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Abstract—The current trend towards “Everything as a 
Service” fosters a new approach on reconfigurable hardware 
resources. This innovative, service-oriented approach has the 
potential of bringing a series of benefits for both reconfigurable 
and distributed computing fields by favoring a hardware-based 
acceleration of web services and increasing service 
performance. This paper proposes a framework for 
accelerating web services by offloading the compute-intensive 
tasks to reconfigurable System-on-Chip (SoC) devices, as 
integrated IP (Intellectual Property) cores. The framework 
provides a scalable, dynamic management of the tasks and 
hardware processing cores, based on dynamic partial 
reconfiguration of the SoC. We have enhanced security of the 
entire system by making use of the built-in detection features of 
the hardware device and also by implementing active counter-
measures that protect the sensitive data. 
 

Index Terms—System-on-Chip, reconfigurable architectures, 
web services, reconfigurable logic 

I. INTRODUCTION 

Reconfigurable hardware is a technology that has known 
a rapid development in the recent years, with a growing 
number of applications in different fields. The key 
strongpoints that reconfigurable devices bring, adaptability 
and scalability, reduce the requirements for dedicated 
hardware and optimize power consumption. Due to the re-
configurability features, these devices are ideal in providing 
flexible solutions for the design of embedded systems [1]. 

The “Everything-as-a-Service” paradigm, which emerged 
with the expansion of cloud computing, enables a service-
oriented approach of reconfigurable hardware resources. 
Such an approach – based on the synergy between the two 
technologies: reconfigurable and distributed computing – 
has the potential of bringing a series of benefits for both 
fields [2]. It can help minimize the design complexity and 
improve the flexibility in the management of IP cores, by 
making them available as services by using neutral, web-
based, technologies. Also, this approach favours hardware 
acceleration of certain services that require high 
computational resources. By offloading these services to 
reconfigurable devices, they can benefit from the computing 
parallelism and hardware-based acceleration brought on by 
the FPGA/SoC architectures, resulting in improved 
performance [3] and also enhanced security [4] - due to 
active and passive built-in security features of such devices. 

This paper proposes a service-oriented architectural 
framework that implements services as IP Cores in 
reconfigurable hardware with a dynamic management that 
uses partial reconfiguration.  

This hybrid approach – the web services themselves 
reside on a dedicated web server, but their implementations 
are offloaded on high-performance reconfigurable SoCs – 
enables a performance gain due to the hardware acceleration 
“behind the scenes”, while maintaining the standard, easy-
to-use web interface for these services. 

The main contributions of this paper are: 
 Providing an architectural model for offloading the 

implementation of web services to reconfigurable 
hardware devices as IP Cores. 

 Implementing an efficient and dynamic management of 
the IP Cores (installation/removal during run-time) in 
order to maintain the flexibility of the web services. 

 The proposed model increases the security of the IP and 
user data by enhancing attack detection and active 
counter-measures in the case of a tampering event 
targeting the SoC devices. 

II. BACKGROUND AND RELATED WORK 

While Service-Oriented Architectures (SOA) and System-
on-Chip (SoC) are mature technologies being used for more 
than a decade, with a multitude of applications, the synergy 
between the two is a more recent research subject. 

This synergy has the benefit of bringing together the 
advantages and solving some of the downsides: by applying 
the SOA model with its unified and standardized approach 
on computing resources, SoC architectures gain in 
programmability while the web services gain in 
performance, being dynamically integrated in the device’s 
programmable logic (PL) and thus hardware-accelerated. 

The hardware-acceleration of time/resource-consuming 
modules or services is a current research concern in a 
variety of areas like: image and signal processing, 
communication networks, cloud computing and so on. One 
of the most interesting and recent approaches in this field 
regards the integration of reconfigurable hardware devices 
(FPGAs) in cloud computing datacentres for enabling 
hardware accelerated services [2]. This advances a new 
cloud service model: Hardware-Acceleration-as-a-Service 
(HAaaS) that offers clients “premium”, high-performance 
services, that also have the potential of reducing overall 
costs by lowering the energy consumption (due to the 
underlying reconfigurable hardware).  

