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Abstract. Let R be a ring with identity and an ideal I. In this paper, we
introduce a class of rings generalizing semicommutative rings which is called
I-semicommutative. The ring R is called I-semicommutative whenever ab = 0
implies aRb C I for any a, b € R. We investigate general properties of I-
semicommutative rings and show that several results of semicommutative rings
and J-semicommutative rings can be extended to I-semicommutative rings for
this general settings.

1. Introduction

Throughout this paper, a ring means an associative ring with identity. We write
U(R) for the set of all units in R, T,,(R) stands for the ring of all n x n triangular
matrices over a ring R. A ring R is called semicommutative if for any a, b € R,
ab = 0 implies aRb = 0, this ring is also called ZI ring in [9] and [13], while, in
[24], R is said to be central semicommutative if ab = 0 implies aRb is central in R.
And in [17] a ring R is called weakly semicommutative, if for any a, b € R, ab =0
implies arb is a nilpotent element for each » € R. Another generalization is made
in [6], in which a ring R is called nil-semicommutative-II if a, b € R satisfy ab €
Nil(R), then arb € Nil(R) for any r € R where Nil(R) is the set of all nilpotent
elements of R. A similar concept is nil-semicommutativity is investigated in [20], in
which it is said that a ring R is nil-semicommutative-I if for all nilpotent elements
a, b of R, ab= 0 implies aRb = 0.

Every semicommutative ring is central semicommutative, weakly semicommu-
tative, nil-semicommutative-I and nil-semicommutative-II. These classes of rings
have been getting much attention, see namely, [6, 11, 20, 24, 25, 26]. Their rela-
tions with other classes of rings, such as Abelian rings, reduced rings, Armendariz
rings and others, have been studied in the past. Also, another generalization of
semicommutative rings is given in [33], called J-semicommutative rings. Let J(R)
denote the Jacobson radical of R. A ring R is J-semicommutative if ab = 0 implies
aRb C J(R). Tt is well known that J(R) has some nice properties to help us to
get good results. Motivated by these considerations, a natural question arises here
when we replace J(R) by an ideal I of R. In this paper, a new kind of rings which
behave like semicommutative rings is considered. We investigate the semicommuta-
tivity of the ring relative to an ideal I. These are called [-semicommutative rings.
That is, a ring R with an ideal I is called I-semicommutative provided ab = 0
implies aRb C I. In the second section of this paper, occasionally, we focus on the
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general case of the ideal I fixed in R. We prove that if R is von Neumann regular,
then every I-semicommutative ring for which I is a quasiregular ideal is semicom-
mutative. If R is an abelian I-semipotent ring and I is a semiprime ideal, then R
is I-semicommutative. In the third section, the I-semicommutativity of certain ex-
tensions of rings is studied. It is proved that R is an I-semicommutative ring if and
only if T,,(R) is T,,(I)-semicommutative for all positive integer n. Also a necessary
and sufficient conditions for the ideal extensions, Dorroh extensions and Nagata
extensions to be I-semicommutative are studied. The last section is devoted to
exchange J-semicommutative rings. It is proved that if R is a J-semicommutative
exchange ring, then R/J(R) is commutative if and only if for each positive integer
n, the set GL,(R) of all invertible n x n matrices is closed under transposition if
and only if for all a,b,c € U(R), ¢+ [a,b] € U(R) if and only if for all a,b € U(R),
[a,b] € J(R), where U(R) is the set of invertible elements in R.

2. I-Semicommutative Rings

A ring R is defined to be nil-semicommutative-II in case for any a, b € R,
ab € Nil(R) implies that arb € Nil(R) whenever r € R (see for detail [6]). In
[33], J-semicommutative rings are studied. A ring is J-semicommutative if ab = 0
implies aRb C J(R). It is well known that J(R) has some nice properties to help
us to get good results. A natural question arises here when we replace J(R) by
an ideal of R. In the preceding definitions, we replace Nil(R) and J(R) by an
ideal I and we call the ring R I-semicommutative. A ring R is called abelian
if every idempotent is central, that is, ae = ea for any €2 = e, a € R. Every
local ring is J-semicommutative. Every semicommutative ring and every central
semicommutative ring is abelian [24]. However, there are I-semicommutative rings
that are neither semicommutative nor abelian. Also both nil-semicommutative-I
rings and nil-semicommutative-II rings need not be abelian.

Example 2.1. Let Z denote the ring of integers and consider the ring R = T5(Z).

(1) Let I = [% %] Then R is I-semicommutative. For if A = [8 lc)}’
B:{Cé z;]ERandAB:O,vvehavecwlcz(),ay—!—bzzO,cz:O.Thena:O

orx =0 and ¢ =0 or z =0. Accordingly, ARB C I and R is I-semicommutative.

10 Z . | a b |z oy _
(2)Letl_{0 Z}ThenﬁA—[o c}’B_{O Z}GRandAB_O,we
have ax =0, ay +bz =0,cz=0. Thena=0orz=0and c=0o0r z =0. We

have ARB C I and R is I-semicommutative.

(3) Let I = [ 8 ol A simple argument reveals that R is again /-semicommutative.
(4) Let A = {(1) (1) },B_ {8 _11 ] € R. Then AB =0 and ARB # 0. Hence

R is not semicommutative.

Example 2.2. Let R be a commutative ring and consider the ring

a 0 b ¢
S = 0 0 0 O
0 0 0 O

b ¢
d 0 | |a,bc,dje€ R}, ideal I = | b,c € R} of
0 e
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a b c T Yy z
S. Let A= |0 d 0{|,B= 1|0t 0| with AB = 0. Then ASB =
0 0 e 0 0 u
0 n I
0 0 0| |n,leR)CI. HenceS is [-semicommutative.
0 0 0

Lemma 2.3. Let R be a ring with an ideal I.
(1) If R/I is a semicommutative ring, then R is I-semicommutative.
(2) If I consists of all nilpotent elements, then R is I-semicommutative.

