
Advances in Electrical and Computer Engineering Volume 16, Number 2, 2016

A Framework for Hardware-Accelerated
Services Using Partially Reconfigurable SoCs

Octavian Mihai MACHIDON1, Sorin HINTEA2, Florin SANDU1
1 Transilvania University of Brasov, 500036, Romania

2 Technical University of Cluj-Napoca, 400027, Romania
octavian.machidon@unitbv.ro, sorin.hintea@bel.utcluj.ro, sandu@unitbv.ro

Abstract—The current trend towards “Everything as a
Service” fosters a new approach on reconfigurable hardware
resources. This innovative, service-oriented approach has the
potential of bringing a series of benefits for both reconfigurable
and distributed computing fields by favoring a hardware-based
acceleration of web services and increasing service
performance. This paper proposes a framework for
accelerating web services by offloading the compute-intensive
tasks to reconfigurable System-on-Chip (SoC) devices, as
integrated IP (Intellectual Property) cores. The framework
provides a scalable, dynamic management of the tasks and
hardware processing cores, based on dynamic partial
reconfiguration of the SoC. We have enhanced security of the
entire system by making use of the built-in detection features of
the hardware device and also by implementing active counter-
measures that protect the sensitive data.

Index Terms—System-on-Chip, reconfigurable architectures,
web services, reconfigurable logic

I. INTRODUCTION

Reconfigurable hardware is a technology that has known
a rapid development in the recent years, with a growing
number of applications in different fields. The key
strongpoints that reconfigurable devices bring, adaptability
and scalability, reduce the requirements for dedicated
hardware and optimize power consumption. Due to the re-
configurability features, these devices are ideal in providing
flexible solutions for the design of embedded systems [1].

The “Everything-as-a-Service” paradigm, which emerged
with the expansion of cloud computing, enables a service-
oriented approach of reconfigurable hardware resources.
Such an approach – based on the synergy between the two
technologies: reconfigurable and distributed computing –
has the potential of bringing a series of benefits for both
fields [2]. It can help minimize the design complexity and
improve the flexibility in the management of IP cores, by
making them available as services by using neutral, web-
based, technologies. Also, this approach favours hardware
acceleration of certain services that require high
computational resources. By offloading these services to
reconfigurable devices, they can benefit from the computing
parallelism and hardware-based acceleration brought on by
the FPGA/SoC architectures, resulting in improved
performance [3] and also enhanced security [4] - due to
active and passive built-in security features of such devices.

This paper proposes a service-oriented architectural
framework that implements services as IP Cores in
reconfigurable hardware with a dynamic management that
uses partial reconfiguration.

This hybrid approach – the web services themselves
reside on a dedicated web server, but their implementations
are offloaded on high-performance reconfigurable SoCs –
enables a performance gain due to the hardware acceleration
“behind the scenes”, while maintaining the standard, easy-
to-use web interface for these services.

The main contributions of this paper are:
 Providing an architectural model for offloading the

implementation of web services to reconfigurable
hardware devices as IP Cores.

 Implementing an efficient and dynamic management of
the IP Cores (installation/removal during run-time) in
order to maintain the flexibility of the web services.

 The proposed model increases the security of the IP and
user data by enhancing attack detection and active
counter-measures in the case of a tampering event
targeting the SoC devices.

II. BACKGROUND AND RELATED WORK

While Service-Oriented Architectures (SOA) and System-
on-Chip (SoC) are mature technologies being used for more
than a decade, with a multitude of applications, the synergy
between the two is a more recent research subject.

This synergy has the benefit of bringing together the
advantages and solving some of the downsides: by applying
the SOA model with its unified and standardized approach
on computing resources, SoC architectures gain in
programmability while the web services gain in
performance, being dynamically integrated in the device’s
programmable logic (PL) and thus hardware-accelerated.

The hardware-acceleration of time/resource-consuming
modules or services is a current research concern in a
variety of areas like: image and signal processing,
communication networks, cloud computing and so on. One
of the most interesting and recent approaches in this field
regards the integration of reconfigurable hardware devices
(FPGAs) in cloud computing datacentres for enabling
hardware accelerated services [2]. This advances a new
cloud service model: Hardware-Acceleration-as-a-Service
(HAaaS) that offers clients “premium”, high-performance
services, that also have the potential of reducing overall
costs by lowering the energy consumption (due to the
underlying reconfigurable hardware).