In this context, the novelty of our proposed model is the 
provisioning of a generic reconfigurable architecture for the 
acceleration of virtually any type of web services that 
require computational resources.  
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This is done by launching their execution in a synergetic 
compilation/deployment- into reconfigurable SoCs as IP 
cores, integrating a dynamic core management by 
leveraging partial reconfiguration. 

There are a few other research papers on applying the 
SOA model to SoC architectures: [5] implements hardware 
services internally on a reconfigurable SoC platform – in 
other words, organizes the embedded system’s internal 
architecture based on a service-oriented model. The proof of 
concept presented in [6] represents a hybrid model – with a 
hardware-accelerated backend and a web service-based 
interface, providing security services in mobile 
environments.  

Other related implementations are described in [7] and 
[8], with the latter being an example of using XML-
specified web services for remotely exposing reconfigurable 
hardware appliances. 

Our proposed model brings an innovative, key feature: the 
partial reconfiguration of the hardware platform, which 
compared to other existing hardware-acceleration solutions, 
allows for a more dynamic approach to installing/removing 
services and functions during run-time. Also, this extends 
the possibilities of building FPGA-based self-reconfigurable 
systems [9], with the ability of the embedded system to re-
configure a part of its own infrastructure.  

Last but not least, our approach increases the flexibility 
and scalability of the hardware component, making it able to 
cope with the dynamic nature and availability requirements 
of web services (services can be often updated, modified, 
new services can be added easily depending on the request). 

III. ARCHITECTURE AND IMPLEMENTATION 

In our implementation (Figure 1) we have used a 
dedicated quad-core Intel i7 server for deploying the web 
application and web service, and a XC7Z020 AP SoC from 
the Xilinx Zynq-7000 family on an Avnet ZedBoard 7020, 
for offloading the web service’s methods implementations. 
The Zynq SoC integrates a dual-core ARM Cortex-A9 
MPCore based processing system (PS) and Xilinx 
programmable logic (PL), thus providing high performance 
and complete/partial re-configuration features.  

 
Figure 1. Overview of the implementation 

The communication between the server (running the web 
service) and the SoC has been implemented using the 
dedicated on-board peripherals that the Zedboard provides: 
Gigabit Ethernet (used for the actual bitstream/data transfer) 
and UART (for debug and monitoring). The SoC is 
accessible over the Ethernet via TCP/IP and UDP protocols, 
having a unique IP address configured at start-up.  

This enables several such devices to coexist, being 
network-connected and thus enabling a scalable approach on 
the hardware available for implementing the web services. 

A. Web Service and Applications 
The service-oriented component of our implementation 

consists of the HwAccelWS web service (a Java 
implementation running on a Glassfish 3.0.1 server instance) 
and a web application (integrating a JSP – JavaServer Pages 
interface and a Java servlet) used for exposing the 
functionality of the entire platform online, via an easy-to-
use, web-based interface (Figure 2). 

 
Figure 2. Web service and application flowchart 

The user is offered a graphical interface – the JSP page – 
for accessing the desired web service method and 
sending/receiving data. The JSP technology was chosen for 
implementing the user interface since it can generate 
dynamic web content by combining HTML, XML and 
embedded Java code [10]. The Java servlet is used as an 
intermediary agent between the JSP page and the web 
service, processing HTTP requests and replies to/from the 
JSP page and managing the data flow to/from the web 
service using SOAP (Simple Object Access Protocol) 
messages [11]. The servlet and JSP page were thus used for 
providing an interface framework for the web service by 
encapsulating input data and operating with different 
Internet protocols. 

The HwAccelWS web service is the centre of our 
platform, being implemented using Java and having several 
methods accessible either directly – via its URL – or by 
using the JSP interface that was developed especially for 
easing access and communication with the web service.  

