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EXPONENTIAL FUNCTIONS OF DISCRETE

FRACTIONAL CALCULUS

Nihan Acar, Ferhan M. Atıcı

In this paper, exponential functions of discrete fractional calculus with the
nabla operator are studied. We begin with proving some properties of ex-
ponential functions along with some relations to the discrete Mittag-Leffler
functions. We then study sequential linear difference equations of fractional
order with constant coefficients. A corresponding characteristic equation is
defined and considered in two cases where characteristic real roots are same
or distinct. We define a generalized Casoratian for a set of discrete functions.
As a consequence, for solutions of sequential linear difference equations, their
nonzero Casoratian ensures their linear independence.

1. INTRODUCTION

The purpose of this paper is to introduce the exponential functions of discrete
fractional calculus and to analyze them. We shall study sequential linear difference
equations of fractional order with constant coefficients and prove that their general
solutions are linear combinations of exponential functions in some cases. We shall
employ backward difference or nabla operator, and the Riemann-Liouville definition
of the fractional difference.

Discrete fractional calculus has generated interest in recent years. Some of
the work has employed the forward or delta difference. We refer the reader to
[2, 7, 12, 13, 14, 15, 16], for example, and more recently [8, 10, 11]. Probably
more work has been developed for the fractional backward or nabla difference and
we refer the reader to [1, 4, 5, 6, 9, 17, 18].
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In this paper, we are concerned with the solution, so called exponential func-
tion, of the following initial value problem (IVP)

(1.1) ∇α
0
y(t) = ay(t), t = 1, 2, . . .

(1.2) ∇−(1−α)
0

y(t) |t=0= y(0) = 1,

where 0 < α < 1 and |a| < 1. The unique solution, represented by êα,α(a, t
α), of

the IVP (1.1)-(1.2) was derived using N -transform in the paper [4].

In Section 2, we present the basic definitions and identities of discrete frac-
tional calculus. We prove many properties of the exponential function êα,α(a, t

α)
along with some relations to the discrete Mittag-Leffler functions. In Section 3,
we define a generalized Casoratian for a set of discrete functions. In Section 4, we
use the results of Section 3 to show that the set {êα,α(a, tα), êα,α(b, tα)} is linearly
independent under certain assumptions on the real numbers a and b. We define the
characteristic equation and show that how the roots of the characteristic equation
help us to determine the basis of the solution space which consists of all solutions
of the corresponding sequential fractional difference equation.

2. PRELIMINARIES

Let a be any real number and α be any positive real number such that 0 <
n− 1 ≤ α < n where n is an integer.

The α− th order fractional sum of f is defined by

(2.1) ∇−α
a f(t) =

t
∑

s=a

(t− ρ(s))α−1

Γ(α)
f(s),

where t ∈ Na = {a, a+ 1, a+ 2, . . .}, ρ(t) = t− 1 is backward jump operator of the
time scale calculus and the raising factorial power function is defined by

tα =
Γ(t+ α)

Γ(t)
.

We note that the Gamma function is not defined at zero and negative integers.
Therefore we consider a map t → tα from the set {t ∈ R : t and t+α do not belong
to Z

− ∪ {0}} to the set of real numbers R.

The α − th order fractional difference (a Riemann-Liouville fractional diffe-
rence) of f is defined by

∇α
af(t) = ∇n∇−(n−α)

a f(t) = ∇n
t

∑

s=a

(t− ρ(s))n−α−1

Γ(n− α)
f(s),

where f : Na → R.

The proofs of the following three lemmas can be found in [6] and [17], respectively.
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Lemma 2.1 (Power Rule). Let ν > 0 and µ be two real numbers so that
Γ(µ+ 1)

Γ(µ+ ν + 1)
is defined. Then the following holds

∇−ν
a (t− a+ 1)µ =

Γ(µ+ 1)

Γ(µ+ ν + 1)
(t− a+ 1)ν+µ,

for every t ∈ Na.