In this context, the novelty of our proposed model is the
provisioning of a generic reconfigurable architecture for the
acceleration of virtually any type of web services that
require computational resources.

 57
1582-7445 © 2016 AECE

Digital Object Identifier 10.4316/AECE.2016.02008

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 21:20:34 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 2, 2016

This is done by launching their execution in a synergetic
compilation/deployment- into reconfigurable SoCs as IP
cores, integrating a dynamic core management by
leveraging partial reconfiguration.

There are a few other research papers on applying the
SOA model to SoC architectures: [5] implements hardware
services internally on a reconfigurable SoC platform – in
other words, organizes the embedded system’s internal
architecture based on a service-oriented model. The proof of
concept presented in [6] represents a hybrid model – with a
hardware-accelerated backend and a web service-based
interface, providing security services in mobile
environments.

Other related implementations are described in [7] and
[8], with the latter being an example of using XML-
specified web services for remotely exposing reconfigurable
hardware appliances.

Our proposed model brings an innovative, key feature: the
partial reconfiguration of the hardware platform, which
compared to other existing hardware-acceleration solutions,
allows for a more dynamic approach to installing/removing
services and functions during run-time. Also, this extends
the possibilities of building FPGA-based self-reconfigurable
systems [9], with the ability of the embedded system to re-
configure a part of its own infrastructure.

Last but not least, our approach increases the flexibility
and scalability of the hardware component, making it able to
cope with the dynamic nature and availability requirements
of web services (services can be often updated, modified,
new services can be added easily depending on the request).

III. ARCHITECTURE AND IMPLEMENTATION

In our implementation (Figure 1) we have used a
dedicated quad-core Intel i7 server for deploying the web
application and web service, and a XC7Z020 AP SoC from
the Xilinx Zynq-7000 family on an Avnet ZedBoard 7020,
for offloading the web service’s methods implementations.
The Zynq SoC integrates a dual-core ARM Cortex-A9
MPCore based processing system (PS) and Xilinx
programmable logic (PL), thus providing high performance
and complete/partial re-configuration features.

Figure 1. Overview of the implementation

The communication between the server (running the web
service) and the SoC has been implemented using the
dedicated on-board peripherals that the Zedboard provides:
Gigabit Ethernet (used for the actual bitstream/data transfer)
and UART (for debug and monitoring). The SoC is
accessible over the Ethernet via TCP/IP and UDP protocols,
having a unique IP address configured at start-up.

This enables several such devices to coexist, being
network-connected and thus enabling a scalable approach on
the hardware available for implementing the web services.

A. Web Service and Applications
The service-oriented component of our implementation

consists of the HwAccelWS web service (a Java
implementation running on a Glassfish 3.0.1 server instance)
and a web application (integrating a JSP – JavaServer Pages
interface and a Java servlet) used for exposing the
functionality of the entire platform online, via an easy-to-
use, web-based interface (Figure 2).

Figure 2. Web service and application flowchart

The user is offered a graphical interface – the JSP page –
for accessing the desired web service method and
sending/receiving data. The JSP technology was chosen for
implementing the user interface since it can generate
dynamic web content by combining HTML, XML and
embedded Java code [10]. The Java servlet is used as an
intermediary agent between the JSP page and the web
service, processing HTTP requests and replies to/from the
JSP page and managing the data flow to/from the web
service using SOAP (Simple Object Access Protocol)
messages [11]. The servlet and JSP page were thus used for
providing an interface framework for the web service by
encapsulating input data and operating with different
Internet protocols.

The HwAccelWS web service is the centre of our
platform, being implemented using Java and having several
methods accessible either directly – via its URL – or by
using the JSP interface that was developed especially for
easing access and communication with the web service.

Transferring configuration files, offloading the input data,
running the task on the Zynq SoC and returning the results
to the web service are accomplished using the Ethernet-
based communication interface with the SoC. The full and
partial bitstreams are transferred via the UDP (User
Datagram Protocol) – based TFTP (Trivial File Transfer
Protocol) to the board, while the input/output data, control
and status commands are sent/received using TCP
(Transmission Control Protocol) communication. The
networking capabilities on the web service side were
implemented using Java UDP and TCP socket
communication and embedded into the web service as
dedicated methods.