Transferring configuration files, offloading the input data, 
running the task on the Zynq SoC and returning the results 
to the web service are accomplished using the Ethernet-
based communication interface with the SoC. The full and 
partial bitstreams are transferred via the UDP (User 
Datagram Protocol) – based TFTP (Trivial File Transfer 
Protocol) to the board, while the input/output data, control 
and status commands are sent/received using TCP 
(Transmission Control Protocol) communication. The 
networking capabilities on the web service side were 
implemented using Java UDP and TCP socket 
communication and embedded into the web service as 
dedicated methods. 
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B. Reconfigurable Hardware Platform 
As mentioned above, the reconfigurable hardware 

platform is based on the Xilinx Zynq XC7Z020 SoC. The 
Programming System (PS) is running at 667MHz on one of 
the two ARM Cortex-A9 cores and it integrates a DDR 
controller for interfacing the on-board 512MB DDR3 
memory chip. The following I/O peripherals are also 
configured within the PS: Ethernet (ENET0), UART 
(UART1), USB, and GPIO (General-Purpose I/O). The 
processing core, I/O, IP Cores and other system components 
are interconnected using an architecture based on the AXI 
(Advanced eXtensible Interface) protocol. Both interface 
and programmable logic (PL) are operating at 100MHz. 

 
Figure 3. Zynq SoC internal architecture 

The ARM PS runs a C application that consists of the 
following main parts (Figure 3): communication interface 
(TFTP and TCP servers), creating and handling a file system 
resident in the DDR3 memory, managing the complete/ 
partial reconfiguration of the PL, monitoring SoC operation 
and detecting security attacks using the on-board XADC. 

The network communication capability of the SoC was 
implemented based on the on-board Gigabit Ethernet 
controller and the TCP/IP LwIP (Lightweight IP) Stack 
1.4.0 [12]. The PS is running a TFTP Server – for 
transferring and storing full/partial bitstreams – and a TCP 
Server – for transferring data and communicating control 
and status commands with the web service. Both network 
applications are implemented in LwIP RAW mode API.  

A 128MB file system (FS) has been implemented for 
storing and handling the configuration files (total and partial 
bitstreams) residing in the on-board DDR3 memory. The FS 
was implemented using the LibXil MFS (Memory FS) 
component, and is accessed by the C application running on 
the PS by means of specific function calls and libraries. This 
file system is an important part of the embedded system 
since it is acting as a local bitstream cache by allowing a 
dynamic management of the reconfigurable peripherals by 
means of storing several partial bitstreams and thus enabling 
a fast reconfiguration – with version-management and 
regression support.  

The partial reconfiguration is the key component of our 
solution. Complete and partial reconfiguration of the 
embedded FPGA PL is performed through the device 
configuration (DevC) / Processor Configuration Access Port 
(PCAP) interface by the C application (the config_PL() 
method) running on the ARM PS. A complete 
reconfiguration of the FPGA is executed only at the initial 
set-up of the SoC, or when a critical update of the entire 

embedded architecture is required. Partial reconfiguration of 
the peripherals accelerating the web service’s methods can 
be executed at any given moment during run-time when a 
new web service method requires installing a new peripheral 
for offloading its data and performing specific tasks. 

When the config_PL() method is called, the following 
operations are executed: 
 The XDcfg (Xilinx Device Configuration Interface) is 

initialized: PCAP is enabled and the control register is 
configured for the corresponding PCAP mode (complete 
or partial PL configuration). 

 DMA and PCAP Done interrupts are cleared. 
 The bitstream is transferred from the DDR3 memory to 

the PL fabric. 
 PCAP and AXI Done interrupts are polled, the function 

call returns when the transfer is complete. 
Consequently, the bitstream stored in the on-board DDR3 

memory is transferred via the AXI-PCAP Bridge to the PL, 
the data being synchronized between the two interfaces 
using a FIFO buffer.  

Since the reconfigurable logic is being modified while the 
rest of the FPGA device is operating, ensuring that the data 
from the module to be reconfigured is being ignored at its 
destination during partial reconfiguration (interface 
decoupling) is mandatory. This has been accomplished by 
sending a signal from the C application to the static logic 
inside the reconfigurable peripheral that determines the 
invalidation of the reconfigurable module's outputs. 

Also, to ensure that after reconfiguration the RM is in a 
defined state, a reset after reconfiguration feature has been 
applied in the implementation stage of the design, by setting 
the RESET_AFTER_RECONFIG=TRUE property to the 
reconfigurable partition block. 