Lemma 2.2. For any α > 0, the following equality holds:

∇−α
a+1

∇f(t) = ∇∇−α
a f(t)− (t− a+ 1)α−1

Γ(α)
f(a),

where f is defined on Na.

In the next lemma we use the notation defined by Gray and Zhang in [17]

(2.2)
h(t)

∇−α
a f(t) =

h(t)
∑

s=a

(h(t)− ρ(s))α−1

Γ(α)
f(s),

where h : Na → Na.

Lemma 2.3 (Leibniz Rule). For any α > 0, α − th order fractional difference of

the product fg is given in this form

t

∇0
α(fg)(t) =

t
∑

n=0

(

α
n

)[t−n

∇ 0
α−nf(t− n)

]

[∇ng(t)] ,

where

(

α
n

)

=
Γ(α+ 1)

Γ(n+ 1)Γ(α− n+ 1)
,

and f, g are defined on N0, and t is a positive integer.

Definition 2.1. The exponential function of discrete fractional calculus with ∇-
operator is defined by

êα,α(a, t
α) = (1− a)

∞
∑

n=0

an(t+ 1)(n+1)α−1

Γ((n+ 1)α)
,

where |a| < 1 and t ≥ 0.

We note that the above infinite series is absolutely convergent, for its proof see [5].

Theorem 2.2 ([4]). The exponential function êα,α(a, t
α) is a solution of the IVP

(1.1)–(1.2).
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Definition 2.3 ([4]). The discrete Mittag-Leffler function is defined as

Fα,β(a, t
µ) =

∞
∑

k=0

aktkµ

Γ(kα+ β)
,

where µ is any real number.

Next we prove some properties of the exponential functions.

Lemma 2.4. The following are valid.

(i) êα,α(a, t
α) = (1− a)(t+ 1)α−1Fα,α(a, (t+ α)α).

(ii) ∇−(1−α)
0

êα,α(a, t
α) = (1− a)Fα,1(a, (t+ 1)α).

Proof. The proof of (i) can be found in the paper [4]. To prove (ii), we use power
rule (Lemma 2.1) and the fact that the nabla exponential function is convergent.

∇−(1−α)
0

êα,α(a, t
α) = ∇−(1−α)

0
(1− a)

∞
∑

n=0

an(t+ 1)(n+1)α−1

Γ ((n+ 1)α)

= (1− a)

∞
∑

n=0

an∇−(1−α)
0

(t+ 1)(n+1)α−1

Γ ((n+ 1)α)

= (1− a)
∞
∑

n=0

an(t+ 1)nα

Γ (nα+ 1)
= (1− a)Fα,1(a, (t+ 1)α).

Lemma 2.5. The following are valid.

(i)
t−1

∇α
0 êα,α(a, t

α) = aêα,α(a, (t− 1)α), t = 1, 2, . . .

(ii)
t

∇ α
0

t−1

∇α−1

0
êα,α(a, t

α) = a
t−1

∇α−1

0
êα,α(a, t

α).

Proof. To prove (i), we first shift the equation (1.1) one unit left. Hence we have

t−1

∇α
0
y(t) = ay(t− 1), t = 2, 3, . . .

Then the result follows

t−1

∇α
0 êα,α(a, t

α) = aêα,α(a, (t− 1)α).

To prove (ii), we apply the definition of discrete fractional difference on the left
side of the equation. Hence we have

(2.3)
t

∇ α
0

t−1

∇α−1

0
êα,α(a, t

α) = ∇
t

∇ α−1

0

t−1

∇α−1

0
êα,α(a, t

α).

Then, we use Lemma 2.2 by calling
t−1

∇α−1

0
êα,α(a, t

α) = f(t). Since f(0) = 0 we
obtain

t

∇ α−1

1
∇f(t) = ∇

t

∇ α−1

0
f(t).
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Thus we have

t

∇ α
0

t−1

∇α−1

0
êα,α(a, t

α) = ∇
t

∇ α−1

0

t−1

∇α−1

0
êα,α(a, t

α)

=
t

∇ α−1

1
∇

t−1

∇α−1

0
êα,α(a, t

α) =
t

∇ α−1

1

t−1

∇α
0
êα,α(a, t

α).