 58

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 21:20:34 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 2, 2016

B. Reconfigurable Hardware Platform
As mentioned above, the reconfigurable hardware

platform is based on the Xilinx Zynq XC7Z020 SoC. The
Programming System (PS) is running at 667MHz on one of
the two ARM Cortex-A9 cores and it integrates a DDR
controller for interfacing the on-board 512MB DDR3
memory chip. The following I/O peripherals are also
configured within the PS: Ethernet (ENET0), UART
(UART1), USB, and GPIO (General-Purpose I/O). The
processing core, I/O, IP Cores and other system components
are interconnected using an architecture based on the AXI
(Advanced eXtensible Interface) protocol. Both interface
and programmable logic (PL) are operating at 100MHz.

Figure 3. Zynq SoC internal architecture

The ARM PS runs a C application that consists of the
following main parts (Figure 3): communication interface
(TFTP and TCP servers), creating and handling a file system
resident in the DDR3 memory, managing the complete/
partial reconfiguration of the PL, monitoring SoC operation
and detecting security attacks using the on-board XADC.

The network communication capability of the SoC was
implemented based on the on-board Gigabit Ethernet
controller and the TCP/IP LwIP (Lightweight IP) Stack
1.4.0 [12]. The PS is running a TFTP Server – for
transferring and storing full/partial bitstreams – and a TCP
Server – for transferring data and communicating control
and status commands with the web service. Both network
applications are implemented in LwIP RAW mode API.

A 128MB file system (FS) has been implemented for
storing and handling the configuration files (total and partial
bitstreams) residing in the on-board DDR3 memory. The FS
was implemented using the LibXil MFS (Memory FS)
component, and is accessed by the C application running on
the PS by means of specific function calls and libraries. This
file system is an important part of the embedded system
since it is acting as a local bitstream cache by allowing a
dynamic management of the reconfigurable peripherals by
means of storing several partial bitstreams and thus enabling
a fast reconfiguration – with version-management and
regression support.

The partial reconfiguration is the key component of our
solution. Complete and partial reconfiguration of the
embedded FPGA PL is performed through the device
configuration (DevC) / Processor Configuration Access Port
(PCAP) interface by the C application (the config_PL()
method) running on the ARM PS. A complete
reconfiguration of the FPGA is executed only at the initial
set-up of the SoC, or when a critical update of the entire

embedded architecture is required. Partial reconfiguration of
the peripherals accelerating the web service’s methods can
be executed at any given moment during run-time when a
new web service method requires installing a new peripheral
for offloading its data and performing specific tasks.

When the config_PL() method is called, the following
operations are executed:
 The XDcfg (Xilinx Device Configuration Interface) is

initialized: PCAP is enabled and the control register is
configured for the corresponding PCAP mode (complete
or partial PL configuration).

 DMA and PCAP Done interrupts are cleared.
 The bitstream is transferred from the DDR3 memory to

the PL fabric.
 PCAP and AXI Done interrupts are polled, the function

call returns when the transfer is complete.
Consequently, the bitstream stored in the on-board DDR3

memory is transferred via the AXI-PCAP Bridge to the PL,
the data being synchronized between the two interfaces
using a FIFO buffer.

Since the reconfigurable logic is being modified while the
rest of the FPGA device is operating, ensuring that the data
from the module to be reconfigured is being ignored at its
destination during partial reconfiguration (interface
decoupling) is mandatory. This has been accomplished by
sending a signal from the C application to the static logic
inside the reconfigurable peripheral that determines the
invalidation of the reconfigurable module's outputs.

Also, to ensure that after reconfiguration the RM is in a
defined state, a reset after reconfiguration feature has been
applied in the implementation stage of the design, by setting
the RESET_AFTER_RECONFIG=TRUE property to the
reconfigurable partition block.

In order to make things easier for the engineering of IP
cores for this particular framework, the Zynq SoC is pre-
partitioned, having a certain number of partial
reconfigurable regions, of certain size and available
resources, according to the applications and the nature and
number of the services to be offloaded. Thus, the FPGA
design engineers that would potentially design IP cores
implementing in hardware different services are being given
the exact available resources in terms of logic cells and
bRAMs. In order to ensure a correct overlay of modules,
they all have the same generic I/O ports, so the IP cores
need to be constrained, using a top-level HDL wrapper, to
this interface. The standard interface together with the
resource availability information ensure a feasible IP core
design, easing the instantiation of these cores in the system.

