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Abstract. Let B be a doubly-connected domain bounded by two Dini-smooth

curves. In this work, we prove some direct theorems of approximation theory in
weighted rearrangement invariant Smirnov spaces EX (B,ω) defined on B. For

this, approximation properties of the Faber-Laurent rational series expansions

are used.

1. Introduction and Main Results

Let B be a doubly connected domain in the complex plane C, bounded by
two rectifiable Jordan curves Γ1 and Γ2 (the closed curve Γ2 in the closed curve
Γ1). Without loss of generality we suppose that 0 ∈ IntΓ2. Let B0

1 := IntΓ1,
B∞1 := ExtΓ1, B

0
2 := IntΓ2, B

∞
2 := ExtΓ2. Further, we set

T := {w ∈ C : |w| = 1} , D := IntT, D− := ExtT.

We denote by ω = ϕ(z) and ω = ϕ
1
(z) the conformal mappings of B∞1 and B0

2 onto
D − normalized as

ϕ (∞) =∞, lim
z→∞

ϕ(z)
z = 1

and

ϕ
1

(0) =∞, lim
z→0

zϕ
1

(z) = 1

respectively, and let ψ and ψ
1

be inverses of ϕ and ϕ
1
.

We assume that G is a simply-connected domain with a rectifiable Jordan bound-
ary Γ and G− := ExtΓ.

Let Lp (Γ) and Ep (G) (1 ≤ p <∞) be the Lebesgue space of measurable complex
valued functions on Γ and the Smirnov class of analytic functions in G, respectively.
It is known that every function f ∈ E1 (G) has non-tangential boundary values a.
e. on Γ and if we use the same notation for the non-tangential boundary value of
f, then f ∈ L1 (Γ) .

Let Γ ⊂ C be a closed rectifiable Jordan curve with the Lebesgue length mea-
sure |dτ | and let X (Γ) be rearrangement invariant space over Γ, generated by a
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rearrangement invariant function norm ρ, with associate space X ′ (Γ) . For each
f ∈ X (Γ) we define

‖f‖X(Γ) := ρ (|f |) , f ∈ X (Γ) .

A rearrangement invariant space X (Γ) equipped with norm ‖.‖X(Γ) is a Banach

space [5, pp. 3-5].
It is well known that

‖f‖X(Γ) = sup


∫
Γ

|fg| |dτ | : g ∈ X ′ (Γ) , ‖g‖X′(Γ) ≤ 1

 (1)

and

‖g‖X′(Γ) = sup


∫
Γ

|fg| |dτ | : f ∈ X (Γ) , ‖f‖X(Γ) ≤ 1

 .

hold.
If f ∈ X and g ∈ X ′, then fg is summable and the Hölder inequality∫

Γ

|fg| |dτ | ≤ ‖f‖X(Γ) ‖g‖X′(Γ)

holds [5, p. 9].
For definitions and fundamental properties of general rearrangement invariant

spaces we refer to [5].
A measurable function ω : Γ → [0,∞] is called a weight function if the set

ω−1 ({0,∞}) has Lebesgue measure zero. Let X (Γ) be a rearrangement invariant
space and ω be a weight function on Γ. The space of measurable functions f : Γ→ C
for which fω ∈ X (Γ) is denoted by X (Γ, ω) . X (Γ, ω) is a Banach space with
respect to the norm

‖f‖X(Γ,ω) := ‖fω‖X(Γ) ,

and is called a weighted rearrangement invariant space.
If ω ∈ X (Γ) and 1/ω ∈ X ′ (Γ) , then X (Γ, ω) is a Banach function space and

from the Hölder’s inequality we have

L∞ (Γ) ⊂ X (Γ, ω) ⊂ L1 (Γ) .

By the Luxemburg representation theorem [5, Theorem 4.10, p.62], there is
a unique rearrangement invariant function norm ρ over Lebesgue measure space
([0, |Γ|] ,m) , where |Γ| is the Lebesgue length of Γ, such that ρ (f) = ρ (f∗) for
all non-negative and almost everywhere (a. e.) finite measurable functions f de-
fined on Γ. Here f∗ denotes the non-increasing rearrangement of f [5, p. 39].
The rearrangement invariant space over ([0, |Γ|] ,m) generated by ρ is called the
Luxemburg representation of X (Γ) and is denoted by X.