Proof. (1) Let a, b € R with ab = 0. Then in R/I := R we have ab = 0. By the
semicommutativity of R/I, aRb =0 and so aRb C I.

(2) Note first that being I nil ideal, I is contained in J(R). Let a, b € R with
ab = 0. Then (bRa)? = 0. By hypothesis on I, bRa C I and RbRa C I. Then
(aRbR)? = a(RbRa)RbR C I. Hence (aRbR)? consists of nilpotent elements. So
aRbR C I. Since R has an identity, aRb C I. O

Recall that a ring R is called semiprime if R has no nonzero nilpotent ideals.
An ideal I in a ring R is called semiprime if the ring R/I is a semiprime ring.
Equivalently, the ideal I is semiprime in the ring R if and only if for any ideal J
of R and any positive integer n, J" C I implies J C [ if and only if for any a € R,
aRa C I implies a € I.

Proposition 2.4. Let R be a ring. If I is a semiprime ideal, then the following
are equivalent.

(1) R is I-semicommutative.

(2) For any a € R, a®> = 0 implies that a € I.

(3) For any a, b € R, ab =0 implies that bRa C I.

Proof. (1) = (2) If a®> = 0, then aRa C I. Hence, (RaR)2 C I. As [ is semiprime,
it follows that RaR C I. Hence a € I.

(2) = (3) If ab = 0, then (bra)? = 0 for any r € R. By (2) bra € I. Thus, bRa C I.
(3) = (1) If ab = 0, then bRa C I. Hence, (RaRbR)2 C I. As I is semiprime, we
deduce that RaRbR C I. This implies that aRb C I since R has an identity, as
required. (]

Proposition 2.5. Let R and S be rings, R x S their direct product, I an ideal of
R and L an ideal of S. Then R x S is I x L-semicommutative if and only if R is
I-semicommutative and S is L-semicommutative.

Proof. Assume that R x S is I x L-semicommutative and a, b € R with ab = 0.
Then (a,0)(b,0) = (0,0) in R x S. By assumption (a,0)(R x S)(b,0) C I x L.
This implies aRb C I. Hence R is I-semicommutative. A similar discussion reveals
that S is L-semicommutative. Conversely, suppose that R is [-semicommutative
and S is L-semicommutative. Let (r,s), (r1,$1) € R x S with (r,s)(r1, 1) = (0,0).
Then rr1 = 0 and ss; = 0. By supposition rRr;y C I and sSs; C L. Hence
(r,s)(R x S)(r1,s1) C I x L. O

Corollary 2.6. Let R be an abelian ring. Then R is I-semicommutative if and
only if for any idempotent e € R, eR and (1 — )R are both I-semicommutative.
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Lemma 2.7. If I is a semiprime ideal of R, R is an I-semicommutative ming and
idempotents lift modulo I, then R/I is abelian.

Proof. Let y € R with y?> = 0. Then yRy C I. Hence y € I, since I is semiprime.
Let e = e € R. For any x € R, (ex — exe)? = 0 and (ze — exe)? = 0 which implies
ex — exe, re — exe € I. Since idempotents lift modulo I, hence ex — ze € I. O

Proposition 2.8. Let R be an I-semicommutative ring and I be an ideal contained
in J(R). If R is a von Neumann regular ring, then R is semicommutative.

Proof. Let =,y € R with xy = 0. By hypothesis zry € I for all » € R. Since
I C J(R), for all a € R, 1 —a(zry) is invertible. Since R is a von Neumann regular,
there exists w € R such that zry = (zry)u(zry). It implies 2ry(1 — u(ary)) = 0.
By invertibility of 1 — u(zry) we have xry = 0 for all » € R. This shows that R is
semicommutative. (]

Lemma 2.9. Let R be an I-semicommutative ring. If I is an ideal contained in
J(R), then R is directly finite.

Proof. Let R be an I-semicommutative ring and a,b € R with ab = 1, e = ba.
Clearly, ae = a,eb = b. Since R is I-semicommutative and e(1 —e) = 0, we get
eR(1—e) C I. In particular, eb(1 —e) € I. Since eb =b, b(1 — e) € I. Multiplying
the latter from left by a, we have ab(l —e) € I. Since ab=1,1—e € I. Being
1 — e an idempotent and I C J(R), we have 1 = e = ba. O

Proposition 2.10. Let e € R be an idempotent. If R is I-semicommutative, then
eRe is ele-semicommutative.

Proof. Let eae, ebe € eRe with (eae)(ebe) = 0. Since R is I-semicommutative,
(eae)R(ebe) C I, and so (eae)R(ebe) C ele. That is, (eae)(eRe)(ebe) C ele.
Therefore eRe is ele-semicommutative. ]

Let R be a ring, n a positive integer and R,, denote the subring of the n x n upper
triangular matrix ring 7T,,(R) defined by

a aiz2 -+ Qinp
0 a e A2y
R, = . . . . a,d;; € R(Z < _])
0 O a
a a2 A1n
0 a -+ ap
Let I be an ideal of R. Then I, = L . eT.(R)|a€el, is

=)
o -
s}

an ideal of R,,.

Proposition 2.11. Let R be a ring and n a positive integer with 2 < n. Then the
following are equivalent.

(1) R is I-semicommutative.