C. Securing the system
In this proposed framework the SoC device is situated at a

remote location while operating with client data, and thus
vulnerable especially to physical tampering security attacks.
An attacker could attempt, by modifying the operating
voltages and/or temperature of a SoC, to force the device to
behave abnormally in order to extract data or bypass its
security features [13].

Consequently, the Zynq SoC was chosen as the target
development system for this service-oriented framework
also because of its unique built-in security features [14]-
[15]. We have implemented additional security features
based on the Xilinx Anti-Tamper technology for detection

 59

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 21:20:34 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 2, 2016

and response to physical tampering events. This has been
accomplished by using the on-chip hard IP block analog-to-
digital converter (XADC) available on Zynq for monitoring
the on-chip power supply voltage and die temperature.

The first step, at board power-up, was to configure the
Zynq SoC generic interrupt controller in order to use the
XADC interrupt as part of this interrupt service routine.
Next, the XADC configuration has been initialized, the
channel sequencer was stopped (set into safe mode) and all
alarms have been disabled. Further on, readings of the
temperature and voltage values are performed, being
considered as normal operation reference values. Based on
these readings, with the appropriate tolerance margins, the
upper and lower temperature and voltage alarms are being
assigned and the corresponding interrupts are enabled.

Figure 4. Security mechanism flowchart

In this operating mode, any temperature or voltage
readings outside the established range will trigger the
designated interrupt service routine. This routine clears the
interrupt status register, disables other interrupts and reads
the temperature/voltage values which triggered the alarm.
Next, if these readings are consistent with security attack
patterns, it takes reactive measures for preventing any
potential unauthorized access to the data stored on the SoC
by loading the partially reconfigurable modules with black-
box versions and deleting the entire content of both the MFS
containing configuration files and the user data memory
space (storing input/output user data). Also, a TCP message
is sent to the web service in order to signal that the board
has detected a possible malfunction or tampering event and
has taken the appropriate counter-measures.

Such prevention, detection and reaction measures increase
the overall security of the SoC device, making it a trusted
platform for secure computations [16]. Also, the design
concept that makes use of partial reconfiguration adds an
extra security level, enabling IP cores loading only when
needed and unloading them in case of a security breach.

Last but not least, by this continuous monitoring of the
operating parameters a pre-emptive approach is taken
regarding the detection of natural occurring problems that
might induce failures (e.g. a slowly drifting power supply).

D. Task Management
The tasks are created by the Web service after the client

calls one of its methods using the JSP web page interface.
Once created, they are sent over the network to the Zynq
SoC to be executed on one of the existing processing cores
(according to the task's type). The task management is
performed on the Zynq device by a hybrid mechanism,
involving a dedicated routine in the PS application and a
scheduling peripheral in the reconfigurable logic.

Figure 5. Task management mechanism on the Zynq SoC

This mechanism has been designed and implemented
considering the requirements of the present application: the
tasks are independent processes, so no inter-task
synchronization is needed, however the issue to be solved
remains scheduling them and designating a processing core
in order for each of them to be executed.

Every new task offloaded to be executed on the hardware
platform is defined by a TCP message received from the
web service. Following this message, a TCP data
transmission transfers the corresponding input data. Both the
new task message and input data are handled by a dedicated
C method that performs task and data management. This
method translates each new task to a task instruction that
goes into an execution queue:

Therefore, each task is assigned a unique task ID and the

ID of target peripheral (IP core) on which it will be
executed, together with two DDR3 memory spaces: for
input (Din) and output (Dout) data.

The C task management routine transmits the task IDs
and memory addresses to the TaskScheduler peripheral from
the PL using software-accessible registers. This peripheral
implements a FIFO-type scheduling of the tasks, enabling
their parallel execution on the available IP cores. It launches
the tasks by communicating via the AXI interface with the
reconfigurable modules and controlling their operation.
When each task is finished, the peripheral signals this event
to the C application which is then responsible for sending
the resulted data back to the web service. This processing
flow is being shown in Figure 5.

This hybrid software/hardware approach for task
management has been chosen as it offers better performance
than a traditional software approach due to the improved
execution times [17]. Consequently, the interface has been
implemented in software - to maintain flexibility and ease of
network communication with the web service - while tasks
scheduling and execution have been implemented using a
hardware peripheral, reducing time and energy consumption.

