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Abstract—We introduce a novel third order analogue 

nonlinear system, using three multipliers as nonlinear 
functions. The proposed system exhibits rich nonlinear 
dynamics, with periodic and chaotic behaviors, depending on 
the system parameters. The strange attractor of the system, 
under chaotic parameter choice, is characterized by a limited 
domain occupied in the state space. The analysis of the 
nonlinear dynamics of the system is presented and in depth 
simulation results confirm the desired properties. Suggested 
applications of the proposed system include analogue noise 
generators and spread spectrum clock generators. 
 

Index Terms—chaos, noise generators, nonlinear attractors, 
nonlinear dynamical systems, pulse generation. 

I. INTRODUCTION 

The present paper presents a new analogue nonlinear 
system, based on multiplication as a nonlinear algebraic 
function, which has complex dynamics and can be applied 
for generating random-sign pulses or spread-spectrum clock 
signals. 

Some well studied analogue nonlinear systems, which 
exhibit complex dynamics, are using multiplication as a 
nonlinear function in their state equations. The Rossler 
system [1-2] is based on a single multiplier structure and the 
Lorenz [3] and Chen [4-6] systems use two such building 
blocks. The nonlinear dynamics of such systems is based on 
chaotically switching the state space trajectory between two 
branches of the strange attractor (Lorenz or Chen systems) 
or impulsive interrupting an increasing oscillation, in the 
case of the Rossler system. In both cases, large value 
transients occur, making signal maximum values estimation 
and circuit implementation difficult. 

Proposed applications of these analog chaotic systems 
include chaotic modulation and encryption [7, 8] and chaos 
control [9, 10]. In order to achieve such goals, circuit 
implementations were desired, and typical implementations 
regard Chua’s circuit [11] and power circuits with nonlinear 
reactive elements [12], all difficult to integrate on silicon 
chips. 

In order to keep state variables confined to a limited state-
space domain, we propose an alternative system, with 
multipliers included in all three state equations. 

Possible applications of the proposed system are noise 
generation and spread spectrum clock generation. Noise 
generation is one of the first applications of chaotic 
dynamics [13] and has evolved on both analog [13-15] and 
discrete-time [16-20] tracks due to promising applications in 
communication security and test and measurement 

equipment. 
The following section is devoted to the development of 

the system design, with dynamic analysis based on a linear 
prototype and product type nonlinearities added to it. 
Simulation results, which highlight the desired properties of 
the proposed system, are included in the third section, 
showing possible applications of the proposed system. The 
final section draws resulting conclusions and suggests 
further research. 

II. SYSTEM ANALYSIS 

The proposed nonlinear system is designed using a linear 
part added to a nonlinear algebraic function, leading to the 
structure: 

' ( )  x A x f x     (1) 

The linear part of the system is designed starting from a 
state transition matrix of the form (2): 
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resulting from an initial eigenvalue set intended for 
oscillatory dynamics (3): 
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where the parameter, a, is always considered to be larger 
than unit. 

This leads to the scalar state equations system (4): 
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The nonlinear part is based on three state variables 
multiplications, as shown in the following equation (5): 
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The final form of the state equations of the proposed 
system is (6): 
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The equilibrium points of the nonlinear system result in 
the form given in equations (7) and (8), as detailed in 
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where  is a root of the polynomial (9): 
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The fact that the proposed nonlinear system is dissipative 
can be easily verified from the form of the state equations, 
as resulting from (10): 
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Moreover, this property does not depend on the system 
parameters, as defined in the proposed state equations. On 
the contrary, the ergodicity and sensitivity to initial 
conditions are dependent on the coefficients in the system 
state equations and, as such, will be treated in the following 
section, by numerical simulation. 

III. SIMULATION RESULTS 

In order to verify the nonlinear dynamics of the proposed 
system, in depth simulations were performed. To choose the 
proper system parameters values, a parametric analysis was 
performed. We non-uniformly sampled the state variables x2 
and x3 at the time moments when x1 = 5. This way we 
obtained a second order discrete-time system, with the state 
variables denoted y1 and y2. Increasing slowly the system 
coefficients, one at a time, keeping the other ones constant, 
we obtained graphs such as the one in Fig. 1, where chaotic 
intervals alternate with periodic ones. This analysis suggests 
the value ranges for the system parameters in order to obtain 
different dynamical behaviors. 

