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1Abstract—Usually a dataset has a lot of reducts finding all 

of which is known to be an NP hard problem. On the other 
hand, different reducts of a dataset may provide different 
classification accuracies. Usually, for every dataset, there is 
only a reduct with the best classification accuracy to obtain this 
best one, firstly we obtain the group of attributes that are 
dominant for the given dataset by using the decision tree 
algorithm. Secondly we complete this group up to reducts by 
using discernibility function techniques. Finally, we select only 
one reduct with the best classification accuracy by using data 
mining classification algorithms. The experimental results for 
datasets indicate that the classification accuracy is improved by 
removing the irrelevant features and using the simplified 
attribute set which is derived from proposed method. 
 

Index Terms—artificial intelligence, classification 
algorithms, decision trees, discernibility function, feature 
selection 

I. INTRODUCTION 

Usually the rules for classification of a dataset are 
generated starting only from a set of seen examples (objects, 
instances) named as a training set. This approach to the rule 
generation is called as rule induction [1,2] the objective of 
which is to learn from the training set how to classify the 
new (unseen) examples [3]. In the other words, the main 
task of the rule induction is to generate from the training set 
such a set of rules that to be also able to classify the new 
examples [4,5]. There are many approaches to rule induction 
the most common of which are Sequential Covering-based, 
Decision Tree-based and Rough Set-based ones. 

The sequential covering is the basic strategy of the 
iterative algorithms CN2, AQ [6,7] and RIPPER [8]. An 
algorithm of this family forms a rule in each of iterations 
and removes from the training set all the positive examples 
covered by this rule. It is iterated until all examples are 
covered. Despite successes of these algorithms in some 
applications, they are known to be imperfect [4,9,10] due to 
that they are insensitive for the conditions describing small 
parts of the examples and do not perceive noise [11,12]. 

A decision tree is a hierarchically organized set of nodes 
each of which is associated with a test on the values of an 
attribute. In a decision tree, each edge from a non-leaf node 
is labeled with a particular value of the attribute and each 
leaf node is associated with a certain class. In order to 
reduce the tree as more as possible and to increase its ability 
of classification of new examples, every non leaf node with 
the information gain less than the predefined threshold value 

is replaced with the leaf nodes that under it. This allows 
classifying every new example into one of the predefined 
classes [13]. 

 
 

The major advantage of a decision tree-based algorithm 
(ID3, C4.5, C5.0 and CART) [14,15] is that its each path 
represents a single IF-THEN rule. Unfortunately, the 
decision tree-based algorithms do not perceive noise and 
contradictions in data because they assume that Bayes error 
rate for the classification problem is zero. Additionally, their 
classification ability is seriously affected by the pruning that 
cannot be always done perfectly [11,12,16]. 

The Rough Set-based rule induction is founded on the 
notion of reduct that is a minimal subset of attributes with 
the same classification power as the original set of attributes 
with respect to the given decision function. Once a selected 
reduct (SR) has been computed, the rules are easily 
constructed by overlaying it over the originating training set 
and reading off the values [17,18]. That is, the Rough Set-
based rule induction problem is solved mainly via feature 
selection problem [19,20,21]. Since a dataset may have 
different reducts of different sizes, a SR can be recognized 
only in comparison to other ones. But since the finding all 
reducts (AR) of a dataset is known to be NP-hard, most of 
the feature selection algorithms generate only one of reducts 
with risk of overlooking the optimal ones [17,22,23]. 
Therefore, usually the classification accuracy level of the 
reduct obtained by such a way is very low [10,20]. 

Notice that all of above-mentioned rule induction 
approaches have a common drawback such that when in a 
training set the class distribution is highly skewed, the 
majority class can be adequately represented, but the 
minority class may be neglected. As a result, they usually 
have poor classification accuracy for the examples from the 
minority class. However, highly imbalanced problems 
generally have highly non uniform error costs that often 
favor the minority class of primary interest [20]. Our studies 
show that the problem of finding the reduct with the best 
classification accuracy (RWBCA) can be solved by a 
decision tree and rough set- based hybrid model working as 
follows: 
 

1. The attributes dominant in a given dataset is obtained 
by using the decision tree techniques, 

2. The reducts with the obtained dominant attributes are 
generated by using the discernibility function techniques 
widely used in rough set theory and applications, 

3. The RWBCA is selected by testing the obtained reducts 
to the classification accuracy. 
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In sequel, instead of the concept training set, we will use 
the more comprehensive concept dataset.  