Using the equality in (i), we have

t

∇ α−1

1

t−1

∇α
0
êα,α(a, t

α) =
t

∇ α−1

1
aêα,α(a, (t− 1)α) = a

t
∑

s=1

(t− ρ(s))−α

Γ(1− α)
êα,α(a, (s− 1)α)

= a
t−1
∑

u=0

(t− 1− ρ(u))−α

Γ(1− α)
êα,α(a, u

α) = a
t−1

∇α−1

0
êα,α(a, t

α).

Thus, we conclude that

t

∇ α
0

t−1

∇α−1

0
êα,α(a, t

α) = a
t−1

∇α−1

0
êα,α(a, t

α).

Lemma 2.6. The following equality holds:

t

∇α
0 (t êα,α(a, t

α)) = a t êα,α(a, t
α) + α

t−1

∇α−1

0
êα,α(a, t

α).

Proof. We use Leibniz rule stated in Lemma 2.3 to obtain the equality.

t

∇α
0
(t êα,α(a, t

α)) =

t
∑

n=0

(

α
n

)

[

t−n

∇α−n
0

êα,α(a, t
α)

]

[ ∇nt]

=
(

α
0

)

[

t

∇ α
0
êα,α(a, t

α)

]

t+
(

α
1

)

[

t−1

∇ α−1

0
êα,α(a, t

α)

]

∇t

=

[

t

∇ α
0
êα,α(a, t

α)

]

t+ α
t−1

∇α−1

0
êα,α(a, t

α)

= aêα,α(a, t
α) t+ α

t−1

∇α−1

0
êα,α(λ, t

α),

since êα,α(a, t
α) solves the IVP (1.1)–(1.2).

3. THE CASORATIAN AND LINEAR INDEPENDENCE

We consider the following linear fractional difference equation

(3.1) pn∇(nα)
0

y(t) + pn−1∇((n−1)α)
0

y(t) + · · ·+ p1∇α
0 y(t) + p0y(t) = 0

where ∇(nα)
0

= ∇α
0
∇α

0
...∇α

0
︸ ︷︷ ︸

n−times

and pi are constants for 0 ≤ i ≤ n with pn 6= 0. The

corresponding fractional differential equation is known as the sequential fractional
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differential equation in the literature [3, 19]. The sequential fractional difference
equations have been first introduced by C. Goodrich [15].

Let {y1,y2,..., yn} be a set of functions which are defined on the discrete
interval I. Then the following determinant, denoted by, C[y1, y2, . . . , yn] is called
the Casoratian

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∇−(1−α)

0
y1(t) ∇−(1−α)

0
y2(t) · · · ∇−(1−α)

0
yn(t)

∇−(1−α)

0
∇α

0 y1(t) ∇−(1−α)

0
∇α

0 y2(t) · · · ∇−(1−α)

0
∇α

0 yn(t)

∇−(1−α)

0
∇(2α)

0
y1(t) ∇−(1−α)

0
∇(2α)

0
y2(t) · · · ∇−(1−α)

0
∇(2α)

0
yn(t)

...
...

∇−(1−α)

0
∇((n−1)α)

0
y1(t) ∇−(1−α)

0
∇((n−1)α)

0
y2(t) · · · ∇−(1−α)

0
∇((n−1)α)

0
yn(t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Theorem 3.1. Let {y1, y2, . . . , yn} be a set of n solutions of the equation (3.1).
Then the set is linearly independent if and only if the Casoratian is not identically

equal to zero for all t ≥ 0.

Proof. We prove for the case n = 2. The proof can be easily done for any n. Let
y1(t) and y2(t) be two solutions of the following problem

(3.2)
{

p∇α
0
∇α

0
y(t) + q∇α

0
y(t) + ry(t) = 0, t = 1, 2, . . .

for all t ≥ 0, 0 < α ≤ 1, and where p 6= 0 and q, r are constants.