Let f be a non-negative, almost everywhere finite and measurable function on
[0, |Γ|] . For each x > 0 we consider the dilatation operator Hx defined by

(Hxf) (t) :=

{
f (xt) , xt ∈ [0, |Γ|]

0, xt /∈ [0, |Γ|] , t ∈ [0, |Γ|] .



APPROXIMATION BY FABER-LAURENT RATIONAL FUNCTIONS 115

It is known [5, p. 165] that H1/x ∈ B
(
X
)

for each x > 0, where B
(
X
)

is the

Banach algebra of bounded linear operators on X. Let h
X

(x) denote the operator
norm of H1/x i.e., h

X
(x) :=

∥∥H1/x

∥∥
B(X) .

The numbers

αX := lim
x→0

log h
X

(x)

log x , βX := lim
x→∞

log h
X

(x)

log x

are called lower and upper Boyd indices of the rearrangement invariant space X (Γ) ,
respectively. The Boyd indices αX and βX are said to be nontrivial if 0 < αX ≤
βX < 1.

Let be ω weight on Γ. Now we denote by EX (G,ω) the class of functions
f ∈ E1 (G) for which the boundary function f belongs to X (Γ, ω) . The class of
functions EX (G,ω) will be called weighted rearrangement invariant Smirnov space
with respect to domain G ([14]). Obviously, the class EX (G,ω) is wider than
weighted Smirnov classes Ep (G,ω) and as well as the weighted Smirnov-Orlicz
classes EM (G,ω) given in [13]. Each function f ∈ EX (G,ω) has a non-tangential
boundary values a. e. on Γ.

Definition 1. A smooth Jordan curve Γ is called Dini-smooth, if the function
θ (s) , the angle between the tangent line and the positive real axis expressed as
a function of arclength s, has modulus of continuity Ω (θ, s) satisfying the Dini-
condition

δ∫
0

Ω (θ, s)

s
ds <∞, δ > 0.

For z ∈ Γ and ε > 0, we denote by Γ (z, ε) the portion of Γ in the open disk of
radius ε centered at z, i. e.,

Γ (z, ε) := {t ∈ Γ : |t− z| < ε} .
For fixed 1 < p < ∞ and 1/p + 1/q = 1. A weight function ω belongs to the

Muckenhoupt class Ap (Γ) if

sup
z∈Γ

sup
ε>0

1

ε

∫
Γ(z,ε)

ω (x)
p |dx|


1/p1

ε

∫
Γ(z,ε)

ω (x)
−q |dx|


1/q

<∞.

Let X (T) be a reflexive rearrangement invariant space with non-trivial Boyd indices
αX and βX , and be ω weight function such that ω ∈ A1/αX

(T) ∩ A1/βX
(T) . For

given function g ∈ X (T, ω) we define the shift operator σh

σhg (x) := 1
2h

h∫
−h

g
(
weit

)
dt, 0 < h < π,w ∈ T,

and later r-th modulus of smoothness Ωr (·, δ)X,ω (r = 1, 2, ...)

Ωr (g, δ)X,ω := sup
0≤hi≤δ
1≤i≤r

∥∥∥∥∥
r∏
i=1

(I − σhi
) g

∥∥∥∥∥
X(T,ω)

, δ > 0

where I is the identity operator. Since the operator σh is a bounded linear operator
in X (T, ω) [10, Lemma 2.2], this modulus of smoothness is well defined.
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In this definition we use as shift the mean value operator σh and the modulus
of smoothness Ωr (·, δ)X,ω in such way since the space X (T, ω) is non-invariant, in

general, under the usual shift g (·)→ g (·+ h) .
If Γ1 and Γ2 are Dini-smooth, then from the results in [28], it follows that

0 < c
1
≤ |ϕ′ (z)| ≤ c

2
<∞, 0 < c

3
≤
∣∣ϕ′

1
(z)
∣∣ ≤ c

4
<∞, (2)

0 < c5 ≤
∣∣ψ′ (w)

∣∣ ≤ c6 <∞, 0 < c7 ≤
∣∣ψ′

1
(w)
∣∣ ≤ c8 <∞

where the constants c1 , c2 , c3 , c4 , c5 , c6 , c7 and c8 which are independent of z ∈ B
and |w| ≥ 1.