 60

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 21:20:34 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 2, 2016

IV. RESULTS AND DISCUSSION

The validation of our proposed system and methodology
involved designing and implementing the embedded system
based on the Zynq 7020 SoC on the Avnet Zedboard,
implementing the web service and testing the commu-
nication and functionality of the setup.

For our proof-of-concept experimental setup, we have
developed four web service methods. The first two
(SHA_SW and AES_SW) implement SHA-2 (Secure Hash
Algorithm-2, 256 bits) and AES (Advanced Encryption
Standard) encryption as standard Java implementations
running on the server machine, while the last two
(SHA_HW and AES_HW) implement the same operations
but the computations are offloaded to the Zynq SoC device.
The software versions of the methods were implemented in
order to benchmark the performances and correctness of the
hardware accelerated methods’ results.

The first step in implementing the hardware component
was creating the ARM A9-based processing system using
Xilinx EDK XPS (Embedded Development Kit Xilinx
Platform Studio) 14.7. Using this software tool, the two IP
cores were created: reconf_periph_v1_00_a (which was
instantiated twice in the design and contains in the VHDL
static logic the instantiation of the generic pr_module) and
the above-mentioned task_scheduler_v1_00_a.

The two IP cores (SHA-2 and AES) were implemented as
PR (partial reconfigurable) modules, being instantiated in
the reconf_periph_0 and reconf_periph_1 peripherals. The
individual synthesis of the two modules was done using ISE
14.7; this operation generated netlist files each having a
standard wrapper over the specific top-level, with the role of
standardizing the interfaces and module names to coincide
with the ones of the generic pr_module (instantiated in the
EDK peripherals).

Figure 6. Layout of Zynq chip having defined two reconfigurable partitions
with occupied slices highlighted for SHA (up) and AES (down) modules

The rest of the partial reconfiguration design flow:
floorplanning, routing and generating the full and partial
bitstreams was done with PlanAhead 14.7 [18]. The
pr_module instances from the two peripherals were declared
as reconfigurable partitions, for each of them a function
module being added. The modules have been defined based
on the two IP core netlists (ngc files) obtained after Xilinx
ISE synthesis.

Besides the functional module, for each reconfigurable
partition a non-functional black-box type version has been
added, for allowing either unloading the peripheral when
desired, or configuring the system without loading the
peripherals at start-up. A view of the Zynq layout with the
two partitions highlighted is shown in Figure 6.

Next, the implementation continued with the map,

place&route, formal verification and bitstreams generation.
A complete bitstream file was generated for configuring the
entire chip, having black-box versions loaded for the
reconfigurable partitions. Along with this file, another four
partial bitstreams were generated, two for each module (one
functional and one black-box

For testing the system, in order to assess the compliance
with real-time requirements [19]-[20], the embedded
application was deployed on the ARM PS while the PL was
configured using the full bitstream with black-box versions
of the PR modules. The web service remotely configured the
two PR modules with partial bitstreams and the
corresponding web service methods were accessed via the
JSP page. Two tasks were offloaded to the device, together
with two 1MB files of input data. The tasks were processed
by the task management mechanisms running on the SoC
and launched in parallel on the two IP cores. When each
task finished, resulting data was sent back to the web service
and checked for consistency with the software-computed
results.

TABLE 1. PR REGIONS RESOURCES UTILIZATION
Occupied Resource type Available per

region AES-256 SHA-256
LUT 4000 648 (17%) 2050 (52%)

FD_LD 8000 717 (9%) 1167 (15%)
SLICEL 650 106 (17%) 334 (52%)
SLICEM 350 57 (17%) 180 (52%)
DSP48E1 20 0 0
FIFO18E1 10 5 (50%) 0

RAMB18E1 10 5 (50%) 0
RAMBFIFO36E1 10 0 0

The available and utilized resources for the PR regions
with the two reconfigurable modules loaded are displayed in
Table 1. The figures show that the two cores fit easily in the
PR regions, AES occupying about 17% of the cells and 50%
of the block RAMs, while SHA needing about 50% of the
cells, without any RAMs. The PR regions can be chosen
with different sizes, according to the needs of the cores to be
used for accelerating the web services. For our setup, each
PR region consists of less than 2% of the total number of
LUTs and SLICEs available on the entire Zynq device.