Let y1 and y2 be linearly dependent. Then there exist a nonzero constant k such
that

(3.3) y2(t) = ky1(t),

for all t ≥ 0.

This implies that

C [y1,y2] = (∇−(1−α)
0

y1(t))(∇−(1−α)
0

∇α
0 ky1(t)) − (∇−(1−α)

0
ky1(t))(∇−(1−α)

0
∇α

0 y1(t))

= k(∇−(1−α)
0

y1(t))(∇−(1−α)
0

∇α
0 y1(t))− k(∇−(1−α)

0
y1(t))(∇−(1−α)

0
∇α

0 y1(t)) = 0

for all t ≥ 0.

Conversely, we assume that y1 6= 0 and y2 6= 0 for all t ≥ 0 and C [y1,y2] (t) = 0 for
all t ≥ 0.

Consider the following two equations in two unknowns

(3.4)

{

k1∇−(1−α)
0

y1(0) + k2∇−(1−α)
0

y2(0) = 0

k1∇−(1−α)
0

∇α
0
y1(0) + k2∇−(1−α)

0
∇α

0
y2(0) = 0.

This system of equations can be represented by the matrix equation

[

∇−(1−α)
0

y1(0) ∇−(1−α)
0

y2(0)

∇−(1−α)
0

∇α
0
y1(0) ∇−(1−α)

0
∇α

0
y2(0)

]

[

k1
k2

]

= 0.
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Since the determinant of the coefficient matrix is zero, there is a nontrivial solution
k1, k2 of the above equation. We note that the case k1 = 0 and k2 6= 0 is not
possible since the equation

k1∇−(1−α)
0

y1(0) + k2∇−(1−α)
0

y2(0) = 0

becomes k2y2(0) = 0 which is not possible.

Now we consider

y(t) = k1y1(t) + k2y2(t).

We can easily verify that y(t) is a solution of the initial value problem

{

p∇α
0∇α

0 y(t) + q∇α
0 y(t) + ry(t) = 0, t=1, 2,. . .

∇−(1−α)
0

y(t) |t=0 = y(0) = 0 and ∇−(1−α)
0

∇α
0
y(0) = 0.

First we note that the initial value problem can be transformed into a linear system
of nabla fractional difference equations using the method of change of variables such
that

y1(t) = y(t) =⇒ ∇α
0 y1(t) = ∇α

0 y(t) = y2(t)

y2(t) = ∇α
0 y(t) =⇒ ∇α

0 y2(t) = ∇α
0∇α

0 y(t) = − q

p
∇α

0 y(t)−
r

p
y(t) = − q

p
y2(t)−

r

p
y1(t).

Thus, we have the following dynamic system

∇α
0Y (t) =

[

0 1

− r

p
− q

p

]

Y (t),

with an initial condition

(3.5) ∇−(1−α)
0

Y (t)|t=0 =

[

∇−(1−α)
0

y1(t)

∇−(1−α)
0

y2(t)

]

t=0

=

[

∇−(1−α)
0

y(t)

∇−(1−α)
0

∇α
0
y(t)

]

t=0

=

[

0
0

]

,

where Y (t) =

[

y1(t)
y2(t)

]

.

By the existence and uniqueness theorem proven in [4], we conclude that

k1y1(t) + k2y2(t) = 0

for all t ≥ 0. Since k1 and k2 are both nonzero, y1 and y2 are linearly dependent.