We will say that the doubly connected domain B is bounded by the Dini-smooth
curve if the domains B0

1 and B0
2 are bounded by the closed Dini-smooth curves.

Let Γi (i = 1, 2) be a Dini-smooth curve and be ω a weight on Γ1 ∪ Γ−2 . We can
consider ω as weight on Γ1 and Γ2 separately. We associate with ω, the following
two weights defined on T by ω0 := ω ◦ ψ and ω1 := ω ◦ ψ

1
, and let f0 := f ◦ ψ

for f ∈ X (Γ1, ω) and let f1 := f ◦ ψ
1

for f ∈ X (Γ2, ω) . Then by (2) we get
f

0
∈ X (T, ω

0
) and f

1
∈ X (T, ω

1
) . Using the non-tangential boundary values of

f+
0

and f+
1

on T, we define

ΩΓ
r (f, δ)X,ω := Ωr

(
f+

0
, δ
)
X,ω

0

, Ω̃Γ
r (f, δ)X,ω := Ωr

(
f+

1
, δ
)
X,ω

1

, δ > 0, (3)

for r = 1, 2, ... .
For f

0
∈ X (T, ω) , since ω

0
∈ A1/αX

(T) ∩ A1/βX
(T) , Lemma 1 and Theorem

4 in [14] we can deduce that f+
0
∈ EX (D, ω0) and f−

0
∈ EX (D−, ω0) such that

f−
0

(∞) = ∞. Similarly, since f1 ∈ X (T, ω) and ω1 ∈ A1/αX
(T)∩ A1/βX

(T) , we

have f+
1
∈ EX (D, ω1) and f−

1
∈ EX (D−, ω1) such that f−

1
(∞) = 0. Moreover for

two functions f0 , f1 ∈ X (T, ω) we have

f0 (t) = f+
0

(t)− f−
0

(t) , f1 (t) = f+
1

(t)− f−
1

(t) (4)

a.e. on T.
Let us take

Lr := {z : |ϕ(z)| = r} , LR :=
{
z :
∣∣ϕ

1
(z)
∣∣ = R

}
for r,R > 1. ϕ has the Laurent expansion in some neighbourhood of the point
z =∞ has the form

ϕ(z) = αz + α0 + α1

z + α2

z2 + ...+ αn

zn + ...

and by this we get

[ϕ(z)]
k

= αkzk +
k−1∑
i=0

αk,iz
i +

∑
k<0

αk,iz
i.

The polynomial

Fk (z) = αkzk +
k−1∑
i=0

αk,iz
i

is called the Faber polynomial of order k for the domain B0
1 .

The function ϕ
1

has an expansion in some neigbourhood of the origin:

ϕ
1

= 1
z + β0 + β1z + ...+ βnz

n + ....
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Raising this function to the power k, we obtain[
ϕ

1
(z)
]k

= F̃k
(

1
z

)
− Ẽk (z) , z ∈ B0

2 ,

where F̃k
(

1
z

)
denotes the polynomial of negative powers of z and the term Ẽk (z)

contains non-negative powers of z; hence this is analytic function in the domain
B0

2 .
If a function f (z) is analytic in a doubly connected domain bounded by the

curves Lr and LR, then the following Faber-Laurent series expansion holds [21, 25]
:

f (z) =

∞∑
k=0

αkFk (z) +

∞∑
k=1

α̃kF̃k
(

1
z

)
(5)

where

αk =
1

2πi

∫
Lr

1

f (z)ϕ′ (z)