(2) Ry, is Ip,-semicommutative.
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Proof. Assume that R is I-semicommutative. Let A, B € R,, with AB = 0, where

a ajip -+ Qip b bz -+ bin
0 a - ao, 0 b - boy

A= . . ) ,B=1 . . . |. Then ab = 0. Since R
0 0 - a 0 0 - b

is I-semicommutative, aRb C I. The diagonal entries of AR,, B consist of arb € I
where r € R and other entries are in R. It follows that R,, is I,,-semicommutative.

a 0 -+ 0 b 0 --- 0
0 a --- 0 0Ob --- 0
Conversely, let a, b € R with ab = 0. Then ) ) . =
00 - a 00 --- b
c x y
O c “ e Z
0. Forany | . . . | € Ry, we have
0 0 c
a 0 0 c y b 0 0
0 a 0 0 ¢ z 0 b 0
.| e 1,.
0 0 -+ a 0 0 --- ¢ 0 0 b
Therefore acb € I for all ¢ € R. So R is I-semicommutative. O

Proposition 2.12. Let R be a ring and K C K1 C Rand L C Ly C R be
ideals of R. If (R/K) x (R/L) is (K1/K) x (L1/L)-semicommutative, then R is
Ky N Lq-semicommutative.

Proof. Suppose that (R/K) x (R/L) is (K1/K) x (L1/L)-semicommutative, and
let a, b € R with ab=0. Then (¢ + K,0+ L)(b+ K,0+ L) =(0+ K,0+ L) and
0+ K,a+L)(0+K,b+L)=(0+K,0+L) in (R/K) x (R/L). By hypothesis
(a+K,0+L)(R/K x R/L)(b+K,0+ L) C K1 /K x L1 /L and (0+ K, a+L)(R/K x
R/L)(0+ K,b+ L) C K1/K x L1/L and so (a + K)(R/K)(b+ K) C K;/K and
(a+ L)(R/L)(b+ L) C Ly/L. Hence aRb C K; and aRb C L;. Thus aRb C
K N L. O

Proposition 2.13. R is an [-semicommutative ring if and only if the ring S =
{(z,y) e Rx R | x —y € I} is I x I-semicommutative.

Proof. S = {(z,y) € Rx R | x —y € I} forms a subring of R x R. If R is an
I-semicommutative ring and (z,y),(a,b) € S and (a,b)(x,y) = 0, then az = 0 and
by = 0 implies aRxz C I and bRy C I. Hence (a,b)S(x,y) C I x I.

Conversely, suppose that S is I x I-semicommutative and let a,b € R with ab = 0.
Then (a,a)(b,b) = 0in S. Since S is I x I-semicommutative, (a,a)(x,y)(b, b) lies in
Ix1,forall (z,y) € S. In particular for (z,z) € S, we have (a,a)(z,x)(b,b) € I xI
for all z € R. So azb € I. Therefore R is I-semicommutative. 0

Definition 2.14. Let R be a ring with an ideal I. R is called I-semipotent if each
left ideal (resp., right ideal) not contained in I contains a non-zero idempotent, and
R is called I-potent if, in addition, idempotents lift modulo 1.
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Proposition 2.15. Let R be an abelian I-semipotent ring. If I is a semiprime
ideal, then R is I-semicommutative.

Proof. Let ab = 0. Assume that bra ¢ I for some r € R. Then there is a non-zero
idempotent e € braR. Write e = brat. Then e = €2 = (brat)(brat) = bra(brat)t =
br(ab)rat®> = 0 since e is central. This is a contradiction. So bRa C I. This proves
that ab = 0 implies bRa C I. By Proposition 2.4, R is I-semicommutative. O

3. Certain Extensions and Applications to J(R)

The goal of this section is to consider some extensions of J-semicommutative
rings. Let S and T be any rings, M an S-T-bimodule and R the formal triangular

M } Let I; and Iy be ideals of S and T respectively. Then

matrix ring [ 0T

L M. .
I—[O 12]1san1dealofR.

Proposition 3.1. Let S,T, M, R and I be as above. Then R is I-semicommutative
if and only if S and T are I1-semicommutative and Iy-semicommutative, respec-
tively.

is] = Il

o415 06

-semicommutative.

Proof. Necessity: Assume tha g

By Proposition 2.10, [ L } { 8
S M [

T

‘R [
S M
0o T
0
0 [ is isomorphic to S and

0
0
. . . 1
semicommutative. Since [ 0

1 0 I, M 1 0. . . . . .
[ 0 0 ] [ 0 I } [ 00 } is isomorphic to Iy, S is I1-semicommutative. Re-

. . 1 0 0 0 - . .

placing the idempotent 0 0 by 0 12 similar discussion reveals that 7'

is Is-semicommutative.
Sufficiency: Suppose that S and T" are I1-semicommutative and Is-semicommutative

respectively,andA:[a x},B:[C Y| € R with AB = 0. Then ac =0 in

0 b 0 d
S and bd = 0 in T. By supposition, aSc C I and bT'd C I5. Thus ARB C I and
so R is I-semicommutative. ([

Let I be an ideal of R, for a positive integer n, and T,,(I) denote the ring of all
n x n upper triangular matrices [a;;] with a;; € I. Then T, ([) is an ideal of T),(R).

Theorem 3.2. Let R be a ring, I an ideal of R and n a positive integer. Then the
following are equivalent.

(1) R is I-semicommutative.

(2) To(R) is T, (I)-semicommutative.

Proof. (1) = (2) Let [ai]‘], [bU] S Tn(R) with [CLU][b”] = 0. Then a;;0;; = 0
and so by (1), a;Rb;; C I. Thus [a;;]T,(R)[bi;] € T,(I) and so T,,(R) is T, (I)-

semicommutative.
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a 0 0 0
0O a 0 .. O
(2) = (1) Let a, b € R with ab = 0 and A = |, . . .| and
0 0 0 a
b 0 0 ... O
0O b 0 .. 0
B = L L € T.(R). Then AB = 0. By (2),
00 0 .. b
AT, (R)B C T,(I). It follows that aRb C I. O

Corollary 3.3. Let R be a ring. Then the following are equivalent.
(1) R is I-semicommutative.
(2) R[z]/(z") is (I[x] + (z™))/(a™)-semicommutative for all n > 2.