The rest of paper is organized as follows. In Chapter II, 
the relation between the group of dominant attributes and 
the RWBCA is explained. In Chapter III, the method 
generating a group of dominant attributes is given. In 
Chapter IV the generation of the group of dominant 
attributes-based reducts is explained. In Chapter V, the 
results of the experiments over the datasets from the UCI 
repository are shown. The paper is concluded with a 
summary in Chapter VI. 

II. THE RELATION BETWEEN THE GROUP OF DOMINANT 

ATTRIBUTES AND THE REDUCT WITH THE BEST 

CLASSIFICATION ACCURACY LEVEL 

Usually the size of a reduct is significantly less than the 
size of the set A of all attributes describing the dataset N. In 
general, if a dataset have many attributes then the 
classification rules of this dataset have many rules. 
Therefore, it is convenient first to obtain a shortest reduct 
for the given dataset and then generate the classification 
rules based on it [24,25]. In [26], it is stated that the rules 
generated by reducts are often too specific and cannot 
classify new objects. Moreover, our experiments with a lot 
of datasets show that even different reducts of the same size 
may provide different classification accuracy and the 
RWBCA is not always a shortest reduct. Therefore, for 
obtaining the RWBCA with respect to a given dataset it is 
necessary to: 1) generate ARs of this dataset, 2) obtain the 
classification accuracy provided by each of them and 3) 
select the RWBCA. But unfortunately, this is a very 
complex problem, because the number of ARs of a dataset 

may be as large as [27,28]. On the other hand 

any dataset has a reduct H that provides the better 
classification accuracy than other ones. In order to obtain 
the H, firstly we obtain the group of attributes that must be 
contained in H with a great probability. For this aim, we use 
the heuristic widely employed in such the popular data 
classification algorithms as ID3 [29], C4.5 [30] and CN2 
[31]. We call the group of the attributes obtained by 
proposed method as group of dominant attributes (GDA). 
Unfortunately, the result of processing a lot of dataset show 
that the GDA obtained for a dataset usually is insufficient 
for classification of the dataset with acceptable accuracy. 
The reason of this is that the GDA generated for a certain 
dataset describes the only most powerful path of the 
decision tree needed to classify this dataset. However, the 
GDA obtained for a dataset allows us to generate not ARs 
for a dataset, but only those of them that contain this GDA. 
We call every reduct containing the GDA as a GDA-based 
reduct (GDAR). The maximal possible number of GDAR 
can be obtained as follows: 
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where,   and  are the sizes of the GDA and the reduct of 
maximal size containing this GDA, respectively. It is 
obvious that always  . This approach reduces the 
number of GDAR from 2n to 2n/2-=2n-(-), where 2n is the 

maximal possible number of ARs of a dataset with n 
attributes [23,34]. Since n,  and   may take diverse values 
for different datasets, we can estimate the values of R as: 
  

GDARs of 

ARs of 

Number

Number
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For example, the values of R for some datasets from the 
UCI repository are given in Table 1. 
 

TABLE 1. THE VALUES OF R FOR SOME DATASETS 

Number of 
Dataset 

Selected 
GDA ARs GDARs 

R 

Lymphography a1a2a6a13a14 424 14 30.3 

Zoo a9a12a13 34 4 8.5 
Breast Cancer 
Wisconsin 

a1a2a6 19 5 3.8 

Tictoctoe a3a5a7 8 5 1.6 

Chess 
a1a6a10a15a21 

a32a33a35 
4 2 2 

Voting a3a4a11 3 2 1.5 

Monks a1a2a5 1 1 1 

Solar Flare  a1a2a6 1 1 1 

Primary Tumor a2a4a5a7a9a14 1 1 1 

III. GENERATING THE GROUP OF DOMINANT ATTRIBUTES 

Usually the dataset N is given by a table the rows and 
columns are labeled by the examples and attributes, 
respectively. The effect of an attribute AiA to the 
classification accuracy of the dataset to which it belongs 
may be determined via the information gain of this attribute 
[1]. The information gain of an attribute is reducing effect of 
this attribute on the entropy of the dataset to which it 
belongs. The entropy E(N) of a dataset N and the 
information gain I(Ai) of an attribute AiA can be calculated 
by the following formulas, respectively [35].  
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where, Pk is the proportion of examples labeled by the class 
Ck{1,2, …,g} and N(v) is the subset of examples in N for which 
Ai = v. For ease of computations by the formula (4), it can be 
partitioned into the following tree formulas: 
 

j
i

k
j

iG

k i
j

k
j

i

t

j
ij

i
n

Cn

n

Cn

n

n
vE

)(
log

)(
)( 21

  
        (5) 

)()(
1 

 iV

k

j
ii vEAE          (6) 

}()()( j
ii vENEAI           (7) 

 
where,  is the j-th value of the attribute Ai,  is the 

entropy for the value , is the number of examples with 

,  is the total number of examples in N, G is the 

number of classes in N and  is the number of 

examples with  and class-label Ck . The formulas (5), 

(6) and (7) will be used for obtaining the attribute with the 
highest information gain.  
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As it is well known in decision tree, every selected 

attribute S splits the dataset N into the parts )(21  , , , SVTTT  . 