[ϕ (z)]
k+1

dz =
1

2πi

∫
|t|=r

1

f (ψ (t))

tk+1
dt, 1 < r

1
< r

and

α̃k =
1

2πi

∫
LR

1

f (z)ϕ′
1

(z)[
ϕ

1
(z)
]k+1

dz =
1

2πi

∫
|t|=R

1

f
(
ψ

1
(t)
)

tk+1
dt, 1 < R

1
< R. (6)

The rational function

Rn (f, z) :=

n∑
k=0

αkFk (z) +

n∑
k=1

α̃kF̃k
(

1
z

)
(7)

is called the Faber-Laurent rational function of degree n of f.
Since series of Faber polynomials are generalizations of Taylor series to the case

of a simply connected domain, it is natural to consider the construction of similar
generalization of Laurent series to the case of a doubly-connected domain.

Let Γ := Γ1 ∪ Γ−2 , where Γ1 and Γ2 curves are rectifiable Jordan curves, and let
be ω a weight on Γ. X (Γ, ω) is a weighted rearrangement invariant space on Γ and
B is doubly connected domain bounded by the Dini-smooth curve Γ1 and Γ2. Let

EX (B,ω) := {f ∈ E1 (B) : f ∈ X (Γ, ω)} .

where E1 (B) is the Smirnov class of analytic functions in B ([7, pp. 182-183]).
Definition 2. The class EX (B,ω) is called weighted rearrangement invariant

Smirnov space with respect to doubly-connected domain B.
In the literature there are many results on direct and converse approximation

theorems in different spaces defined on simply connected domain of complex plane.
The some direct and converse theorems in weighted and non-weighted rearrange-
ment invariant space, defined simply-connected domain were proved in [2], [9],[10]
and [14]. These spaces are sufficiently wide; the Lebesgue, Orlicz, Lorentz spaces
are examples of rearrangement invariant space. These problems in the different sub-
spaces of the rearrangement invariant space were investigated by several authors.
The direct and converse theorems of approximation in the weighted or non-weighted
Lebesgue and Smirnov spaces have been studied in [3], [4], [11], [12] and [15]. Sim-
ilar results in Smirnov-Orlicz and Orlicz spaces were researched in [1], [16], [18],
[19], [22], and [30]. Some theorems in weighted Lorentz spaces were obtained in
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[23] and [29]. All of these results have been obtained under different restrictive
conditions on boundary of domains.

In this work, we prove a direct theorem approximation theory in the weighted
rearrangement invariant Smirnov spaces, defined in the doubly-connected domain.
Similar direct theorem weighted rearrangement invariant space,defined simply-connected
domain, were proved by Israfilov and Akgun ([14]) in the case that Γ is a closed Dini-
smooth curve. A direct theorem in Smirnov-Orlicz spaces with doubly-connected
domain has been proved by Jafarov ([17]). Similar problems were studied in [21],
[26], and [27].

Our main result is given in the following theorem:
Theorem 1. Let B be a finite doubly-connected domain with the Dini-smooth

boundary Γ = Γ1 ∪ Γ−2 , X (Γ) be a reflexive rearrangement invariant space with
nontrivial Boyd indices αX and βX , ω ∈ A1/αX

(Γ) ∩ A1/βX
(Γ) , f ∈ EX (B,ω)

and r be a natural number. Then there is a constant c
9
> 0 such that

‖f −Rn (f, z)‖X(Γ,ω) ≤ c9

{
ΩΓ
r (f, 1/n+ 1)X,ω + Ω̃Γ

r (f, 1/n+ 1)X,ω

}
for every natural number n, where Rn (f, z) is the n − th Faber-Laurent rational
function of f.

In weighted case the theorem 1 has not been known before, even not for the
spaces Lp (Γ), 1 < p < ∞. We use c, c

1
, c

2
, ... to denote constants (which may,

in general, differ in different relations) depending only on numbers that are not
important for the question of interest.