Proof. Since

ay az ag - ap—1 an
0 a1 ay -+ ap—2 ap_1
Rll/@m)y=q | O 0 o T anms dn g e gt
0 0 0 T aq as
| 0 0 0 -- 0 ar |
we get the result as in Theorem 3.2. O

The ring R is called Armendariz if for any f(z) = Z aiz', g(x) = Z bjx’ € Rlx],
i=0 j=0

f(z)g(z) = 0 implies a;b; = 0 for all ¢ and j (See [12]). For example every reduced
ring is Armendariz.

Proposition 3.4. Let R be a ring. Let K be an ideal of the ring R[x] of polynomials
over R. Let I be the ideal of R generated by the coefficients of all polynomials in K.
If R[x] is K-semicommutative, then R is I-semicommutative. The converse holds
if R is Armendariz.

Proof. Assume that R[z] is K-semicommutative. Let a,b € R and ab = 0. Then
aR[z]b C K, so aRb C I. Conversely, suppose that R is an [-semicommutative

s . t .
Armendariz ring, f(z) = > a;z*, g(z) = Y bjx? € R[z] and f(z)g(z) = 0. R
i=0 §=0
being Armendariz, we have a;b; = 0, where 0 < ¢ <5, 0 < j < t. By hypothesis
a;Rb; C I. Then for all i with 0 < i < s a;2'Rb; C I[z] and a;2'R[z]b; C I[z].
So f(z)R[z]b; C Ilz]. Similarly, f(z)R[x]g(x) C I[z]. Since all coefficients of the
polynomials in I[x] belong to the K, Ilx] C K. Thus f(z)R[z]g(z) C K. O
In general, J-semicommutative rings are not Armendariz.

Example 3.5. Let R be the field of real numbers, R = T3(R). By Theorem 3.2, R is
a J-semicommutative ring, but it is not an abelian ring, so R is not an Armendariz
ring by [11, Corollary 8].
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Let R be a ring with an ideal I and V' an R-R-bimodule which is a general ring
(possibly with no unity) in which (vw)r = v(wr), (vr)w = v(rw) and (rv)w = r(vw)
hold for all v,w € V and r € I. Then the ideal extension (it is also called the Dorroh
extension (see [7])) D(I; V) of I by V is defined to be the additive abelian group
I®V with multiplication (r,v)(s, w) = (rs, rw+vs-+vw) where (r,v), (s,w) € IQV.
Since R is an ideal of itself, D(R; V) is a well defined ring and it is also called the
Dorroh extension of R by V. Note that D(I;V) is an ideal of D(R; V) (see [19]).

Proposition 3.6. Suppose that V = J(V). Then the following are equivalent for
a ring R.

(1) R is I-semicommutative.

(2) D(R;V) is D(I;V)-semicommutative.

Proof. (1) = (2) Let s = (r,v), a = (b,¢) € D(R;V) with sa = (0,0). Then
rb=0 and so rRb C I by (1). Hence sD(R;V)a C D(I; V).

(2) = (1) Suppose that D(R;V) is D(I;V)-semicommutative. Let a, b € R with
ab = 0. Then (a,0)(b,0) = (0,0) and so (a,0)D(R;V)(b,0) C D(I;V) by (2).
Hence aRb C I. O

Corollary 3.7. Suppose that V = J(V). Then the following are equivalent for a
ring R.

(1) R is J(R)-semicommutative.

(2) The ideal extension D(R;V) is J(D(R;V))-semicommutative.

Proof. Note that by the hypothesis and [19, Theorem 13|, (r,v) € J(D(R;V))
if and only if r € J(R). Assume that R is J(R)-semicommutative. Let (r,v),
(s,u) € D(R;V) with (r,v)(s,u) = 0 in D(R;V). Then rs = 0 and so rRs C

J(R). Hence (r,v)D(R;V)(s,u) C J(D(R;V)). Conversely, suppose that D(R;V)
is J(D(R;V))-semicommutative. Let r, s € R with rs = 0. Then (r,0)(s,0) =
(0,0). By supposition (r,0)D(R;V)(s,0) C J(D(R;V)). It follows that rRs C
J(R). O

Let R be a commutative ring, M be an R-module and ¢ be an endomorphism
of R. The abelian group R @ M has a ring structure with multiplication

(r1,m1)(r2, ma) = (rire, o(r1)mg + romy),
where r; € R, m; € M. This extension is constructed by Nagata in [21], is called
the Nagata extension of R by M and o, and is denoted by N(R, M, o).

Theorem 3.8. Let R be a ring with an ideal I. Then, R is I-semicommutative if
and only if N(R, M, o) is I ® M-semicommutative.

Proof. Assume that R is I-semicommutative. Let (r1,m1), (r2,m2) € N(R, M, 0)
with (r1,m1)(re, me) = 0; then riro = 0. By assumption, r1Rrs C I. Then
rirrg € I for all r € R. Hence, for any (r,m) € R @ M, we have

(r1,m1)(r,m)(ro,mo) = (r1rra,2) € I & M,

since x € M. This implies N(R, M,o) is an I & M-semicommutative ring. The
converse is clear. ]
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Let R be a ring, and let ¢ be an endomorphism of R. Let T>(R, o) be the set of

all 2 x 2 upper triangular matrices over R. For [ g Ié ], { ?) Z ] € Tr(R,0), we

define the multiplication

a b z y | | ax ay+bo(z)

0 ¢ 0 z| | O cz '
This multiplication and usual matrix addition makes T»(R, o) is a ring since o is a
ring homomorphism.