In order to make things easier for the engineering of IP 
cores for this particular framework, the Zynq SoC is pre-
partitioned, having a certain number of partial 
reconfigurable regions, of certain size and available 
resources, according to the applications and the nature and 
number of the services to be offloaded. Thus, the FPGA 
design engineers that would potentially design IP cores 
implementing in hardware different services are being given 
the exact available resources in terms of logic cells and 
bRAMs. In order to ensure a correct overlay of modules, 
they all have the same generic I/O ports, so the IP cores 
need to be constrained, using a top-level HDL wrapper, to 
this interface. The standard interface together with the 
resource availability information ensure a feasible IP core 
design, easing the instantiation of these cores in the system. 

C. Securing the system 
In this proposed framework the SoC device is situated at a 

remote location while operating with client data, and thus 
vulnerable especially to physical tampering security attacks. 
An attacker could attempt, by modifying the operating 
voltages and/or temperature of a SoC, to force the device to 
behave abnormally in order to extract data or bypass its 
security features [13]. 

Consequently, the Zynq SoC was chosen as the target 
development system for this service-oriented framework 
also because of its unique built-in security features [14]-
[15]. We have implemented additional security features 
based on the Xilinx Anti-Tamper technology for detection 
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and response to physical tampering events. This has been 
accomplished by using the on-chip hard IP block analog-to-
digital converter (XADC) available on Zynq for monitoring 
the on-chip power supply voltage and die temperature.  

The first step, at board power-up, was to configure the 
Zynq SoC generic interrupt controller in order to use the 
XADC interrupt as part of this interrupt service routine. 
Next, the XADC configuration has been initialized, the 
channel sequencer was stopped (set into safe mode) and all 
alarms have been disabled. Further on, readings of the 
temperature and voltage values are performed, being 
considered as normal operation reference values. Based on 
these readings, with the appropriate tolerance margins, the 
upper and lower temperature and voltage alarms are being 
assigned and the corresponding interrupts are enabled. 

 
Figure 4. Security mechanism flowchart 

In this operating mode, any temperature or voltage 
readings outside the established range will trigger the 
designated interrupt service routine. This routine clears the 
interrupt status register, disables other interrupts and reads 
the temperature/voltage values which triggered the alarm. 
Next, if these readings are consistent with security attack 
patterns, it takes reactive measures for preventing any 
potential unauthorized access to the data stored on the SoC 
by loading the partially reconfigurable modules with black-
box versions and deleting the entire content of both the MFS 
containing configuration files and the user data memory 
space (storing input/output user data). Also, a TCP message 
is sent to the web service in order to signal that the board 
has detected a possible malfunction or tampering event and 
has taken the appropriate counter-measures. 

Such prevention, detection and reaction measures increase 
the overall security of the SoC device, making it a trusted 
platform for secure computations [16]. Also, the design 
concept that makes use of partial reconfiguration adds an 
extra security level, enabling IP cores loading only when 
needed and unloading them in case of a security breach. 

Last but not least, by this continuous monitoring of the 
operating parameters a pre-emptive approach is taken 
regarding the detection of natural occurring problems that 
might induce failures (e.g. a slowly drifting power supply). 

D. Task Management 
The tasks are created by the Web service after the client 

calls one of its methods using the JSP web page interface. 
Once created, they are sent over the network to the Zynq 
SoC to be executed on one of the existing processing cores 
(according to the task's type). The task management is 
performed on the Zynq device by a hybrid mechanism, 
involving a dedicated routine in the PS application and a 
scheduling peripheral in the reconfigurable logic. 

 
Figure 5. Task management mechanism on the Zynq SoC 

This mechanism has been designed and implemented 
considering the requirements of the present application: the 
tasks are independent processes, so no inter-task 
synchronization is needed, however the issue to be solved 
remains scheduling them and designating a processing core 
in order for each of them to be executed. 

Every new task offloaded to be executed on the hardware 
platform is defined by a TCP message received from the 
web service. Following this message, a TCP data 
transmission transfers the corresponding input data. Both the 
new task message and input data are handled by a dedicated 
C method that performs task and data management. This 
method translates each new task to a task instruction that 
goes into an execution queue:  

 
Therefore, each task is assigned a unique task ID and the 

ID of target peripheral (IP core) on which it will be 
executed, together with two DDR3 memory spaces: for 
input (Din) and output (Dout) data.  

