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ON THE GRACEFULNESS OF THE GRAPH P2m;2n

Zhihe Liang, Huijuan Zuo

Let Pa,b denotes a graph obtained by identifying the end vertices of b inter-
nally disjoint paths each of length a. Kathiresan conjectured that graph Pa,b

is graceful except when a is odd and b ≡ 2 (mod 4). In this paper we show
that the graph Pa,b is graceful when both a and b are even.

1. INTRODUCTION

The following notations are used frequently. The symbol Zn denotes the
residue ring of integers modulo n. Let Z be the set of all integers. Then the symbol
[a, b] is defined by {x | x ∈ Z, a ≤ x ≤ b}, [a, b]k is defined by {x | x ∈ Z, a ≤ x ≤
b, x ≡ a (mod k)}, and the symbol bxc (dxe) denotes the greatest (least) integer y
such that y ≤ x (y ≥ x). When S is a set, let f(S) denotes the set {f(x) | x ∈ S}
and S + a={s + a | s ∈ S}.

Graphs labeling, where the vertices are assigned values subject to certain con-
ditions, have often been motivated by practical problems. Labeled graphs serves as
useful mathematical models for a broad range of applications such as coding the-
ory, including the design of good radar type codes, synch-set codes, missile guidance
codes and convolution codes with optimal autocorrelation properties. They facil-
itate the optimal nonstandard encoding of integers. A systematic presentation of
diverse applications of graph labelings is presented in [1]. A function f is called a
graceful labeling of a (p, q)-graph G=(V,E) if f is an injection from the vertices
of G to the set [0, q], such that the induced mapping f∗(uv)=|f(u) − f(v)| is a
bijection from E(G) onto [1, q]. Rosa [5] introduced this concept in 1967 and also
defined an α-labeling of a graph G as a graceful labeling f of G such that for each
edge uv of G either f(u) ≤ c < f(v) or f(v) ≤ c < f(u) for some integer c, called
characteristic of f.
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Let Pa,b denotes a graph obtained by identifying the end vertices of b inter-
nally disjoint paths each of length a. Kathiresan [4] conjectured that graph Pa,b

is graceful except when a is odd and b ≡ 2 mod 4. He showed that the conjecture is
true for the case a even and b odd. Seker [7] has shown that Pa,b is graceful when
a 6= 4r + 1, r > 1; b=4m, m > r. Yang et al. [6, 8] showed that P2r+1,2m−1 is
graceful for any positive integer r and any positive integer m, and P2r,2m is graceful
for any positive integer m and r=1, 2, 3, 4, 5, 6, 7, and 9. Dai et al. [2] showed
that P3,4m is graceful for any positive integer m. Gallian [3] surveyed the results
on graceful labeling of graphs. In this paper, we investigate the gracefulness of
graph Pa,b when both a and b are even.

2. MAIN RESULTS

For a (k+1)-dimensional vector A=(a1, a2, ..., ak+1), the k-dimensional vector
DA=(|a1 − a2|, |a2 − a3|, ..., |ak−1 − ak|, |ak − ak+1|) is called a difference vector of
A. A vector (or matrix) is called an EPD vector (or matrix) if its elements are
pairwise distinct. The symbol < A > denotes the set of all elements of vector (or
matrix) A. We obtain the following two lemmas.

Lemma 2.1. Let A=(a1, a2, ..., ak+1), where

ai =
{

s + (i− 1)/2, i ∈ [1, k + 1]2
t− (i− 2)/2, i ∈ [2, k + 1]2.

Then < DA >=[t−s−k+1, t−s] when t−s ≥ k and < DA >=[s− t, s− t+k−1]
when s > t.

Proof. When t− s ≥ k, we have A1={|a2i− a2i−1| | i ∈ [1, b(k + 1)/2c]}={t− s−
2i + 2 | i ∈ [1, b(k + 1)/2c]} = [t− s− 2b(k + 1)/2c+ 2, t− s]2,
A2={|a2i+1−a2i| | i ∈ [1, bk/2c]}={t−s−2i+1 | i ∈ [1, bk/2c]} = [t−s−2bk/2c+
1, t− s− 1]2. Therefore, < DA >=A1 ∪A2=[t− s− k + 1, t− s].

When s > t, we have A1={|a2i− a2i−1| | i ∈ [1, b(k + 1)/2c]} = {s− t + 2i− 2 | i ∈
[1, b(k + 1)/2c]} = [s− t, s− t + 2b(k + 1)/2c − 2]2,
A2={|a2i+1 − a2i| | i ∈ [1, bk/2c]}={s− t + 2i− 1 | i ∈ [1, bk/2c]} = [s− t + 1, s−
t + 2bk/2c − 1]2. Therefore, < DA >=A1 ∪A2=[s− t, s− t + k − 1]. ¤

Lemma 2.2. Let A=(a1, a2, ..., ak+1), where

ai =
{

s− (i− 1)/2, i ∈ [1, k + 1]2
t + (i− 2)/2, i ∈ [2, k + 1]2.