Theorem 3.9. Let R be a ring with an ideal I. Then, R is I-semicommutative if
and only if To(R, o) is I(R, o)-semicommutative, where

I(R,a):{[g b} la, ce, beR}

Proof. Assume that R is [-semicommutative and let [ 8 i ], [ g ; ] € Tr(R,0)

with [g i] [g ;] = 0. Then ad = 0, ae + bo(f)=0 and ¢f = 0. By
the I-semicommutativity of R, we have aRd C I and cRf C I. This implies
T3(R,0) is I(R, o)-semicommutative. Conversely, suppose that T»(R, o) is I(R, o)-

0

Ty a 0 Ty
[0z}ETQ(R,a),weget{Oo][oZ}{
Hence we have aRb C I. Thus R is I-semicommutative.

semicommutative and let a,b € R with ab = 0. We have [ a 0 [ 8 8 =0.
0
0

So for any

Let R be a ring with a ring homomorphism ¢ : R — R and R][z,o]] the ring
of skew formal power series over R; that is, all formal power series in = with
coefficients from R with multiplication defined by ar = o(r)x for all r € R. In
particular, R[[z]] = R[[z,1g]] is the ring of formal power series over R. Note that
J(R[[z,0]]) = J(R) + (x) (see [27, Lemma 16.10]).

Proposition 3.10. Let R be a ring, 0 : R — R a ring homomorphism and I an
ideal of R. Then the following are equivalent.

(1) R is I-semicommutative.

(2) R[[z,0]] is I + (z)-semicommutative.

Proof. (1)= (2) Assume that R is [-semicommutative. Let f(z) = 3 a;a", g(z) =
> bz € R][x,0]] with f(x)g(z) = 0. Then apby = 0. By assumption agRby C I.
Then f(x)R[[z,0]]lg(z) C agRbo + (z) C I + (x).

(2)= (1) Let a, b € R with ab = 0. Then aR[[z,0]]b C I + (x). Hence we have
aRb C I. (]

Let R be a ring and a € R. a is called a r.q.r element(r.q.r for short) in R if there
exists a’ € R such that aoad’ = 0, where aoad’ = a +a — aa’. In terms of r.q.r
elements of R, J(R) = {a € R | aR is r.q.r in R}, see also [18, Definition 6.6 and
Chapter 6] for details. Let A be a ring and B a subring of A and

R[A, Bl ={(a1,a2, - ,an,b,b,---):a; € A,be B,n>1,1<1i<n}.
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Then R[A, B] is a ring under the componentwise addition and multiplication. Since
the ring R[A, B] need not have an identity, we use the preceding characteriza-
tion of the Jacobson radical in the next lemma. Next we first show the equality
J(R[A, B]) = R[J(A),J(A) N J(B)] and then we prove necessary and sufficient
conditions for R[A, B] to be J-semicommutative.

Lemma 3.11. Let A be a ring and B a subring of A. Then J(R[A,B]) =
R[J(A),J(A) N J(B)].

Proof. Let X = (ay,a2, - ,an,b,b,---) € J(R[A, B]). Then for any
Y =(a},ab, - ,a,, b, b,---) € R[A,B], XY is r.qr for all Y € R[A,B]. So
for such X and Y, there exists Z = (x1,z2, - ,2,9y,y, -+ ) € R[A, B] such that
(XY) o Z = 0. We prove that the components ay,as,- - ,a, of X are in J(A) and
be J(A)NJ(B). For this it is enough to show a; € J(A). For any a} € A, set Y =
(a},0,---,0,0,,---) € R[A, B]. Then there exists Z = (z1,T2, " ,Tn, Y, Y, ) €
R[A, B] such that (XY)o Z = 0. This implies (a1a}) o 1 = 0, that is, a; € J(A).
In the same way, we may show that the other components as, ..., a, of X belong
to J(A). As for the other components b, let b’ € B be an arbitrary element. Set
Y’ =(0,0,---,0,0',%,---). Then XY’ is r.q.r. Hence bb’ is r.q.r for each ' € B.
Thus b € J(B). To prove b € J(A), let a;,,, € A be an arbitrary element in A and
set Y = (a},ay, -+ ,ay,,1,0,---) € R[A,B]. Then XY" is r.q.r. Hence bay, ,, is
r.qrin A for all a;,,, € A. So b€ J(A). Thus b € J(A) N J(B). This implies that
J(RIA, B]) € RLI(A), J(A) N J(B).

For the converse inclusion, let X = (a1,a2, - ,an,b,b,---) € R[J(A),J(A) N
J(B)]. Then a; € J(A) for each 1 < i < n, and b € J(A)NJ(B). Let Y =
(1,22, yTm,Y,y, -+ ) be an arbitrary element in R[A, B]. We prove that there
exists Z = (21,22, , 21, 2,2, -+ ) such that (XY) o Z = 0. We divide the proof
into cases.

Case I: n = m. Since a; € J(A) and b € J(A) and b € J(B), a;x; are r.q.r in A for
1 <i<nandbyisr.q.rin both A and B. So there exist z; € A and z € B such that
(a;x;)0z; =0 where 1 <i<nand (by)oz=0. Set Z = (21,22, ,2n,2,2, " )-
Since the ring operations in R[A, B] is componentwise, (XY)o Z = 0.

Case II: n < m. a;x; arer.qrforl1 <i<mandbz;isrqrin Aforn+1<i<m
and by is r.q.r in B. There exist z; € A, z; € A and z € B such that (a;x;)02; =0
for 1 <i <mnand (bxj)oz; =0forn+1 < j<m. Set Z = (21,22, , 2m, 2,2, ).
Hence (XY) o Z = 0 holds.