The C task management routine transmits the task IDs 
and memory addresses to the TaskScheduler peripheral from 
the PL using software-accessible registers. This peripheral 
implements a FIFO-type scheduling of the tasks, enabling 
their parallel execution on the available IP cores. It launches 
the tasks by communicating via the AXI interface with the 
reconfigurable modules and controlling their operation. 
When each task is finished, the peripheral signals this event 
to the C application which is then responsible for sending 
the resulted data back to the web service. This processing 
flow is being shown in Figure 5. 

This hybrid software/hardware approach for task 
management has been chosen as it offers better performance 
than a traditional software approach due to the improved 
execution times [17]. Consequently, the interface has been 
implemented in software - to maintain flexibility and ease of 
network communication with the web service - while tasks 
scheduling and execution have been implemented using a 
hardware peripheral, reducing time and energy consumption. 
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IV. RESULTS AND DISCUSSION 

The validation of our proposed system and methodology 
involved designing and implementing the embedded system 
based on the Zynq 7020 SoC on the Avnet Zedboard, 
implementing the web service and testing the commu-
nication and functionality of the setup.  

For our proof-of-concept experimental setup, we have 
developed four web service methods. The first two 
(SHA_SW and AES_SW) implement SHA-2 (Secure Hash 
Algorithm-2, 256 bits) and AES (Advanced Encryption 
Standard) encryption as standard Java implementations 
running on the server machine, while the last two 
(SHA_HW and AES_HW) implement the same operations 
but the computations are offloaded to the Zynq SoC device. 
The software versions of the methods were implemented in 
order to benchmark the performances and correctness of the 
hardware accelerated methods’ results. 

The first step in implementing the hardware component 
was creating the ARM A9-based processing system using 
Xilinx EDK XPS (Embedded Development Kit Xilinx 
Platform Studio) 14.7. Using this software tool, the two IP 
cores were created: reconf_periph_v1_00_a (which was 
instantiated twice in the design and contains in the VHDL 
static logic the instantiation of the generic pr_module) and 
the above-mentioned task_scheduler_v1_00_a. 

The two IP cores (SHA-2 and AES) were implemented as 
PR (partial reconfigurable) modules, being instantiated in 
the reconf_periph_0 and reconf_periph_1 peripherals. The 
individual synthesis of the two modules was done using ISE 
14.7; this operation generated netlist files each having a 
standard wrapper over the specific top-level, with the role of 
standardizing the interfaces and module names to coincide 
with the ones of the generic pr_module (instantiated in the 
EDK peripherals). 

 
Figure 6. Layout of Zynq chip having defined two reconfigurable partitions 
with occupied slices highlighted for SHA (up) and AES (down) modules 

The rest of the partial reconfiguration design flow: 
floorplanning, routing and generating the full and partial 
bitstreams was done with PlanAhead 14.7 [18]. The 
pr_module instances from the two peripherals were declared 
as reconfigurable partitions, for each of them a function 
module being added. The modules have been defined based 
on the two IP core netlists (ngc files) obtained after Xilinx 
ISE synthesis. 

Besides the functional module, for each reconfigurable 
partition a non-functional black-box type version has been 
added, for allowing either unloading the peripheral when 
desired, or configuring the system without loading the 
peripherals at start-up. A view of the Zynq layout with the 
two partitions highlighted is shown in Figure 6. 

Next, the implementation continued with the map, 

place&route, formal verification and bitstreams generation. 
A complete bitstream file was generated for configuring the 
entire chip, having black-box versions loaded for the 
reconfigurable partitions. Along with this file, another four 
partial bitstreams were generated, two for each module (one 
functional and one black-box 

For testing the system, in order to assess the compliance 
with real-time requirements [19]-[20], the embedded 
application was deployed on the ARM PS while the PL was 
configured using the full bitstream with black-box versions 
of the PR modules. The web service remotely configured the 
two PR modules with partial bitstreams and the 
corresponding web service methods were accessed via the 
JSP page. Two tasks were offloaded to the device, together 
with two 1MB files of input data. The tasks were processed 
by the task management mechanisms running on the SoC 
and launched in parallel on the two IP cores. When each 
task finished, resulting data was sent back to the web service 
and checked for consistency with the software-computed 
results. 