2. Auxiliary Results

We shall exploit for Fk (z) and F̃k
(

1
z

)
the following integral representations hold

[24]:
1. If z ∈ IntLr, then

Fk (z) =
1

2πi

∫
Lr

[ϕ(ς)]
k

ς − z
dς =

1

2πi

∫
|t|=r

ψ′ (t) tk

ψ (t)− z
dt. (8)

2. If z ∈ ExtLr, then

Fk (z) = [ϕ(z)]
k

+
1

2πi

∫
Lr

[ϕ(ς)]
k

ς − z
dς. (9)

3. If z ∈ IntLR, then

F̃k

(
1

z

)
=
[
ϕ

1
(z)
]k − 1

2πi

∫
LR

[
ϕ

1
(ζ)
]k

ζ − z
dζ. (10)

4. If z ∈ ExtLR, then

F̃k

(
1

z

)
= − 1

2πi

∫
LR

[
ϕ

1
(ζ)
]k

ζ − z
dζ = − 1

2πi

∫
|t|=R

ψ′
1

(t) tk

ψ
1

(t)− z
dt (11)

Let G be a finite domain in the complex plane with a rectifiable Jordan curve Γ
and f ∈ L1 (Γ) , Then the functions f+ and f− defined by
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f+ (z) :=
1

2πi

∫
Γ

f (ς)

ς − z
dς, z ∈ G

and

f− (z) :=
1

2πi

∫
Γ

f (ς)

ς − z
dς, z ∈ G−

are analytic in G and G−, respectively, and f− (∞) = 0.
The Cauchy singular integral of f ∈ L1 (Γ) at z ∈ Γ is defined by

SΓf (z) := lim
ε→0+

1

2πi

∫
Γ\Γ(z,ε)

f (ς)

ς − z
dς.

It is known that this limit exists for almost every z ∈ Γ ([6, pp. 117-144.]).
The functions f+ and f− have non-tangential limits a.e. on Γ, and the formulae

f+ (z) = S
Γ
f (z) +

1

2
f (z) , f− (z) = S

Γ
f (z)− 1

2
f (z)

holds a. e. on Γ ([8, p. 431]), and hence

f = f − f−

a. e. on Γ.
For f ∈ L1 (Γ) , we associate the function S

Γ
f taking the value S

Γ
f (z) exists

a.e. on Γ. The linear operator S
Γ

defined in such way is called the Cauchy singular
operator.

Lemma 1 ([20]). Let X (Γ) be an reflexive rearrangement invariant space with
non-trivial Boyd indices αX and βX . If a weight ω belongs to Muckenhoupt classes
A1/αX

(Γ) and A1/βX
(Γ) , then the singular operator S

Γ
is bounded on X (Γ, ω), i.

e.,

‖S
Γ

(f)‖X(Γ,ω) ≤ c10
‖f‖X(Γ,ω) , f ∈ X (Γ, ω) (12)

holds with a constant c10 > 0 independent of f.
Lemma 2 ([10]). If αX and βX , are nontrivial and ω ∈ A1/αX

(Γ)∩A1/βX
(Γ) ,

then there exists a constant c
11
> 0 such that for every natural number n,

‖g − Tn (g)‖X(Γ,ω) ≤ c11
Ωr (g, 1/n+ 1)X,ω , g ∈ EX (D, ω)

where r = 1, 2, 3, ... and Tn (g) is n-th partial sum of the Taylor series of g at the
origin.

For z ∈ B use of Cauchy theorem, gives

f (z) =
1

2πi

∫
Γ1

f (ς)

ς − z
dς − 1

2πi

∫
Γ2

f (ζ)

ζ − z
dζ.

If z ∈ IntΓ2 and z ∈ ExtΓ1, then

1

2πi

∫
Γ1

f (ς)

ς − z
dς − 1

2πi

∫
Γ2

f (ζ)

ζ − z
dζ = 0. (13)

Let define

I1 (z) :=
1

2πi

∫
Γ1

f (ς)

ς − z
dς, I2 (z) :=

1

2πi

∫
Γ2

f (ζ)

ζ − z
dζ.
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The function I1 (z) determines the functions I+
1 (z) and I−1 (z) while the function

I2 (z) determines the functions I+
2 (z) and I−2 (z) . The functions I+

1 (z) and I−1 (z)
are analytic in IntΓ1 and ExtΓ1, respectively. Also, the functions I+

2 (z) and I−2 (z)
are analytic in IntΓ2 and ExtΓ2, respectively.