Case lIl: n > m. a;z;isrqrforl <i<manda;yisrqrform+1<i<n
in A and by is r.q.r in B. There exist z; € A and z € B such that (a;z;) 02, =0
for 1 < i < mand (a;y)oz; =0for m+1 < i < nand (by)oz = 0. Let

Z = (21,22, " y2n,%,%,++). By using componentwise operations in R[A, B], we
have (XY)o Z =0. So R[J(A),JJ(A) N J(B)] C J(R[A, B]) holds. This completes
the proof. 0

Proposition 3.12. Let A be a ring with B a subring of A. Then the following are
equivalent.

(1) A and B are J-semicommutative.

(2) R[A, B] is J-semicommutative.
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Proof. (1) = (2)Leta = (a1, -+ ,an,b,b,--+),c=(c1, + ,em,d,d,---) € R[A, B]
with ac = 0. Then bd = 0, so bBd C J(A)N J(B) by (1). Let k = min(n,m).
Then for 1 <i <k, a;¢; =0, so a;Ac; C J(A), also by (1). If m < n then a;d =0
whenever m < i < n, so a;Ad C J(A) for such ¢, by (1), while if n < m then
bc; = 0 whenever n < j < m, so bAc; C J(A) for such j, again by (1). Hence
aR[A, Ble C J(R[A, B]).

(2) = (1) Let a, b € A with ab = 0 and let * = (a,0,0,---) € R[A,B], y =
(b,0,0,--+-) € R[A,B]. Then zy = 0. By (2), zR[A, Bly C J(R[A, B]). Hence
aAb C J(A). Therefore A is J-semicommutative. —To prove that B is
J-semicommutative, let b, ¢ € B with bc = 0, and let « = (0,b,0,---) € R[A, B]
and 8 = (0,c,¢,---) € R[A, B]. Then a8 =0. By (2), aR[A, B]3 C J(R[A, B]). It
follows that bBc C J(B), as desired. O

4. Exchange Rings with I = J(R)

The class of exchange rings is very large. It includes all regular rings, all 7-
regular rings, all strongly m-regular rings, all semiperfect rings, all left or right
continuous rings, all clean rings, all unit C*-algebras of real rank zero and all right
semi-artinian rings (see for detail [3],[4],[5],[28],[30]). The aim of this section is to
consider J-semicommutativity of such rings.

Recall that a ring R is exchange provided that for any a € R, there exists an
idempotent e € R such that e € aR and 1 —e € (1 — a)R (see for detail [1]). A
ring R is clean in case every element in R is the sum of an idempotent and a unit.
Clean rings always exchange. The converse holds if all idempotents of R are central.
Also note that a ring R is an exchange ring if and only if idempotents can be lifted
modulo every left (respectively right) ideal (see [22]).

Note that if w is an invertible element of a ring R and r € J(R), then w4 r is
invertible. For if a = u+7, then u=ta—1=u"1r € J(R). As 14+u~1r is invertible,
u~'a is invertible and so is a. Also for an element a € R, a is invertible in R if and
only if @ is invertible in R/J(R).

Theorem 4.1. Let R be a J-semicommutative ring. Then the following are equiv-
alent.

(1) R is an exchange ring.

(2) R is clean.

Proof. (2) = (1) is obvious from [22, Proposition 1.8] because [22, Proposition
1.8] says that every clean ring is a suitable ring. Note that suitable ring is another
name of exchange ring.

(1) = (2) Set S = R/J(R). Then S is an exchange ring by [22, Proposition 1.5].
Let f € S be an idempotent. Then f =€ € S for some idempotent e € R where
e € S refers to e + J(R) € S. By Lemma 2.7, eF = 7e for all 7 € S. So S is an
exchange ring with all idempotents central. This yields that S is clean. For any
a € R, we have an idempotent g € R and an invertible element u € S such that
a=g+u. Write a —g = u+r for some r € J(R). Then u+r is invertible as noted
before, and so a = g + (u + r), as required. a

Theorem 4.2. Let R be an exchange ring. Then the following are equivalent.
(1) R is J-semicommutative.
(2) R/J(R) is semicommutative.
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Proof. (2) = (1) is obvious from Lemma 2.3.

(1) = (2) Suppose that R/J(R) is not semicommutative. Then there exist @,
b€ R/J(R) and r € R such that @b = 0 and arb # 0. In view of [16, Theorem 2.1],
the principal ideal generated by @ contains a system {€11, €12, €21, €22 } of 2X2 matrix
units. Ase?, =é;; € R/J(R), we can find an idempotent f € R such that ;1 = f.
For any 7 € R/J(R), by Lemma 2.7, ff =7f. Hence er17 = fr = frf =rf = 7ei;.
Choose 7 = e13. Then ej1e1z = €12 = €1z2e11 = 0, a contradiction. Therefore
R/J(R) is semicommutative. O

Wei and Li, in [32], introduced quasi-normal rings. A ring R is called quasi-
normal if ae = 0 implies eaRe = 0 for any nilpotent a and idempotent e in R, and
R is right(or left) quasi-duo if every maximal right(or left) ideal is an ideal (see
[14]). Wei and Li in [32, Lemma 3.5] proved that for an exchange ring R, the
following conditions are equivalent:

(1) R is reduced,;

(2) R/J(R) is abelian;

(3) R/J(R) is semiabelian;
(4) R/J(R) is quasi-normal;
(5) R is quasi-duo;

(6) R is left quasi-duo.

Corollary 4.3. Let R be an exchange ring. Consider the following conditions :
(1) R is J-semicommutative.

(2) R is right (left) quasi-duo.

(3) R/J(R) is quasi-normal.

(4)

Then (1)& (2)< (3)= (4).

R is clean.