Then < DA >=[s− t−k+1, s− t] when s− t ≥ k and < DA >=[t−s, t−s+k−1]
when s < t.

Proof. When s − t ≥ k, we have A1={|a2i − a2i−1| | i ∈ [1, b(k + 1)/2c]} =
{s− t− 2i + 2 | i ∈ [1, b(k + 1)/2c]} = [s− t− 2b(k + 1)/2c+ 2, s− t]2,
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A2={|a2i+1−a2i| | i ∈ [1, bk/2c]}={s− t−2i+1 | i ∈ [1, bk/2c]} = [s− t−2bk/2c+
1, s− t− 1]2. Therefore, < DA >=A1 ∪A2=[s− t− k + 1, s− t].

When s < t, we have A1={|a2i− a2i−1| | i ∈ [1, b(k + 1)/2c]} = {t− s + 2i− 2 | i ∈
[1, b(k + 1)/2c]} = [t− s, t− s + 2b(k + 1)/2c − 2]2,
A2={|a2i+1 − a2i| | i ∈ [1, bk/2c]}={t− s + 2i− 1 | i ∈ [1, bk/2c]} = [t− s + 1, t−
s + 2bk/2c − 1]2. Therefore, < DA >=A1 ∪A2=[t− s, t− s + k − 1]. ¤

Let Ai=(ai,1, ai,2, ..., ai,2m−1), i ∈ [1, 2n] and

(1) A =




A1

A2

...
A2n


 =




a1,1 a1,2 ... a1,2m−1

a2,1 a2,2 ... a2,2m−1

... ...
a2n,1 a2n,2 ... a2n,2m−1


 .

The difference matrix of the matrix A, denoted by DA, is a matrix whose row
vectors are DA1, DA2, ..., DA2n. That is

(2) DA =




DA1

DA2

...
DA2n


 .

Lemma 2.3. In the matrix (1), let

a2i−1,2j−1 = 4m(n− i) + 4m− j + 1 if i ∈ [1, n] and j ∈ [1,m],
a2i,2j−1 = 4m(n− i) + 2m + j if i ∈ [1, n] and j ∈ [1, m],
a2i−1,2j = 4m(i− 1) + j if i ∈ [1, n] and j ∈ [1,m− 1],

a2i,2j = 4m(i− 1) + 2m− j + 1 if i ∈ [1, n] and j ∈ [1,m− 1].

Then the matrix A is an EPD matrix and {< DA >,B} is a partition
of set [1, 4mn], where B=[2m + 1, 4mn − 2m + 1]4m

⋃
[4m, 4mn]4m

⋃
[2m, 4mn −

2m]4m

⋃
[2m− 1, 4mn− 2m− 1]4m.

Proof. It is easy to see that the matrix A and the matrix DA have 2n(2m − 1)
and 4n(m− 1) elements, respectively. We have
A1={a2i−1,2j−1, a2i,2j−1 | i ∈ [1, n], j ∈ [1,m]} =

⋃n
i=1[4m(n− i)+ 2m+1, 4m(n−

i) + 4m], and
A2={a2i−1,2j , a2i,2j | i ∈ [1, n], j ∈ [1,m−1]} =

⋃n
i=1 4m(i−1)+([1, 2m]\{m,m+

1}). Therefore, < A >=[1, 4mn] \ (
⋃n

i=1{4m(i− 1) + m, 4m(i− 1) + m + 1}), and
there are 2n(2m − 1) elements in < A > . This implies the matrix A is an EPD
matrix.
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Let s=4mn−4mi+2m+1, t=4mi−2m, k=2m−2. When 1 ≤ i ≤ b(n+1)/2c,
there is s > t. By Lemma 2.1, we obtain
< DA2i >=[s− t, s− t + k − 1]=[4mn− 8mi + 4m + 1, 4mn− 8mi + 6m− 2].

When b(n + 1)/2c < i ≤ n, there is s < t. By Lemma 2.1, we obtain
< DA2i >=[t− s− k + 1, t− s]=[8mi− 4mn− 6m + 2, 8mi− 4mn− 4m− 1].

Let s=4mn−4mi+4m, t=4mi−4m+1, k=2m−2. When 1 ≤ i < d(n+2)/2e,
there is s > t. By Lemma 2.2, we obtain
< DA2i−1 >=[s− t− k + 1, s− t]=[4mn− 8mi + 6m + 2, 4mn− 8mi + 8m− 1].

