ≥ 3.

Proposition 10. If ⌈k/t⌉ ≥ 3, then for every optimal CBC∗(n, k,m, t)-system F ,
there exists an F ′ which is an optimal CBC∗(n, k,m, t) as well, and has type either

[1, ⌈k/t⌉ − 1] or [⌈k/t⌉ − 1, ⌈k/t⌉].

Proof. Suppose that an optimal CBC∗(n, k,m, t)-system F contains a member F1

of size ℓ ≤ ⌈k/t⌉−2 and also a member F2 of size ⌈k/t⌉. Observation 7 implies that
F2 can be replaced with any ⌈k/t⌉-element subset F ′

2
of the underlying set. Let

us choose this new member such that F ′
2
⊃ F1. Now, applying the transformation

described in Proposition 9, an optimal CBC∗(n, k,m, t)-systemF ′ is obtained which
contains fewer members of size ⌈k/t⌉ than F did. Repeated application of this
procedure yields an optimal CBC∗(n, k,m, t) of type either [1, ⌈k/t⌉−1] or [⌈k/t⌉−
1, ⌈k/t⌉]. �
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In the simple cases listed in the following observation it is enough to take n
singletons to obtain a CBC∗(n, k,m, t).

Observation 11. If at least one of n ≤ tm and k ≤ t is valid, then N(n, k,m, t) =
n.

The next proposition is the generalization of Theorem 4 of [13].

Proposition 12. For every four positive integers n, k,m and t, if m = ⌈k/t⌉ and
n ≥ tm, then N(n, k,m, t) = mn− tm(m− 1).

Proof. Under the given conditions consider a CBC∗(n, k,m, t)-system F . By (k, t)-
HC, for every element x of the underlying set X, the (m− 1)-element set X \ {x}
covers entirely at most t(m − 1) members of F . Thus, x has to be involved in at
least n− t(m− 1) members of F . Therefore, counting the total size of the system
by summing up the degrees of elements, N(n, k,m, t) ≥ m(n− t(m−1)) must hold.
On the other hand, let F∗ be the system over the underlying set X = {x1, . . . , xm},
in which X is a member with multiplicity n − tm and each singleton {xi} occurs
with multiplicity t. Clearly, F∗ is a CBC∗(n, k,m, t)-system and its total size is
exactly tm+ (n− tm)m = mn− tm(m− 1). This verifies the statement.

3. OPTIMUM VALUES FOR n ≥ t

(

m
⌈k/t⌉ − 2

)

Theorem 13. If m ≥
⌈

k

t

⌉

and n > t
(⌈

k

t

⌉

− 1
)(

m
⌈k/t⌉ − 1

)

, then

N(n, k,m, t) = n

⌈

k

t

⌉

− t

(⌈

k

t

⌉

− 1

)(

m

⌈k/t⌉ − 1

)

.

Proof. Consider parameters n, k,m and t satisfying the conditions given in the
theorem. Due to Corollary 6, the number of members of F which are of size smaller

than ⌈k/t⌉ is at most t (⌈k/t⌉ − 1)
(

m
⌈k/t⌉ − 1

)

. Thus, under the present conditions,

system F cannot be of type [1, ⌈k/t⌉ − 1]. Then, Proposition 10 implies that there
exists an optimal CBC∗(n, k,m, t)-system F of type [⌈k/t⌉−1, ⌈k/t⌉]. The total size
of F is precisely n ⌈k/t⌉ − n′ where n′ denotes the number of (⌈k/t⌉ − 1)-element
members. Applying Corollary 6 again, we obtain

N(n, k,m, t) = n

⌈

k

t

⌉

− n′ ≥ n

⌈

k

t

⌉

− t

(⌈

k

t

⌉

− 1

)(

m

⌈k/t⌉ − 1

)

.

On the other hand, take each (⌈k/t⌉−1)-element subset of an m-element underlying

setX with multiplicity t (⌈k/t⌉ − 1) and further n−t (⌈k/t⌉ − 1)
(

m
⌈k/t⌉ − 1

)

subsets
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of X, each of cardinality ⌈k/t⌉. This construction is clearly a CBC∗(n, k,m, t)-

system and proves that N(n, k,m, t) ≤ n⌈k/t⌉ − t (⌈k/t⌉ − 1)
(

m
⌈k/t⌉ − 1

)

. This

verifies the theorem. �

To obtain a formula for the second highest range of n, we will apply the
following technical lemma proved in [3].

Lemma 14. [3] For any three integers i, p,m, if 1 ≤ i ≤ p ≤ m− 1, then

⌊(

(

m− i
p− i

)

− 1

)

/(m− p)

⌋

≥ p− i.

Theorem 15. If m ≥
⌈

k

t

⌉

≥ 3 and t
(

m
⌈k/t⌉ − 2

)

≤ n ≤ t
(⌈

k

t

⌉

− 1
)(

m
⌈k/t⌉ − 1

)

,

then

N(n, k,m, t) = n

(⌈

k

t

⌉

− 1

)

−













t
(⌈

k

t

⌉

− 1
)(

m
⌈k/t⌉ − 1

)

− n

m−
⌈

k

t

⌉

+ 1













.