Hence, in order to obtain the next element of the GDA first 
we obtain the attribute SA with the highest information 
gain Ij(S) for each Tj{1,2, … , V(S)}. Then we select the 
sub dataset T{ )(21  , , , SVTTT  } with IGmax=max{Ij(S)} as 

the new state of N to be processed in the next iteration. This 
process is repeated until there a sub dataset T with attributes 
of zero information gains occurs. The algorithm 
Generate_GDA implementing this process is given in Figure 
1. 
 

Generate_GDA(N,A)  
1. Calculate the entropy of the original 

attribute set of dataset N 
2. Calculate the information gains of 

attributes in dataset N and select the 
attribute with the highest information 
gain 

3. GDA= ; IGmax=0     
4. Do   
 { 

4.1. GDA=GDAS; A=A-S; )(
1)( SV

j
j

ss vV   

4
{ 
.2. For j=1 to  Vs  

4.2.1. Tj =  EN : E(S) =
j

sv ; N=Tj 

4.2.2. Calculate the information 
gains of attributes in 
subset Tj and select the 
attribute with the highest 
information gain 

4.2.3. If Ij(S) > IGmax then IGmax = 
Ij(S); T=Tj  

} 
4

 }  
.3. N=T    

 while IG  > 0 max

5. RETURN (GDA) 
 

Figure 1. The algorithm generating the GDA for a dataset 

 
In the algorithm Generate _GDA (Figure 1), the 

statement 1 uses the formula (3) that calculates the entropy 
of the original attribute set (OAS) N. The statement 2 select 
the attribute SA with the highest information gain I(S) in 
the OAS N. The statement 3 assigns initial values to the 
GDA and IGmax. The statement 4.1 of the Do-While loop 
includes the selected attribute S into the GDA, removes it 
from the attribute set A and inputs the set  of the values of 

the attribute S. The statements from 4.2.1 to 4.2.3 form the 
body of the For loop in which the statement 4.2.1 forms a 

subset TjN containing all examples with E(S)= . The 

statement 4.2.2 calculates the information gains of the 
attributes and select the attribute S with the highest 
information gain Ij(S) in the dataset Tj. The statement 4.2.3 
compares the values of the last obtained Ij(S) and IGmax. If 
Ij(S)>IGmax then the assignments IGmax=Ij(S) and T=Tj are 
made. The statement 3.3 assigns T to N as the new state of 
the dataset N to be processed in the next iteration of the Do-

While loop. Consequently, this procedure gives us the 
decision tree path whose total information gain is the 
maximum and includes the dominant attributes of the 
dataset N. 

sV

j
sv

 
Example 1. Obtain the GDA for the dataset given in Table 2 
(adopted from [32]) 
 

TABLE 2. AN EXAMPLE OF A DATASET 
Condition Attributes Decision 

Examples 
A1 A2 A3 A4 A5 D1 D2 D3 

N1 1 2 1 2 3 1 0 0 

N2 1 3 0 4 6 1 0 0 

N3 1 3 2 2 8 0 1 0 

N4 0 2 1 2 3 0 0 1 

N5 1 3 1 4 6 0 1 0 

N6 1 2 7 8 9 1 0 0 

N7 1 2 0 2 3 0 0 1 

 
According to Generate_GDA the GDA for the dataset 

N={N1,…,N7} given in Table 2 can be generated as follows: 
 
The statement 1: Calculating the entropy of the OAS N. 
E(N)= 1,557. 
 
The statements 2: The information gains for the attributes 
A1, A2, A3, A4 and A5 calculated: I(A1)= 0,306, I(A2)=0.592, 
I(A3)=0.592, I(A4)=0.414 and I(A5)=0.877. Selecting the 
attribute with the highest information gain. Since max{I(A1), 
I(A2), I(A3), I(A4), I(A5)}=I(A5), as the dominant attribute 
S=A5 is to be chosen. 
 