3. Proof of Theorem 1

Let Γ = Γ1 ∪ Γ−2 and f ∈ EX (B,ω) . It is easily seen that

‖f −Rn (f, ·)‖X(Γ,ω) ≤ ‖f −Rn (f, ·)‖X(Γ1,ω) + ‖f −Rn (f, ·)‖X(Γ2,ω) . (14)

Due to the conditions of Theorem 1., we can take curves Γ1,Γ2 as the curves of
integration in the formulas (8)−( 11) and (6), respectively. Let f ∈ EX (B,ω) .
Then f

0
∈ X (T, ω

0
) , f

1
∈ X (T, ω

1
) and by (4)

f (ς) = f+
0

(ϕ (ς))− f−
0

(ϕ (ς)) , f (ζ) = f+
1

(
ϕ

1
(ζ)
)
− f−

1

(
ϕ

1
(ζ)
)
. (15)

For z′ ∈ ExtΓ1, then from (9) and (15) we obtain

n∑
k=0

αkFk (z′) =

n∑
k=0

αk [ϕ (z′)]
k

+
1

2πi

∫
Γ1

∑n
k=0 αk [ϕ (ς)]

k

ς − z′
dς (16)

=

n∑
k=0

αk [ϕ (z′)]
k

+
1

2πi

∫
Γ1

∑n
k=0 αk [ϕ (ς)]

k − f+
0

[ϕ (ς)]

ς − z′
dς

+
1

2πi

∫
Γ1

f (ς)

ς − z′
dς − f−

0
(ϕ (z′)) .

If z′ ∈ ExtΓ2, by (11) and (15) we get

n∑
k=1

α̃kF̃k

(
1

z′

)
= − 1

2πi

∫
Γ2

∑n

k=1
α̃k[ϕ

1
(ζ)]

k

ζ−z′ dς (17)

=
1

2πi

∫
Γ2

f+
1

(
ϕ

1
(ζ)
)
−
∑n
k=1 α̃k

[
ϕ

1
(ζ)
]k

ζ − z′
dς − 1

2πi

∫
Γ2

f (ζ)

ζ − z′
dζ.

The use of (16) , (17) and (13) for z′ ∈ ExtΓ1 gives

n∑
k=0

αkFk (z′) +

n∑
k=1

α̃kF̃k
(

1
z′

)
=

n∑
k=0

αk [ϕ (z′)]
k − f−

0
(ϕ (z′))− 1

2πi

∫
Γ1

f+
0

[ϕ (ς)]−
∑n
k=0 αk [ϕ (ς)]

k

ς − z′
dς

+
1

2πi

∫
Γ2

f+
1

(
ϕ

1
(ζ)
)
−
∑n
k=1 α̃k

[
ϕ

1
(ζ)
]k

ζ − z′
dς.
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Taking the limit as z′ → z ∈ Γ1 along all non-tangential paths outside Γ1, we reach

f (z)−
n∑
k=0

αkFk (z)−
n∑
k=1

α̃kF̃k
(

1
z

)
(18)

= f+
0

(ϕ (z))−
n∑
k=0

αk [ϕ (z)]
k

+
1

2

[
f+

0
[ϕ (z)]−

n∑
k=0

αk [ϕ (z)]
k

]

+SΓ1

[
f+

0
◦ ϕ−

n∑
k=0

αkϕ
k

]
− 1

2πi

∫
Γ2

f+
1

(
ϕ

1
(ζ)
)
−
∑n
k=1 α̃k

[
ϕ

1
(ζ)
]k

ζ − z′
dς

a.e. on Γ1.
Now using (18), Minkowski’s inequality and the boundedness of SΓ1 (12), we get

‖f −Rn (f, z)‖X(Γ1,ω) (19)

≤ c
12

∥∥∥∥f+
0

(t)−
n∑
k=0

αkt
k

∥∥∥∥
X(T,ω0)

+ c
13

∥∥∥∥f+
1

(t)−
n∑
k=1

α̃kt
k

∥∥∥∥
X(T,ω1)

.