When d(n + 2)/2e ≤ i ≤ n, there is s < t. By Lemma 2.2, we obtain
< DA2i−1 >=[t− s, t− s + k − 1]=[8mi− 4mn− 8m + 1, 8mi− 4mn− 6m− 2].

When n is odd, we have
∪2n

i=1 < DAi >

=(∪(n+1)/2
i=1 [4mn− 8mi + 4m + 1, 4mn− 8mi + 6m− 2])⋃
(
⋃n

i=(n+3)/2[8mi− 4mn− 6m + 2, 8mi− 4mn− 4m− 1])
⋃

(
⋃(n+1)/2

i=1 [4mn− 8mi + 6m + 2, 4mn− 8mi + 8m− 1])⋃
(
⋃n

i=(n+3)/2[8mi− 4mn− 8m + 1, 8mi− 4mn− 6m− 2])

=(∪(n−1)/2
i=0 (8mi + [1, 2m− 2]))

⋃
(
⋃(n−3)/2

i=0 (8mi + [6m + 2, 8m− 1]))⋃
(
⋃(n−1)/2

i=0 (8mi + [2m + 2, 4m− 1]))
⋃

(
⋃(n−3)/2

i=0 (8mi + [4m + 1, 6m− 2]))
=[1, 4mn] \B.

When n is even, we have
∪2n

i=1 < DAi >

=(∪n/2
i=1[4mn− 8mi + 4m + 1, 4mn− 8mi + 6m− 2])⋃
(
⋃n

i=(n+2)/2[8mi− 4mn− 6m + 2, 8mi− 4mn− 4m− 1])
⋃

(
⋃n/2

i=1[4mn− 8mi + 6m + 2, 4mn− 8mi + 8m− 1])⋃
(
⋃n

i=(n+2)/2[8mi− 4mn− 8m + 1, 8mi− 4mn− 6m− 2])

=(∪(n−2)/2
i=0 (8mi + [4m + 1, 6m− 2]))

⋃
(
⋃(n−2)/2

i=0 (8mi + [2m + 2, 4m− 1]))⋃
(
⋃(n−2)/2

i=0 (8mi + [6m + 2, 8m− 1]))
⋃

(
⋃(n−2)/2

i=0 (8mi + [1, 2m− 2]))
=[1, 4mn] \B.

Therefore, we have B ∪ (∪2n
i=1 < DAi >)=[1, 4mn] and B

⋂
(∪2n

i=1 < DAi >)=φ.
This completes the proof. ¤

For an integer i satisfying 1 ≤ i ≤ b, let P i
a be ith path of Pa,b, and the

successive vertices of P i
a be x, xi,1, xi,2, · · · , xi,a−1, y, where x and y are two common

end vertices of b internally disjoint paths each of length a. We use the symbol P i
a−2

to denote the subpath of P i
a with consecutive vertices xi,1, xi,2, · · · , xi,a−1.

Example 2.4. Figure 1 displays a graph Pm,4 and Figure 2 shows a graceful labeling of
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P4,2.
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Theorem 2.5. Graph P2m,2n is graceful for any positive integers m and n.

Proof. It is easy to see that the graph P2m,2n has 4mn edges and 2n(2m− 1) + 2
vertices. Let ai,j , i ∈ [1, 2n], j ∈ [1, 2m−1] be the same as in Lemma 2.3. We define
a function g on the point set V (P2m,2n) as follows: g(x)=0, g(y)=m + 1,
g(xi,j)=ai,j if i ∈ [1, 2n] and j ∈ [1, 2m− 1].

From Lemma 2.3, we obtain that the g is an injection from V (P2m,2n) to
[0, 4mn]. By the above definition, we obtain the following results.

E1 = {g∗(xx2i,1) | i ∈ [1, n]} = {4m(n− i) + 2m + 1 | i ∈ [1, n]}
= [2m + 1, 4mn− 2m + 1]4m,

E2 = {g∗(xx2i−1,1) | i ∈ [1, n]} = {4m(n− i + 1) | i ∈ [1, n]} = [4m, 4mn]4m,

E3 = {g∗(yx2i−1,2m−1) | i ∈ [1, n]} = {4m(n− i) + 2m | i ∈ [1, n]}
= [2m, 4mn− 2m]4m,

E4 = {g∗(yx2i,2m−1) | i ∈ [1, n]} = {4m(n− i) + 2m− 1 | i ∈ [1, n]}
= [2m− 1, 4mn− 2m− 1]4m.

g∗(E(P i
2m−2))=< DAi > for i ∈ [1, 2n]. Let B=E1

⋃
E2

⋃
E3

⋃
E4. Applying

Lemma 2.3, we obtain g∗(E(P2m,2n)) =< DA >
⋃

B = [1, 4mn]. This implies
that g∗ is a bijection from E(P2m,2n) onto [1, 4mn]. ¤
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