The first iteration of the Do-While loop of the algorithm 
Generate_GDA. 
 
The statement 4.1: Adding the selected attribute S=A5 to 
the set GDA, removing the attribute A5 from the set A and 
declaring the set V5 of values of the attribute A5.  
 
GDA= {A5}; A = {A1, A2, A3, A4, A5} - A5 = {A1, A2, A3, A4}; 

 }9,8,6,3{},,,{ 4
5

3
5

2
5

1
55  vvvvV

 
The statement 4.2: Selecting the sub dataset containing the 
attribute with the highest information gain.  
 
The first iteration of the For loop of the algorithm 
Generate_GDA. 
 
The sub statement 4.2.1: Obtaining the sub dataset T1  N 

with . 31
5 v

 
TABLE 3.1 THE SUB DATASET T1 CONTAINING THE EXAMPLES WITH A5=3 

Condition Attributes Decision Examples 
A1 A2 A3 A4 A5

*
 D1 D2 D3 

N1 1 2 1 2 3* 1 0 0 
N4 0 2 1 2 3* 0 0 1 
N7 1 2 0 2 3* 0 0 1 

 
The sub statement 4.2.2: Obtaining the attribute with the 
highest information gain for the subset T1. The sub 
statement 4.2.2 generates information gains for all attributes 
for the subset T1 and selects the attribute SA with the 
highest information gain I1(S): I1(A1)=0.25, I1(A2)=0.92, 
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I1(A3)=0.25 and I1(A4)=0.92. As the highest from these 
values either I1(A2)=0.92 or I1(A4)=0.92 may be selected. 
Suppose that the algorithm chose I1(A2)=0.92 and S=A2.  
 
The sub statement 4.2.3: Updating IGmax and T. Since 
I1(A2)=0.92>IGmax= 0, IGmax= I1(A2) = 0.92 and T=T1. 
 
The second iteration of the For loop of the algorithm 
Generate_GDA. 
 
The sub statement 4.2.1: Obtaining the sub dataset T2  N 

with . 62
5 v

 
TABLE 3.2. THE SUB DATASET T2 CONTAINING THE EXAMPLES WITH A5=6 

Condition Attributes Decision Examples 

A1 A2 A3 A4 A5
* D1 D2 D3 

N2 1 3 0 4 6* 1 0 0 

N5 1 3 1 4 6* 0 1 0 

 
The sub statement 4.2.2: Obtaining the attribute SA with 
the highest information gain I2(S) for the sub dataset T2. This 
is done by the same way as in the same statement of the first 
iteration of the For loop: I2(A1)=0, I2(A2)=0, I2(A3)=1 and 
I2(A4)=0. Since max(I2(A1), I2(A2), I2(A3), I2(A4))=I2(A3)=1,  
there the dominant attribute is to be S =A3. 
 
The sub statement 4.2.3: Updating IGmax and T. Since 
I2(A3)=1>IGmax=0.92, IGmax=I2(A3)=1 and T=T2. 
 
The third iteration of the For loop of the algorithm 
Generate_GDA. 
 
The sub statement 4.2.1: Obtaining the sub dataset T3  N 

with . 83
5 v

 
TABLE 3.3. THE SUB DATASET T3 CONTAINING THE EXAMPLES WITH A5=8 

Condition Attributes Decision 
Examples 

A1 A2 A3
* A4 A5

* D1 D2 D3 

N3 1 3 2 2 8* 0 1 0 

 
The sub statement4.2.2: Obtaining the attribute SA with 
the highest information gain I3(S) for the sub dataset T3. This 
is done by the same way as in the same statement of the 
previous iterations of the For loop: I3(A1)=0, I3(A2)=0; 
I3(A3)=0 and I3(A4)=0. Since all of these values are 
equivalent, any of them may be selected as highest one. 
Suppose that the algorithm chose I3(A1)=0 and S=A1. 
 
The sub statement 4.2.3: Updating IGmax and T. Since 
I3(A1)=0<IGmax=1, IGmax  and T remain unchanged. 
 
The fourth iteration of the For loop of the algorithm 
Generate_GDA. 
 
The sub statement 4.2.1: Obtaining the sub dataset T4  N 

with . 94
5 v

 
TABLE 3.4. THE SUB DATASET T4 CONTAINING THE EXAMPLES WITH A5=9 

Condition Attributes Decision 
Examples 

A1 A2 A3 A4 A5
* D1 D2 D3 

N6 1 2 7 8 9* 1 0 0 

The sub statement 4.2.2: Obtaining the attribute SA with 
the highest information gain I4(S) for the sub dataset T4. This 
is done by the same way as in the same statement of the 
previous iterations of the For loop: I4(A1)=0, I4(A2)=0, 
I4(A3)=0 and I4(A4)=0. Since all of these values are 
equivalent, any of them may be selected as highest one. 
Suppose that the algorithm chose I4(A1)=0 and S=A1. 
 