Theorem 3.2. Suppose that y1(t), y2(t), . . . , yn(t) are linearly independent solu-

tions of (3.1). Then every solution y(t) of (3.1) can be written as

y(t) = c1y1(t) + c2y2(t) + · · ·+ cnyn(t), for some constants c1, c2, . . . , cn.
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Proof. Let y(t) be an arbitrary but fixed solution of (3.1). Consider the system of
fractional nabla difference and sum equations.

c1∇−(1−α)

0
y1(0) + c2∇−(1−α)

0
y2(0) + · · ·+ cn∇−(1−α)

0
yn(0) = ∇−(1−α)

0
y(0)

c1∇−(1−α)

0
∇α

0 y1(0) + c2∇−(1−α)

0
∇α

0 y2(0) + · · ·+ cn∇−(1−α)

0
∇α

0 yn(0) = ∇−(1−α)

0
∇α

0 y(0)
...

c1∇−(1−α)

0
∇((n−1)α)

0
y1(0) + · · ·+ cn∇−(1−α)

0
∇((n−1)α)

0
yn(0) = ∇−(1−α)

0
∇((n−1)α)

0
y(0)

The system above can be represented as matrix form such that

[Y ] =













∇−(1−α)

0
y(0)

∇−(1−α)

0
∇α

0 y(0)
...

∇−(1−α)

0
∇((n−1)α)

0
y(0)













=













∇−(1−α)

0
y1(0) ∇−(1−α)

0
y2(0) · · · ∇−(1−α)

0
yn(0)

∇−(1−α)

0
∇α

0 y1(0) ∇−(1−α)

0
∇α

0 y2(0) · · · ∇−(1−α)

0
∇α

0 yn(0)
...

...

∇−(1−α)

0
∇((n−1)α)

0
y1(0) ∇−(1−α)

0
∇((n−1)α)

0
y2(0) · · · ∇−(1−α)

0
∇((n−1)α)

0
yn(0)













︸ ︷︷ ︸











c1
c2
...
cn











︸ ︷︷ ︸

.

[A] [C]

The Casoratian C [y1, y2, . . . , yn] (0) 6= 0, since the set of solutions is linearly in-
dependent. Therefore, detA 6= 0 which means the matrix A is invertible. Apply
[A]−1 to each side of the system above from the left, we have [C] = [A]−1 [Y ] .

Let c1, c2,. . . , cn be the unique solution of the above system. Set

v(t) = c1y1(t) + c2y2(t) + · · ·+ cnyn(t).

Note that v(t) is a solution and

∇−(1−α)
0

v(0) = ∇−(1−α)
0

y(0)

∇−(1−α)
0

∇α
0 v(0) = ∇−(1−α)

0
∇α

0 y(0)
...

∇−(1−α)
0

∇((n−1)α)
0

v(0) = ∇−(1−α)
0

∇((n−1)α)
0

y(0).

By the uniqueness of the solution, we have y(t) = v(t). Hence we have

y(t) = c1y1(t) + c2y2(t) + · · ·+ cnyn(t).

4. SOLVING SEQUENTIAL LINEAR DIFFERENCE EQUATIONS
OF FRACTIONAL ORDER

The sequential discrete fractional equation is given by

(4.1) p∇α
0∇α

0 y(t) + q∇α
0 y(t) + ry(t) = 0 for t = 1, 2, . . .
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where 0 < α < 1 and where p 6= 0 and q, r are constant coefficients. The charac-
teristic equation of (4.1) is given as

pλ2 + qλ+ r = 0.

Assume that λ1 and λ2 are positive real roots of the characteristic equation such
that they are less than 1. By using the fact that any given equation can be repre-
sented by its characteristic roots, we have

(4.2) ∇α
0∇α

0 y (t)− (λ1 + λ2)∇α
0 y(t) + (λ1λ2)y(t) = 0.

Theorem 4.1. If λ1 6= λ2, then the general solution of (4.1) is

y(t) = c1êα,α(λ1, t
α) + c2êα,α(λ2, t

α),

where c1 and c2 are constant parameters.