Proof. (2)= (1) Assume that R is right quasi-duo. By [32, Lemma 3.5], R/J(R) is
reduced, therefore semicommutative and by Theorem 4.2, R is J-semicommutative.
(1)= (2) Let @, e € R/J(R) with € = € and @ = 0. By Theorem 4.2, R/J(R)
is semicommutative, and so is abelian. Then ea(R/J(R))e = 0. Hence R/J(R) is
quasi-normal. By [32, Lemma 3.5], R is quasi-duo.

(2)< (3) Clear from [32, Lemma 3.5].

(1)= (4) Let R be a J-semicommutative ring. By Theorem 4.2, R/J(R) is semi-
commutative, hence it is abelian. R/J(R) is an exchange ring by hypothesis. So
exchange and abelian ring R/J(R) is clean by [23, Theorem 2| and idempotents
are lifted modulo J(R) by [22, Proposition 1.5]. We prove that R is clean. For if
a € R, there exists an idempotent f € R/J(R) and an invertible u € R/J(R) such
that @ = € +%. Then there exists an idempotent e € R such that f = €. Note that
u is invertible in R, and a — e = u + r for some r € J(R). As noted before u + r is
invertible in R. Hence R is a clean ring. (|

The following example reveals that the implication (4)= (1) in Corollary 4.3 need
not hold in general.

Example 4.4. There are clean rings which are not J-semicommutative.

Proof. Let R be a unit regular ring, that is, for every element a € R there exists
an invertible element v € R such that a = aua. Every unit regular ring is clean
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by [2], and also every unit regular ring has Jacobson radical zero (see [18, Exercise
6.27 (4)]). Assume also that R is J-semicommutative. Then R is abelian. Hence
a = aua implies ua is central idempotent and so a = a?u. It follows that R is
strongly regular. This leads us to a contradiction since there are unit regular rings
that are not strongly regular. Therefore a unit regular ring that is not strongly
regular cannot be J-semicommutative. (I

Let R be a ring. Then R is called J-Armendariz if whenever polynomials f(z) =
Z a;zt, g(x) = Z bjal € R[x] satisfy f(z)g(z) = 0, we have a;b; € J(R) for every

i and j. In case the ideal J(R) = 0, a J-Armendariz ring is Armendariz.

Theorem 4.5. Let R be a ring.

(1) If R[x] is J(R)[z]-semicommutative, then R is J-semicommutative. The con-
verse holds if R is Armendariz.

(2) If R[z] is J(R][x])-semicommutative, then R is J-semicommutative.

Proof. (1) Assume that R[x]is J(R)[z]-semicommutative. Let a,b € R and ab = 0.
Then aR[z]b C J(R)[z]. Hence aRb C J(R). Conversely, suppose that Ris a J-

semicommutative Armendariz ring. Let f(z Za x', g(x Zb 2! € Rlx

with f(z)g(x) = 0. Since R is Armendariz, we have ab; =0 Where 0<i<s,
0 < j < t. By hypothesis a;Rb; C J(R). Hence a;R[z]b; C J(R)[z]. Thus
J (@) Rlalg(x) C J(R)[a).

(2) Let a,b € Rand ab = 0. Then aR[x]b C J(R[z]). Since J(R[z]) C J(R)+zR[z],
we have aRb C J(R). O

Theorem 4.6. FEvery J-semicommutative exchange ring is J-Armendariz.

Proof. Let R be a J-semicommutative exchange ring. Then R/J(R) is semicom-
mutative by Theorem 4.2. For any a, b € R, ab € J(R) implies ba € J(R). For
if ab € J(R), then @b =0 in R = R/J(R). Since R is semicommutative, @b = 0
and (bRa)? = 0. Hence (bRa)R(bRa) = 0, and (bRaR)? = 0. Hence bRaR C J(R)
and so bRa C J(R). In particular, for any a € R with a? = 0 implies aRa C J(R).
Hence a € J(R) since J(R) is a semiprime ideal.

Let f(z) = ag + a1z + ... + apa™, g(x) = by + bix + ... + bpz™ € R[z] with
f(x)g(x) = 0. Without loss of generality, we may assume that n = m. Then we
have

agbo =0 (1)
a0b1 + a1b0 =0 (2)
agbs + a1by + asbg =0 (3)

ap—1bo + an—ob1 + ...+ arb,_2 +apbp—1 =0 (n—1)
anb0+an,1b1—|—...—|—a1bn,1+a0bn =0 (n)
anbi + an—1ba+ ...+ agbp—1 + a1, =0  (n41)

Since agbg = 0 € J(R), bpag € J(R). Multiplying (2) by by from the left we have
boaobl + b0a1b0 = 0. Since boao € J(R), b0a1b0 € J(R) So b0a1 S J(R) and
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a1bg € J(R). Left multiplying (3) by by yields bgagba + boaiby + bopazbg = 0. Since
boay € J(R) and bgag € J(R), boashg € J(R) and so asbg € J(R) and bpas € J(R)
By (3) we have a1by 4+ agby € J(R). Left multiplying the latter by b; and using
biag € J(R) we have bja1by € J(R) and so bia; € J(R) and a1b; € J(R). By
(3), apb2 € J(R). We prove by induction on n and assume that a;b; € J(R) for
0 <4,5 <n— 1. Multiplying the equation (n) by bg from the left we have

boanbo + boan_lbl + ...+ boalbn_l + boaobn =0.

By assumption, boan—1b1 + ... + boairb,—1 + boagb, € J(R). So bpanby € J(R).
Then bpa,, € J(R) and a,by € J(R). To have anb; € J(R), we multiply (n+1)
by b from the left and using the induction assumption, we have bja,b; € J(R).
Hence bya, € J(R) and a,b; € J(R). To complete the proof, we use induction on
n and assume that b;a, € J(R) for 0 < j < n—1, we show that b,a,, € J(R). This
is clear since a,b, = 0. This completes the proof. (I

Theorem 4.6 is very useful for supplying examples for J-Armendariz rings.