That is, the Faber−Laurent coefficients αk and α̃k of the function f are the Taylor
coefficients of the functions f+

0
and f+

1
, respectively. Then by (3) and (19), Lemma

2 we have

‖f −Rn (f, z)‖X(Γ1,ω) ≤ c14

{
ΩΓ
r (f, 1/n+ 1)X,ω + Ω̃Γ

r (f, 1/n+ 1)X,ω

}
. (20)

Let z′′ ∈ IntΓ2. Then by (10) and (15) we get

n∑
k=1

α̃kF̃k
(

1
z′′

)
=

n∑
k=1

α̃k
[
ϕ

1
(z′′)

]k − 1

2πi

∫
Γ2

∑n
k=1 α̃k

[
ϕ

1
(ζ)
]k

ζ − z′′
dζ (21)

=

n∑
k=1

α̃k
[
ϕ

1
(z′′)

]k − 1

2πi

∫
Γ2

∑n
k=1 α̃k

[
ϕ

1
(ζ)
]k − f+

1

(
ϕ

1
(ζ)
)

ζ − z′′
dζ

− 1

2πi

∫
Γ2

f (ζ)

ζ − z′′
dζ − f−1

(
ϕ

1
(z′′)

)

For z′′ ∈ IntΓ1, from (8) and (15) we have

n∑
k=0

αkFk (z′′) =
1

2πi

∫
Γ1

∑n
k=0 αk [ϕ (ς)]

k

ς − z′′
dς (22)

=
1

2πi

∫
Γ1

∑n
k=0 αk [ϕ (ς)]

k − f+
0

(ϕ (ς))

ς − z′′
dς +

1

2πi

∫
Γ1

f (ς)

ς − z′′
dς.
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For z′′ ∈ IntΓ1, using (21) and (22) we obtain

n∑
k=0

αkFk (z′′) +

n∑
k=1

α̃kF̃k
(

1
z′′

)
=

1

2πi

∫
Γ1

∑n
k=0 αk [ϕ (ς)]

k − f+
0

(ϕ (ς))

ς − z′′
dς

− 1

2πi

∫
Γ2

∑n
k=1 α̃k

[
ϕ

1
(ζ)
]k − f+

1

(
ϕ

1
(ζ)
)

ζ − z′′
dζ

−f−1
(
ϕ

1
(z′′)

)
+

n∑
k=1

α̃k
[
ϕ

1
(z′′)

]k
Taking the limit as z′′ → z ∈ Γ2 along all non-tangential paths inside Γ2, we obtain

f (z)−
n∑
k=0

αkFk (z)−
n∑
k=1

α̃kF̃k
(

1
z

)
(23)

= f+
1

(
ϕ

1
(z)
)
− 1

2

[
n∑
k=1

α̃k
[
ϕ

1
(z)
]k − f+

1

(
ϕ

1
(z)
)]

−SΓ2

[
n∑
k=1

α̃kϕ
k
1
−
(
f+

1 ◦ ϕ1

)]

− 1

2πi

∫
Γ1

∑n
k=0 αk [ϕ (ς)]

k − f+
0

(ϕ (ς))

ς − z′′
dς

a. e. on Γ2.
Using (23), Minkowski’s inequality and the boundedness of SΓ2 (12), we obtain

‖f −Rn (f, z)‖X(Γ2,ω) (24)

≤ c
15

∥∥∥∥f+
1

(t)−
n∑
k=1

α̃kt
k

∥∥∥∥
X(T,ω1)

+ c
16

∥∥∥∥f+
0

(t)−
n∑
k=0

αkt
k

∥∥∥∥
X(T,ω0)

.