Proof. One can easily verify that êα,α(λ1, t
α) and êα,α(λ2, t

α) are solutions of the
equation (4.2). Next we show that these two are linearly independent solutions.
The Casoratian of these two functions is

C [y1, y2] =

∣

∣

∣

∣

∣

∇−(1−α)
0

êα,α(λ1, t
α) ∇−(1−α)

0
êα,α(λ2, t

α)

∇−(1−α)
0

∇α
0
êα,α(λ1, t

α) ∇−(1−α)
0

∇α
0
êα,α(λ2, t

α)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∇−(1−α)
0

êα,α(λ1, t
α) ∇−(1−α)

0
êα,α(λ2, t

α)

λ1∇−(1−α)
0

êα,α(λ1, t
α) λ2∇−(1−α)

0
êα,α(λ2, t

α)

∣

∣

∣

∣

∣

= (λ2 − λ1)∇−(1−α)
0

êα,α(λ1, t
α)∇−(1−α)

0
êα,α(λ2, t

α).

The above last expression is not equal to zero since λ1 6= λ2 and by Lemma 2.4.
Hence the set of solutions

{

êα,α(λ1, t
α), êα,α(λ2, t

α)
}

is linearly independent and
by Theorem 3.2, we conclude that the general solution of (4.1) is

y(t) = c1êα,α(λ1, t
α) + c2êα,α(λ2, t

α),

where c1 and c2 are constant parameters.

Theorem 4.2. If λ1 = λ2(= λ), then the general solution of (4.1) is

y(t) = c1êα,α(λ, t
α) + c2t êα,α(λ, t

α)

where c1, c2 are constant parameters.

Proof. We first show that t êα,α(λ, t
α) satisfies the equation (4.2). Applying the

formula in Lemma 2.6 we have

∇α
0∇α

0 (t êα,α(λ, t
α)) = λ2t êα,α(λ, t

α)+αλ
t−1

∇α−1

0
êα,α(λ, t

α)+α
t

∇ α
0

t−1

∇α−1

0
êα,α(λ, t

α).
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Then it follows that

∇α
0
∇α

0
(t êα,α(λ, t

α))− 2λ∇α
0
(t êα,α(λ, t

α)) + λ2(t êα,α(λ, t
α))

= λ2t êα,α(λ, t
α) + αλ

t−1

∇α−1

0
êα,α(λ, t

α) + α
t

∇ α
0

t−1

∇α−1

0
êα,α(λ, t

α)

− 2λ

[

λt êα,α(λ, t
α) + α

t−1

∇α−1

0
êα,α(λ, t

α)

]

+ λ2(t êα,α(λ, t
α))

= λ2t êα,α(λ, t
α) + αλ

t−1

∇α−1

0
êα,α(λ, t

α) + αλ
t−1

∇α−1

0
êα,α(λ, t

α)

− 2λ2t êα,α(λ, t
α)− 2αλ

t−1

∇α−1

0
êα,α(λ, t

α) + λ2t êα,α(λ, t
α) = 0,

where we used Lemma 2.5 and Lemma 2.6 repeatedly.

Next we show that the set
{

t êα,α(λ, t
α), êα,α(λ, t

α)
}

is linearly independent. In
fact, we calculate the Casoratian of this set and we obtain

∣

∣

∣

∣

∣

∇−(1−α)
0

(t êα,α(λ, t
α)) ∇−(1−α)

0
êα,α(λ, t

α)

∇−(1−α)
0

∇α
0
(t êα,α(λ, t

α)) ∇−(1−α)
0

∇α
0
êα,α(λ, t

α)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∇−(1−α)
0

(t êα,α(λ, t
α)) ∇−(1−α)

0
êα,α(λ, t

α)

∇−(1−α)
0

(λt êα,α(λ, t
α) + α

t−1

∇α−1

0
êα,α(λ, t

α)) λ∇−(1−α)
0

êα,α(λ, t
α)

∣

∣

∣

∣

∣

= −
[

α
t−1

∇−(1−α)
0

êα,α(λ, t
α)

]

∇−(1−α)
0

êα,α(λ, t
α).

The Casoratian is not identically equal to zero. Finally, by Theorem 3.2, the general
solution of (4.2) is

y(t) = c1t êα,α(λ, t
α) + c2êα,α(λ, t

α),

where c1, c2 are constants.
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