The ergodic character of the third order nonlinear system 
can be viewed in the 3D state space trajectory depicted in 
Fig. 2, for a choice of system parameters (11), leading to 
chaotic dynamics: 

5; 9; 50; 20; 4.1;a b          (11) 

If a similar simulation is performed using a set of 
parameters suited for periodic behavior, e.g. by modifying 
the values  = 10 and  = 7.1 and maintaining all others as in 
(11), a phase portrait such as the one in Fig. 3 can be 
obtained, highlighting a period multiplication with a factor 
of two. 

In order to check the sensitive behavior with respect to 
the initial conditions of the nonlinear system, for the choice 
of system parameters leading to chaotic dynamics (11), the 
RMS value of the difference between the state vectors of 
two identical systems, starting from initial conditions 

differing with 0.05% was computed and the simulation 
result depicted in Fig. 4 confirms the chaotic hypothesis. 

In order to properly understand the chaotic dynamics of 
the analyzed system, Poincare sections were made, by 
intersecting the phase portrait of the system with a half 
plane chosen by imposing a null value to a state variable. If 
the third state variable is equaled to zero and the first two 
state variables are sampled at the intersection moment, a 
second order discrete-time phase portrait as the one depicted 
in Fig. 5 is obtained. In the case of switching roles between 
x2 and x3 state variables, we obtained obtained the results in 
Fig. 6. The dense clustering of the sample values on a thin 
domain confirms the ergodic character of the analog system. 

Simulations on the time evolution of the state variables 
were also performed, for the case when the system 
parameters take the standard values in (11), leading to the 
results depicted in the following figures. 

Under the presented conditions, the first state variable, x1, 
shows the waveform, shown in Fig. 7, is suggesting 
applications in random pulse generation. The wideband 
frequency spectrum of the same state variable, depicted in 
Fig. 8, confirms the possibility of using the proposed system 
as an analogue noise generator. 
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Figure 1. Parametric analysis at the variation of the gamma coefficient 

 

 
Figure 2. State space portrait for the chaotic dynamics parameter choice 

 

 
Figure 3. State space portrait for the periodic dynamics parameter choice 

 

 110 

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:04:22 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 14, Number 2, 2014 

 
Figure 4. RMS value of the difference of the two state vectors 
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Figure 5. Poincare section in the case of sampling x1 and x2 state variables 

 
Figure 6. Poincare section in the case of sampling x1 and x3 state variables 
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Figure7. Time evolution of the first state variable 

 
The same simulation shows, for the third state variable, 

x3, the waveform presented in Fig. 9. Such simulations 
highlight chaotic variation of x3 increasing and decreasing 
fronts. The time domain observation is confirmed by the 
frequency domain spectrum of the third state variable, 
depicted in Fig. 10, which looks similar to a PWM spectrum 
with low frequency, random modulating signal. 

 
Figure 8. Frequency spectrum of the first state variable 

 The presented results suggest that the proposed system 
may be used for spread spectrum clock generation, by using 
a comparator to form the desired digital signal from the x3 
state variable, as depicted in Fig. 11. Due to the small front 
jitter, confirmation of the spread spectrum characteristic for 
the clock signal is more obvious in the frequency spectrum, 
depicted in Fig. 12. 
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Figure 9. Time evolution for the third state variable  

 

 
Figure 10. Frequency spectrum of the third state variable 
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Figure 11. The rectangular spread spectrum clock signal  

       111

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:04:22 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 14, Number 2, 2014 

 112 

 

 
Figure 12. Frequency spectrum of the spread spectrum digital signal 

IV. CONCLUSION 

The present paper introduces a novel analogue nonlinear 
system, which exhibits complex dynamics with limited 
dynamic range of the generated signals. The fact that the 
first two state variables of the proposed system have chaotic 
impulsive waveforms and the third one exhibits jitter on its 
fronts lead to applications in the fields of random pulse 
generation and spread spectrum clock generation. Further 
research is needed for electronic circuit implementation of 
the nonlinear system developed here, to overcome 
technological restrictions and device non-idealities. 

APPENDIX A 

In order to compute the equilibrium points of the 
proposed system we impose the equilibrium condition (A1) 
to the state equations (6): 

' 0x       (A1) 
This leads to the nonlinear algebraic system of equations: 
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The system can be solved iteratively, as follows: 
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The last equation in the system can be brought to the 
polynomial form: 
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The polynomial equation has the obvious root: 

3 0x        (A6) 

For this root, we obtain the null system solution (7). By 

dividing with x3, we obtain: 
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This can be further processed to obtain the monic 
polynomial (9) and the non-null solutions (8). 
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