Proof. If m = ⌈k/t⌉, the statement yields N(n, k,m, t) = mn− tm(m− 1) which
corresponds to Proposition 12. Hence, we assume that m > ⌈k/t⌉. Let us introduce
the notation

K :=

⌈

k

t

⌉

, y :=













t(K − 1)
(

m
K − 1

)

− n

m−K + 1













.

We construct a CBC∗(n, k,m, t)-system F∗ on an m-element underlying set
X as follows. First, choose y sets, each of cardinalityK−2, such that every (K−2)-
element subset of X has multiplicity at most t. This can be done, since by the given
condition, t

(

m
K−2

)

≤ n holds and hence,

y ≤

t(K − 1)
(

m
K − 1

)

− n

m−K + 1
≤

t(m−K + 2)
(

m
K − 2

)

− t
(

m
K − 2

)

m−K + 1
= t

(

m

K − 2

)

.

Since every (K − 2)-element subset of X contains at most t members, and every
(K− 1)-element subset contains at most t(K− 1) members, the obtained system is
a CBC∗(k, t). Moreover, in view of Proposition 8, the following inequality proves
that the system can be extended with n − y members, each of cardinality K − 1,
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such that a CBC∗(n, k,m, t)-system F∗ is obtained.

t (K − 1)

(

m

K − 1

)

−













t(K − 1)
(

m
K − 1

)

− n

m−K + 1













(m−K + 2)

≥ t (K − 1)

(

m

K − 1

)

−

(

t (K − 1)

(

m

K − 1

)

− n

)

− y = n− y.

The total size of F∗ is n(K− 1)− y, hence this is an upper bound on N(n, k,m, t).

Turning to the lower bound, by Proposition 10 there exists an optimal
CBC∗(n, k,m, t) of type either [1,K − 1] or [K − 1,K]. But if a CBC∗(n, k,m, t)
belongs to the latter type and contains a member of size K as well, then its total
size is greater than n(K − 1) − y and consequently it cannot be optimal. Thus,
there exists an optimal CBC∗(n, k,m, t)-system F of type [1,K − 1].

For every 1 ≤ i ≤ K − 1, denote by ℓi the number of members of size i in F .
The total size of F is

(1) S(F) =
K−1
∑

i=1

iℓi = (K − 1)n−
K−2
∑

i=1

(K − 1− i) ℓi.

On the other hand, Theorem 5 yields

ℓK−1 +

K−2
∑

i=1

ℓi

(

m− i

K − 1− i

)

≤ t(K − 1)

(

m

K − 1

)

.

Substituting ℓK−1 = n− (ℓ1 + · · ·+ ℓK−2), this implies

(2)

K−2
∑

i=1

ℓi













(

m− i
K − 1− i

)

− 1

m−K + 1













≤













t(K − 1)
(

m
K − 1

)

− n

m−K + 1













= y.

Now, we verify that S(F) ≥ (K − 1)n− y holds. With p = K − 1, Lemma 14
states that for every 1 ≤ i ≤ K − 2

K − 1− i ≤













(

m− i
K − 1− i

)

− 1

m−K + 1













is valid. Together with (1) and (2) this implies

S(F) = (K − 1)n−
K−2
∑

i=1

(K − 1− i) ℓi ≥ (K − 1)n−
K−2
∑

i=1

ℓi













(

m− i
K − 1− i

)

− 1

m−K + 1













≥ (K − 1)n− y.
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Therefore, N(n, k,m, t) = S(F) ≥ (K − 1)n− y follows, which completes the proof
of the theorem. �

The results analogous to Theorems 13 and 15 with t = 1 were obtained in
[13] and [3], respectively.

4. OPTIMUM VALUES FOR k ≤ 3t

In this section we determine exact formulae for the minimum total size
N(n, k,m, t) of combinatorial batch codes for all cases when k ≤ 3t holds. Due
to Observation 11, if ⌈k/t⌉ = 1 then N(n, k,m, t) = n. Applying results from the
previous section, formulae for the remaining cases t < k ≤ 2t and 2t < k ≤ 3t can
be obtained.

Theorem 16. If
⌈

k

t

⌉

= 2 and m ≥ 2, then

N(n, k,m, t) = n if n ≤ tm;
N(n, k,m, t) = 2n− tm if n > tm.

Proof Observation 11 and Theorem 13 together cover all possibilities for ⌈k/t⌉ = 2
and yield the formulae in the statement. �

Theorem 17. If
⌈

k

t

⌉

= 3 and m ≥ 3, then

N(n, k,m, t) = n if n ≤ tm;

N(n, k,m, t) = 2n−mt+
⌈

n−mt

m− 2

⌉

if tm < n ≤ 2t
(

m
2

)

;

N(n, k,m, t) = 3n− 2t
(

m
2

)

if 2t
(

m
2

)

< n.

Proof. Observation 11 yields the first formula whilst Theorem 13 yields the third
one, by a simple substitution. Moreover, the condition tm < n ≤ tm(m − 1)
corresponds to that in Theorem 15. After substituting ⌈k/t⌉ = 3, the following
computation yields the second formula:

N(n, k,m, t) = 2n−













2t
(

m
2

)

− n

m− 2













= 2n−mt−

⌊

tm− n

m− 2

⌋

= 2n−mt+

⌈

n−mt

m− 2

⌉

.

which concludes the proof. �

For the particular case of t = 1 the theorems above yield a direct consequence
of Theorem 8 from [13] and Theorem 1 from [3].
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