The sub statement 4.2.3: Updating IGmax and T. Since 
I4(A1)=0< IGmax = 1, the IGmax  and T remain unchanged. 
 
The statement 4.3 of the algorithm Generate_GDA: Since 
IGmax=I2(A3)=1 is greater than 0, as the dominant  attribute 
S=A3 is to be chosen and  in the next iteration of the Do-
While loop the dataset N=T will be processed. 
 
The second iteration of the Do-While loop of the algorithm 
Generate_GDA. 
 
The statement 4.1: Adding the selected attribute S=A3 to 
the set GDA, removing the attribute A3 from the set A and 
declaring the set V3 of values of the attribute A3. 
 
 GDA={A3, A5}; A={A1, A2, A3, A4}-A3={A1, A2, A4}; 

 }1,0{},{ 2
3

1
33  vvV

 
The statement 4.2: Selecting the sub dataset containing the 
attribute with the highest information gain. 
 
The first iteration of the For loop of the algorithm 
Generate_GDA. 
 
The sub statement 4.2.1: Obtaining the sub dataset T1  N 

with . 01
3 v

 
TABLE 4.1. THE SUB DATASET T1 CONTAINING THE EXAMPLES WITH A3=0 

Condition Attributes Decision 
Examples 

A1 A2 A3 A4 A5
* D1 D2 D3 

N2 1 3 0* 4 6* 1 0 0 

 
The sub statement 4.2.2: Obtaining the attribute SA with 
the highest information gain I1(S) for the sub dataset T1. This 
is done by the same way as in the same statement of the 
previous iterations of the For loop: I1(A1)=0, I1(A2)=0 and 
I1(A4)=0. Since all of these values are equivalent, any of 
them may be selected as highest one. Suppose the algorithm 
chose I1(A1)=0 and S=A1. 
 
The substatement 4.2.3:  Updating IGmax and T. Since 
I1(A1)=IGmax=0, IGmax and T remain unchanged. 
 
The second iteration of the For loop of the algorithm 
Generate_GDA(N,A). 
 
The substatement 4.2.1: Obtaining the sub dataset T2  N 

with . 12
3 v

 
TABLE 4.2. THE SUB DATASET T2 CONTAINING THE EXAMPLES WITH A3=1 

Condition Attributes Decision 
Examples 

A1 A2 A3
* A4 A5

* D1 D2 D3 

N5 1 3 1* 4 6* 0 1 0 
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The substatement 4.2.2: Obtaining the attribute SA with 
the highest information gain I2(S) for the sub dataset T1. This 
is done by the same way as in the same statement of the 
previous iterations of the For loop: I2(A1)=0, I2(A2)=0 and 
I2(A4)=0. Since all of these values are equivalent, any of 
them may be selected as highest one. Suppose that the 
algorithm chose I2(A1)= 0 and S=A1. 
 
The substatement 4.2.3:  Updating IGmax and T. Since 
I2(A1)=  IGmax = 0, IGmax and T remain unchanged. 
 
The statement 4.3 of the algorithm Generate_GDA: Since 
IGmax = I2(A1) = 0, there is no attribute to be chosen as 
dominant one. That is, the GDA generating process has been 
completed with the result GDA={A5, A3}. 
 
As mentioned above, the GDA generated for a dataset is not 
sufficient for classification of this dataset with an acceptable 
accuracy. Therefore, in order to achieve classification 
accuracy as high as possible, the obtained GDA has to be 
completed with the other attributes not contained in it. In 
order to obtain which attributes to add to GDA, we generate 
ARs each of which contains the obtained GDA. 

IV. GENERATING THE GDA-BASED REDUCTS 

Let us first remind the concepts of clause and 
discernibility function (DF) for a dataset. 

 
Definition 4.1. A clause Hik is the difference between the 
examples EjN and EkN expressed as follows [33]: 
 

Njkjk2jk1ik hhhH            (8) 

 
where, hjki = Ai  if  Ej(Ai)   Ek(Ai), hjki = 0 if Ej(Ai) = Ek(Ai) 
and Ej(Ai),  Ek(Ai)  are the values of the attribute Ai in the 
examples Ej and Ek, respectively. 
 