TABLE 2. RECONFIGURATION AND OPERATION TIMINGS
Duration Action

AES-256 SHA-256
Loading partial bitstream 2.48ms

Data transfer Server – SoC 11.2ms
Peripheral execution in PL 5.65ms 3.13ms
Peripheral execution in PS 41.15ms 20.2ms
Data transfer SoC – Server 12.4ms

Total (PL with reconf.): 31.73ms 29.21ms
Total (PL without reconf.): 29.25ms 26.73ms
Total (SW on ARM PS): 64.75ms 43.8ms

Total (SW impl. on server): 73.25ms 47.38ms

The timings of the main actions during operation are
shown in Table 2 while an overall performance comparison
is presented in Figure 7. The size of the partial bitstreams
used was 313kB, and each reconfiguration of a peripheral
took 2.48ms. It took around 20ms for the input data and
results to be transferred to and from the device, given the
network conditions (Gigabit Ethernet, with the embedded C
application implementing the TCP communication in RAW
mode and achieving an average throughput of 90MB/s). The
timing for the two peripherals was different: while the AES-
256 core encrypted the input file in 5.65ms, it took 3.13ms
for the SHA core to compute the hash value.

 61

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 21:20:34 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 16, Number 2, 2016

 62

In order to better evaluate the hardware speed-up
compared to software implementations, the comparison in
Figure 7 contains the timings for the corresponding software
methods running on the ARM PS. These results clearly
show the speed-up brought by hardware execution, with the
AES service being 2x faster and the SHA about 1.5x.

Figure 7. Performance comparison (including data transfer time to/from the
web service).

V. CONCLUSIONS

This paper described a framework for accelerating web
services by offloading their implementations on
reconfigurable hardware devices. The framework provides a
scalable, dynamic management of the tasks and hardware
processing cores, based on dynamic partial reconfiguration.
The hybrid approach to the task management: dedicated
software method and integrated peripheral in the
programmable logic allows for a fast task scheduling and
execution, while maintaining a flexible communication
interface with the web service.

The main contribution of our implementation lies in
leveraging the partial reconfiguration feature of the latest
generation Zynq SoC in order to achieve a dynamic run-time
management of the processing cores (used for hardware-
implementing the services), which is crucial given the
existing requirements for web services in terms of response
times and availability.

The experimental validation of our solution showed that
the overhead induced by partially reconfiguring the
peripherals to support different implementations during
runtime for enabling the hardware acceleration of different
services, is minimal (negligible compared to the overall
timing during operation). It can also be noticed a faster
execution time of the hardware-deployed tasks compared to
their software equivalents.

Being designed to operate with client data while at a
remote location (the service provider datacentre), the
proposed framework provides enhanced security features
for securing the user IP. Our approach offers two levels of
protection: an advanced, dynamic detection of physical
tampering attempts or hardware malfunctions, together with
a mechanism for unloading the IP cores and deleting all
sensitive data in the case of a security threat.

The performance, scalability and flexibility of the
implementation extend the application range of this
framework, allowing for its integration in distributed
systems like cloud computing for accelerating
computational intensive tasks, thus potentially increasing
service execution speeds and decreasing energy

consumption.
Also, the enhanced security allows the hardware

implementation of offloading critical tasks, enabling higher
security guarantees to be offered to clients by the service
providers.

REFERENCES
[1] A. Hayek, S. Domes, J. Borcsok. “Internet-controlled dynamic

reconfiguration for FPGA-based embedded systems”, in Proc. of 3rd
Int. Conf. on Communications and Information Technology (ICCIT),
Jun.19-21, 2013, Beirut, LB, pp.190-194. doi: 10.1109/
ICCITechnology.2013.6579547

[2] K. Mershad, A.R. Kaitoua, H. Artail, M.A.R. Saghir, H. Hajj, “A
framework for multi-cloud cooperation with hardware reconfiguration
support”, in Proc. of IEEE 9th World Congress on Services
(SERVICES), June 28-July 3, 2013, Santa Clara, CA, pp.52-59. doi:
10.1109/SERVICES.2013.12

[3] S. Pedre, T. Krajnik, E. Todorovich, P. Borensztejn, “A co-design
methodology for processor-centric embedded systems with hardware
acceleration using FPGA”, in Proc. 8th Southern Conf. on
Programmable Logic (SPL), Mar.20-23, 2012, Bento Goncalves, BR,
pp.1-8. doi: 10.1109/SPL.2012.6211770