Then taking into account (3), (24) and Lemma 2, we conclude that

‖f −Rn (f, z)‖X(Γ1,ω) ≤ c17

{
Ω̃Γ
r (f, 1/n+ 1)X,ω + ΩΓ

r (f, 1/n+ 1)X,ω

}
. (25)

Hence (20) and (25) complete proof of Theorem 1.
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[6] A. Böttcher and Yu. I. Karlovich, Carleson Curves, Muckenhoupt Weights and
Toeplitz Operators, Birkhauser, 1997.

[7] P . L. Duren, Theory of Hp Spaces, Academic Press, 1970.
[8] G . M. Goluzin, Geometric Theory of Functions of a Complex Variable, Trans-

lation of Mathematical Monographs, Vol. 26, Providence, RI: AMS, 1968.
[9] A. Guven and D. M. Israfilov, Approximation in rearrangement-invariant

spaces on Carleson curves, East J. Approx. 12 (2006), 381-395.
[10] A. Guven, D. M. Israfilov, Approximation by trigonometric polynomials in

weighted rearrangement-invariant spaces, Glas. Mat. 44 (2009), 423-446.
[11] D. M. Israfilov, Approximation by p−Faber polynomials in the weighted

Smirnov class Ep (G,ω) and the Bieberbach polynomials, Constr. Approx., 17
(3) (2001), 335–351.

[12] D. M. Israfilov, Approximation by p−Faber Laurent rational functions in the
weighted Lebesgue spaces, Czechoslovak Math. J. 54 (2004), 751–765.

[13] D. M. Israfilov and R. Akgun, Approximation by polynomials in weighted
Smirnov-Orlicz space, J. Math. Kyoto Univ. 46 (2006), 755-770.

[14] D. M. Israfilov and R. Akgun, Approximation by polynomials and rational
functions in weighted rearrangement-invariant spaces, J. Math. Anal. Appl.
346 (2008), 489-500.

[15] D. M. Israfilov and A. Guven, Approximation in weighted Smirnov classes,
East J. Approx. 11 (2005), 91–102.

[16] D. M. Israfilov, A. Guven, Approximation by trigonometric polynomials in
weighted Orlicz spaces, Studia Math., 174 (2006), 147-166.

[17] S. Z. Jafarov, Approximation by rational functions in Smirnov-Orlicz classes,
J. Math. Anal. Appl. 379 (2011), 870-877.

[18] S. Z. Jafarov, Approximation by polynomials and rational functions in Orlicz
spaces, J. Comput. Anal. Appl., 13 (2011), 953–962.

[19] S. Z. Jafarov, The inverse theorem of approximation theory in Smirnov-Orlicz
spaces, Math. Inequal. Appl., 12 (2012), 835–844.

[20] A. Yu. Karlovich, Algebras of singular integral operators with PC coefficients
in reflexive rearrangement-invariant spaces with Muckenhoupt weights, J. Op-
erator. Theory 47 (2002), 303-323.

[21] G. S. Kocharyan, On a generalization of the Laurent and Fourier series (Rus-
sian), Izv. Akad. Nauk Arm. SSR Ser. Fiz.-Mat. Nauk. 11 (1958) 3–14.

[22] V. M., Kokilashvili, On analytic functions of Smirnov-Orlicz classes, Studia
Math., 31 (1968), 43-59.

[23] V. Kokilashvili and Y. E. Yildirir, On the approximation by trigonometric
polynomials in weighted Lorentz spaces, J. Funct. Spaces Appl., 8 (2010), 67-
86.

[24] A.I. Markushevich, Analytic Function Theory, Vols I,II, Nauka, Moscow, 1968.
[25] P. K. Suetin, Series of Faber Polynomials, Gordon and Breach Science Pub-

lishers, Amsterdam, 1998.
[26] H. Tietz, Laurent-Trennung und zweifach unendliche Faber-Systeme (Ger-

man), Math. Ann. 129 (1955) 431–450.
[27] H. Tietz, Faber series and the Laurent decomposition, Michigan Math. J. 4

(1957) 157–179.



124 HASAN YURT AND ALI GUVEN
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