A propositional clause given by the formula (8) can be 
represented by the following bit-based clause (BBC). 
 

Nikjkijk2jk1ik bbbbB           (9) 

 
where, bjki = 1 if Ej(Ai)   Ek(Ai) and bjki = 0 otherwise. 
 
Definition 4.2. The Cartesian bitwise disjunction of all 
possible BBCs derived from a certain dataset is called the 
bit-based DF for this dataset [33,34,36]. The bit-based DF 
for a dataset with M objects may be expressed as follows: 

 














jk

1jk

1

1j
B¦  ¦DF

MM
        (10) 

 
where, ¦ is the sign of bitwise disjunction (OR) operation 
performed as {x¦yxBX and YBY}. According to the 
formula (10), from a dataset with M examples exactly 
Z=0.5x(M2-M) clauses can be derived. But there in a DF 
may be redundant clauses after removing which the DF of 
the size Z can be reduced into the DFmin of the size Q  Z 
[17,33,37]. This event leads to disordering of the indexation 
used in the formulas (9) and (10). Therefore, it will be better 

to rewrite these formulas for  and DFmin as 

follows:  

 Qq ,,2,1  

 

Nqqiq2q1q bbbbB         (11) 

  ¦ q
1q

Q

min BDF


         (12) 

 
Note that every BBC of the type (11) is a sum bit-vector 

as well as every propositional clause of the type (8) is a sum 
term. For instance, the BBC representation of the clause (A5 

 A6  A8) is to be as 000011010. To associate a BBC in its 
propositional form, it may be used a bit-field structure of the 
following form: 
 
Struct_Clause {Unsigned A1:1; … ; Unsigned AN:1}     (13) 
 
In order to obtain disjunctive normal form (DNF) of DFmin 
by the formula (12) it is necessary to expand each Bq, q=1, 
2, 3, …, Q  into the set E(Bq) of its unit clauses [27] as 
follows: 
 

  1|Pr )(  qiqiq bBBE         (14) 

 
For example, if Bq= 100110 then E(Bq)={PriBqbqi=1} 
={100000, 000100, 000010}. Consequently, the formula 
(12) has to be rewritten as: 
 

 ¦ ) BE(DF q
1q

Q

DNF


        (15) 

 
Based on the expression (11), the BBCs to be processed by 
the formula (15) may be represented as a binary matrix 
given in Figure 2. 
 

 A1 A2 … AN 

B1 b11 b12 … b1N 

B2 b21 b22 … b2N 
. . . 

. . . 
. . . 

. . . 
. . . 

BQ bQ1 bQ2 … bQN 

 
Figure 2. The structure of a DFM 

 
In accordance to [38], we will call a binary matrix of type 
given in Figure 2 as a discernibility function matrix (DFM). 
Each row of the DFM given in Figure 2 is a certain BBC 
Bq{1,2, … ,Q} from the formula (12). Due to commutativity of 
the OR operation, the order of rows (BBCs) in a DFM is not 
important as well as the order of BBCs in the formula (12). 
Since we are interested in only those implicants that contain 
all attributes from the obtained GDA, we may reduce the 
BBCs containing these attributes by removing other 
attributes from them. The detailed information about the 
DFM of a DFmin and deriving from it the reducts is given in 
[38]. In brief, such a reduction of a DFM is based on the 
parallel decomposition of Boolean functions according to 
which, for example, the function DF = (a  b  c  d  e)F 
may be rewritten as follows: 
 

 eFdFcFbFaFDF        (16) 
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where, F is a conjunction of some clauses containing 
different combinations of the variables a, b, c, d and e. 
Assume that, we have obtained the GDA consisting of the 
attributes a and c. This is to say that we are interested only 
in the first and third components of the expression (16). In 
this way, we can obtain all implicants containing the 
attributes a and c by the following reduced form of the 
expression (16). 
 

 cFaFDFred         (17) 

 
As it is seen from this example, GDARs, may be generated 
by the algorithm Generate_GDARs given below. 
 
Generate_GDARs (DFM, A, GDA) 
1. For i=1 to GDA     

{ 
1.1. Select the i-th element of the 

GDA and fix the attribute S 
represented by this element 

1.2. Fix all rows of DFM in which 
S=1  

1.3. Preserve only one of these rows  
1.4. Reduce the preserved row by 

removing from it all 1’s not 
associated with the attribute S 

1.5. Remove all rows from the DFM 
that absorbed by the reduced 
row  

} 
2. Expand each row (BBC) of the reduced 

DFM by the formula (14) 
3. Generate the bit-based DNF of the DFDNF 

by the formula (15) 
4. Convert the obtained DNF to the 

reducts in accordance with the bit-
field association structure (13) 

 
Figure 3. The algorithm generating the GDARs 

 
Note that a row Rj of a DFM is absorbed by another row 

Rk of the same DFM if Rj & Rk = Rk. 
 