[4] T. Huffmire, B. Brotherton, T. Sherwood, R. Kastner, T. Levin, T.D.
Nguyen, C. Irvine, “Managing Security in FPGA-Based Embedded
Systems”, in IEEE Journal on Design & Test of Computers, vol.25,
no.6, Nov.-Dec.2008, pp.590-598, doi: 10.1109/MDT.2008.166

[5] W. Chao, L. Xi, Z. Junneng, C. Peng, Z. Xuehai, “CaaS: Core as
a service realizing hardware services on reconfigurable MPSoCS”,
in Proc. 22nd Int. Conf. on Field Programmable Logic and
Applications (FPL), Aug.29-31, 2012, Oslo, NO, pp.495-498. doi:
10.1109/FPL.2012.6339263

[6] A. Cilardo, L. Coppolino, A. Mazzeo, L. Romano, “Combining
programmable hardware and web services technologies for delivering
high-performance and interoperable security”, in Proc. 15th Int. Conf.
on Parallel, Distributed and Network-Based Processing (PDP’07),
Feb.7-9, 2007, Napoli, IT, pp.381-386, doi: 10.1109/PDP.2007.30

[7] J. Mao, Q. Xu, Z. Sun, X. Lu, “FSArch: Enables FPGA-Based
platforms to provide network services”, in Proc. 4th World Congress
on Software Engineering (WCSE), Dec.3-4, 2013, Hong Kong, CN,
pp.241-245. doi: 10.1109/WCSE.2013.44

[8] D. Rodriguez, J.M. Sanchez, A. Duran. “Distributed reconfigurable
computing using XML Web services”, in Proc. IEEE Workshop on
Signal Processing Systems Design and Implementation, Nov.2-4,
2005, Athens, GR, pp.613-617. doi: 10.1109/SIPS.2005.1579939

[9] A. Melnyk, V. Melnyk, "Self-Configurable FPGA-Based Computer
Systems," Advances in Electrical and Computer Engineering, vol.13,
no.2, pp.33-38, 2013, doi:10.4316/AECE.2013.02005

[10] B. Perry, Java Servlet & JSP Cookbook, pp. 119-120, Sebastopol,
CA: O’Reilly, 2004.

[11] D. Chappell, T. Jewell, Java Web Services, pp. 39-45, Sebastopol,
CA: O’Reilly, 2002.

[12] A. Sarangi, S. MacMahon, U. Cherukupaly, “LightWeight IP
application examples”, Application Note XAPP1026 v5.1, Xilinx
Corp., San Jose, CA, 2014.

[13] M. Schramm, A. Grzemba, “Reconfigurable trust for embedded
computing platforms”, in Proc. IEEE Int.Conf. on Applied Electronics
(AE), Sep.5-7, 2012, Pilsen, CZ, pp.261-264.

[14] S. McNeil, “Solving today's design security concerns”, White Paper
WP365, Xilinx Corp., San Jose, CA, 2012.

[15] J. D. Corbett, “The Xilinx Isolation design flow for fault-tolerant
systems”, White Paper WP412, Xilinx Corp., San Jose, CA, 2012.

[16] S.M. Trimberger, J.J. Moore, “FPGA Security: Motivations, features
and applications”, Proceedings of the IEEE, vol.102, no.8, pp.1248-
1265, 2014. doi: 10.1109/JPROC.2014.2331672

[17] R. Pellizzoni, M. Caccamo. “Real-Time Management of Hardware
and Software Tasks for FPGA-based Embedded Systems”, in
IEEE Trans. Computers, vol.56, no.12, pp.1666-1680, 2007. doi:
10.1109/TC.2007.70763

[18] D. Dye, “Partial reconfiguration of Xilinx FPGAs using ISE Design
Suite”, White Paper WP374, Xilinx Corp., San Jose, CA, 2012.

[19] Z. Zheng, Y. Zhang, M.R Lyu, “Investigating QoS of Real-World
Web Services”, in IEEE Trans. Services Computing, vol.7, no.1,
pp.32-39, 2014. doi: 10.1109/TSC.2012.34

[20] D. McKee, D. Webster, J. Xu, "Enabling Decision Support for the
Delivery of Real-Time Services", in Proc. of 16th IEEE Int.
Symposium on High Assurance Systems Engineering (HASE), Jan.8-
10, 2015, Daytona Beach, FL, pp.60-67. doi: 10.1109/HASE.2015.18

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 21:20:34 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