As is well known, the transpose of an invertible matrix over a noncommutative
ring may be not invertible. In [8, Theorem 2.3], Gupta et al. proved that every
transpose of an invertible matrix over a ring R is invertible if and only if R/J(R)
is commutative. In the next, we will characterize the J-semicommutative exchange
rings over which the transpose of every invertible square matrix is invertible in
terms of commutators of invertible elements, and that give several further explicit
results.

Let R be a ring. By C(R) we denote the center of R, that is, C(R) = {a € R |
ar = ra for all r € R}. Tt is believed that Lemma 4.7 is in the literature. However,
we can not reach the title that contains its proof or to refer to. Therefore for the
sake of completeness we give a proof here.

Lemma 4.7. Let R be a semiprimitive exchange ring with all idempotents central.
Then the following are equivalent.

(1) R is commutative.

(2) For any u,v € U(R), [u,v] € C(R).

Proof. (1) = (2) is trivial.

(2) = (1) By [22, Proposition 1.8(2)], R is a clean ring. Let a,b € R. Then there
exist idempotents e, f € R and units u,v € U(R) such that a = e+wu and b= f+v.
Thus, [a,b] = (e+u)(f+v) = (f+v)e+u) =ef +ev+uf +uv— fe— fu—
ve — vu = [u,v]. By hypothesis, [a,b] € C(R). According to [8, Theorem 2.2], R is
commutative. ]

Recall that a ring R is said to have stable range one if for any a, b € R satisfying
aR+ bR = R, there exists y € R such that a + by is right invertible (cf.[29]). Note
that commutative exchange rings have stable range one (cf.[28, Theorem 6]).

Let R be a ring and a,b,c € R. Following Herstein (cf. [10]), an element of the
form [a, b, ¢] = abc — cba in the ring R is called a generalized commutator.

From [15] it is known that if R has stable range one, then J(R) = {z € R |x—u €
U(R) for any u € U(R)}. We give and prove necessary and sufficient conditions for
a J-semicommutative semiprimitive exchange ring to be commutative.
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Theorem 4.8. If R is a J-semicommutative exchange ring, then the following are
equivalent.

(1) R/J(R) is commutative.

(2) For allm, GLy(R) is closed under transposition.

(3) For all a,b,c € U(R), ¢+ [a,b] € U(R).

(4) For all a,b € U(R), [a,b] € J(R).

(5) For all a,b,c € U(R), 1+ [a,b,c] € U(R).

Proof. (1) < (2) is obvious from [8, Theorem 2.3].

(2) = (3) For all a,b,c € UR), ¢c —ba+ba = ¢ € U(R). We infer that
( _bl c—aba ) € GLy(R); hence, ( c—bba _al > € GLy(R). This implies that
¢—ba+abe U(R), and so ¢+ [a,b] € U(R).

(3) = (4) Let a,b € U(R). Then ¢+ [a,b] € U(R) for all ¢ € U(R). Being R
an exchange ring, [22, Proposition 1.5] implies R/J(R) is an exchange ring and
idempotents lift modulo J(R). By Lemma 2.7, R/J(R) is abelian. Therefore it
has stable range one by [28, Theorem 6]. This yields that R has stable range one.
Having R stable range one, as it is mentioned before, J(R) = {zr € R |z—u € U(R)
for every w € U(R)}. So for any a,b € U(R), by (3) [a,b] — (—c) € U(R) for any
¢ € U(R). Hence [a,b] € J(R).

(4) = (1) Let S = R/J(R). Then S is an exchange ring with all idempotents central
by Lemma 2.7. Moreover, J(S) = 0, i.e., S is semiprimitive. For any @,b € U(S), we
have a,b € U(R). By hypothesis, 14+a,b] € U(R) as [a,b] € J(R). Set w = 1+]a, b].
For any r € R, in light of Lemma 4.7, it will suffice to show that wr = 7w. It is
clear from the fact that for any r € R, [w,r] = wr — rw = [a,b]r — r[a,b] € J(R)
since [a,b] € J(R). Therefore w € C(S), and then [a,b] € C(S). According to
Lemma 4.7, S is commutative.

(1) = (5) For all a,b,c € U(R),1+ [a,b,c] =1+ abc — cba =1 € R/J(R). There-
fore 1+ [a,b,c] € U(R).

(5) = (1) For all a,b,c € U(R), ¢+ |[a,
c(1+ (cta)e(c™'b) — (c7tb)e(cta)) =
result is clear.

— — — —

b =c+ab—ba = c(l+c*(ab—ba)) =
c(l + [c7ta,c, c‘lb]) € U(R). Thus, the
([l

| Ly Zo
LetR< 0 Zy

exchange ring. For all a,b € U(R), it is easy to verify that ab = ba. That is, all
units in R commute. Thus, [a,b] = 0 € J(R). By Theorem 4.8, R/J(R) is commu-

tative. Choose u = < 11

. Then according to [33, Example 3] R is a J-semicommutative

0 1 > € U(R). Then u € R is not central. In this case, R

is not commutative.

Corollary 4.9. Let R be an exchange ring with all idempotents central. Then the
following are equivalent.

(1) R/J(R) is commutative.

(2) For allm, GL,(R) is closed under transposition.

(3) For all a,b,c € U(R), ¢+ [a,b] € U(R).

(4) For all a,b € U(R), [a,b] € J(R).

(56) For all a,b,c € U(R), 1+ [a,b,c] € U(R).
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Proof. It is proven by [23, Proposition 5] that every exchange general ring is J-
semipotent. Then R is a J-semicommutative exchange ring by Corollary 2.15, and
so the result follows. O

Acknowledgments: The authors would like to thank the referee for his/her careful
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