Example 2. In the Example 1, we obtained that the GDA for 
the dataset given in Table 2 contains the attributes A3 and A5. 
Let us to obtain the reducts containing this GDA. The 
associated bit-field structure using for this example is as 
follows: 
 

Struct_Clause {Unsigned A1:1; Unsigned A2:1; Unsigned 
A3:1; Unsigned A4:1; Unsigned A5:1}      (18) 
 
The DF for this dataset is: DF = {01111*, 01101*, 10000, 
01011, 00111*, 00100, 00111*, 11111*, 00100*, 01111*, 
01011*, 11101*, 00111*, 01111*, 01101*, 11011*, 10111*, 
10100*, 01111*, 01111*, 00111*} = {10000, 01011, 00100} 
 
where, the components marked by “*” are those absorbed by 
other ones removed from the result. Thus, 
 

  1,0010010000,0101 minDF        (19) 

 
 

 A1 A2 A3 A4 A5 

B1 1 0 0 0 0 

B2 0 1 0 1 1 

B3 0 0 1 0 0 

 
Figure 4. The DFM representation of the DFmin given by the expression (19) 
 
Since GDA = {A3 , A5 }, we are interested with  the reducts 
containing the attributes A3 and A5. According to the 
algorithm Generate_GDARs (Figure 3), first we have to fix 
all rows of the DFM (Figure 4) containing the attribute A3, 
preserve only one of these rows and remove from it all 1’s 
associated with attributes other than A3. Since in the DFM 
exist only one row B3 with a single 1 associated with A3, the 
DFM remains unchanged with respect to this attribute. The 
processing of the DFM with respect to A5 is the same as that 
with respect to the attribute A3. In the DFM, the attribute A5 
is present only in the row B2 that contains two more 1’s 
associated with A2 and A4. After removing these 1’s from the 
row B2, we get the following reduced DFM (Figure 5). 
 

 A1 A2 A3 A4 A5 

B1 1 0 0 0 0 

B2 0 0 0 0 1 

B3 0 0 1 0 0 

 
Figure 5. The DFM with rows from which the 1’s associated with attributes 

other than A3 and A5 have been removed 

 
By applying the formula (15) to the DFM in Figure 5 we get 
the following result: 
 
DFmin=(10000) ¦ (00001) ¦ (00100) = 10101 
 
According to association bit-field structure (18), the result 
bit-string DFmin=10101 is to be interpreted as the reduct {A1, 
A3, A5}. Note that the dataset given in Table 2 has the 
reducts {A1, A3, A5}, {A1, A3, A4} and {A1, A2, A3} from which 
the one classifying the dataset with the highest accuracy is 
the reduct consisting of the attributes A1, A3 and A5 

V. EXPERIMENTAL RESULTS 

To estimate the performance of the proposed method, we 
compared the results generated by SR with the results 
generated by OAS for 9 datasets. In the experiments, we 
used a target machine with an Intel Core2Quad@2.83 GHz 
processor and 4 GB memory, running on Microsoft 
Windows 7 OS. The different datasets used in the 
experiments are from UCI repository with different 
characteristics such as: the number of attributes, the number 
of classes, the number of distinct values of the attributes and 
the number of examples. Firstly, with using decision tree 
algorithm the GDA of the datasets obtained (Chapter III). 
Secondly, the GDARs of the dataset are obtained by using 
discernibility function based feature selection program [39] 
(Chapter IV). Lastly, the classification tests are made by 
using Orange Data-Mining program [40]. We can see these 
datasets characteristics, GDAs and SRs in table 5 as 
following: 
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TABLE 5. THE CHARACTERISTICS OF THE SEVERAL DATASETS USED IN THE EXPERIMENTS 
The number of Number of attributes in the Dataset 

Examples Classes 
GDA SR 

GDA SR OAS 
Lymphography 148 4 a1a2a6a13a14 a1a2a5a6a8a13a14a15 5 8 18 
Zoo 101 7 a9a12a13 a4a6a9a12a13 3 5 16 
Breast Can. Wisconsin 699 2 a1a2a6 a1a2a6a8 3 4 9 
Tictoctoe 958 2 a3a5a7 a1a2a3a5a6a7a8a9 3 8 9 

Chess 3196 2 a1a6a10a15 
a21a32a33a35 

a1a3a4a5a6a7a10a12a13a15a16a17a18a20a21 
a22a23a24a25a26a27a28a30a31a32a33a34a35a36 

8 29 36 

Voting 435 2 a3a4a11 a1a2a3a4a6a9a11a13a14a16 3 10 16 
Monk 556 2 a1a2a5 a1a2a5 3 3 6 
Solar Flare 323 3 a1a2a6 a1a2a3a4a5a6a9a10a11a12 3 10 12 
Primary Tumor 339 21 a2a4a5a7a9a14 a1a2a3a4a5a7a8a9a10a11a12a13a14a15a16a17 6 16 17 

 
From Table 5, we can see that the average of the SR size 

is approximately 67% lesser than average of the OAS size. 
Thus, the classification algorithms can work faster and using 
less memory. 

As classification algorithms, we used the algorithms C4.5 
[30], K-NN [41] with 7 neighbors and Naïve Bayes [42-46]. 
For estimating the classification accuracy of the algorithms, 
we used the most widely used cross-validation method [47]. 
More specifically, we used ten-fold cross-validation in 

which the dataset to be processed is permuted and 
partitioned equally into ten disjoint sets D1, D2, …, D10. In 
each phase of a cross-validation, one of the yet unprocessed 
sets was tested, while the union of all remaining sets was 
used as training set for classification by the algorithms C4.5, 
K-NN and Naive Bayes. We obtained the classification 
accuracy of the algorithms for a certain dataset as average of 
the accuracies of the mentioned ten phases.  

 
TABLE 6. THE CLASSIFICATION ACCURACY FOR THE DATASETS PROVIDED BY ORIGINAL ATTRIBUTE SETS AND BY SR 

Classification Accuracy 
K-NN Naive Bayes C4.5 Dataset 

OAS SR OAS SR OAS SR 
Lymphography 0.818 0.843 0.803 0.830 0.749 0.803 
Zoo 0.962 0.980 0.912 0.990 0.971 0.980 
Breast Can. Wisconsin 0.947 0.974 0.963 0.967 0.949 0.973 
Tictoctoe 0.804 0.824 0.703 0.758 0.865 0.853 
Chess 0.906 0.938 0.879 0.900 0.998 0.994 
Voting 0.922 0.947 0.892 0.938 0.945 0.957 
Monk 0.819 1.000 0.718 0.746 0.964 1.000 
Solar Flare 0.666 0.681 0.672 0.688 0.712 0.785 
Primary Tumor 0.372 0.405 0.493 0.536 0.404 0.469 

From Table 6, we can find the classification performances 
of the classification algorithms (the higher accuracies of the 
classification algorithm are shown in bold). The SRs 
achieved better results in the 25 of the 27 experiments. The 
classification results of the K-NN, Naïve Bayes and C4.5 
algorithms are increased average 5.21%, 4,52% and 3,40%, 
respectively, for 9 datasets with using SR. 

Consequently, in the proposed method SR is used instead 
of OAS. SR is the simplified form of the OAS that includes 
dominant attributes of the OAS. These SRs are preferred 
and performed at the classification stage because the 
following benefits: better classification accuracy, less 
working CPU time and less using memory for classification 
algorithms. The attributes in SRs are relevant attributes not 
redundant so the classification algorithms can create more 
effective rules and achieve better classification accuracies 
mostly. 

VI. CONCLUSION 

In this paper a novel hybrid method for fast finding the 
RWBCA is proposed. Usually a dataset has a lot of reducts 
from which the only one can provide the best classification 
of this dataset. Unfortunately, finding and testing all of them 
is NP hard problem. Therefore, we propose a two-phase 
hybrid approach for obtaining the RWBCA. In the first 
phase, we obtain the group of the dominant attributes for the 

given dataset. Since this group is usually not sufficient for 
acceptable classification accuracy of the datasets, in the 
second phase we complete the obtained group of the 
attributes up to the RWBCA. In first and second phases we 
use the decision tree and discernibility function techniques, 
respectively. Such an approach allows us to reduce the 
reduct search space in a large scale. For instance, for some 
datasets with hundreds reducts we reduced the search space 
up to several reducts that obtained very quickly. We tested 
the performance of our approach with the popular 
algorithms such as K-NN, Naive Bayes and C4.5. We get 
better classification accuracies with the SRs in the 25 of 27 
experiments. 
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