TABLE 1. PR REGIONS RESOURCES UTILIZATION 
Occupied Resource type Available per 

region AES-256 SHA-256 
LUT 4000 648 (17%) 2050 (52%) 

FD_LD 8000 717 (9%) 1167 (15%) 
SLICEL 650 106 (17%) 334 (52%) 
SLICEM 350 57 (17%) 180 (52%) 
DSP48E1 20 0 0 
FIFO18E1 10 5 (50%) 0 

RAMB18E1 10 5 (50%) 0 
RAMBFIFO36E1 10 0 0 

The available and utilized resources for the PR regions 
with the two reconfigurable modules loaded are displayed in 
Table 1. The figures show that the two cores fit easily in the 
PR regions, AES occupying about 17% of the cells and 50% 
of the block RAMs, while SHA needing about 50% of the 
cells, without any RAMs. The PR regions can be chosen 
with different sizes, according to the needs of the cores to be 
used for accelerating the web services. For our setup, each 
PR region consists of less than 2% of the total number of 
LUTs and SLICEs available on the entire Zynq device. 

TABLE 2. RECONFIGURATION AND OPERATION TIMINGS 
Duration Action 

AES-256 SHA-256 
Loading partial bitstream 2.48ms 

Data transfer Server – SoC 11.2ms 
Peripheral execution in PL 5.65ms 3.13ms 
Peripheral execution in PS 41.15ms 20.2ms 
Data transfer SoC – Server 12.4ms 

Total (PL with reconf.): 31.73ms 29.21ms 
Total (PL without reconf.): 29.25ms 26.73ms 
Total (SW on ARM PS): 64.75ms 43.8ms 

Total (SW impl. on server): 73.25ms 47.38ms 

The timings of the main actions during operation are 
shown in Table 2 while an overall performance comparison 
is presented in Figure 7. The size of the partial bitstreams 
used was 313kB, and each reconfiguration of a peripheral 
took 2.48ms. It took around 20ms for the input data and 
results to be transferred to and from the device, given the 
network conditions (Gigabit Ethernet, with the embedded C 
application implementing the TCP communication in RAW 
mode and achieving an average throughput of 90MB/s). The 
timing for the two peripherals was different: while the AES-
256 core encrypted the input file in 5.65ms, it took 3.13ms 
for the SHA core to compute the hash value.  
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In order to better evaluate the hardware speed-up 
compared to software implementations, the comparison in 
Figure 7 contains the timings for the corresponding software 
methods running on the ARM PS. These results clearly 
show the speed-up brought by hardware execution, with the 
AES service being 2x faster and the SHA about 1.5x. 

 
Figure 7. Performance comparison (including data transfer time to/from the 
web service). 

V. CONCLUSIONS 

This paper described a framework for accelerating web 
services by offloading their implementations on 
reconfigurable hardware devices. The framework provides a 
scalable, dynamic management of the tasks and hardware 
processing cores, based on dynamic partial reconfiguration. 
The hybrid approach to the task management: dedicated 
software method and integrated peripheral in the 
programmable logic allows for a fast task scheduling and 
execution, while maintaining a flexible communication 
interface with the web service. 

The main contribution of our implementation lies in 
leveraging the partial reconfiguration feature of the latest 
generation Zynq SoC in order to achieve a dynamic run-time 
management of the processing cores (used for hardware-
implementing the services), which is crucial given the 
existing requirements for web services in terms of response 
times and availability.  

The experimental validation of our solution showed that 
the overhead induced by partially reconfiguring the 
peripherals to support different implementations during 
runtime for enabling the hardware acceleration of different 
services, is minimal (negligible compared to the overall 
timing during operation). It can also be noticed a faster 
execution time of the hardware-deployed tasks compared to 
their software equivalents.  

Being designed to operate with client data while at a 
remote location (the service provider datacentre), the 
proposed framework provides enhanced security features 
for securing the user IP. Our approach offers two levels of 
protection: an advanced, dynamic detection of physical 
tampering attempts or hardware malfunctions, together with 
a mechanism for unloading the IP cores and deleting all 
sensitive data in the case of a security threat.  

The performance, scalability and flexibility of the 
implementation extend the application range of this 
framework, allowing for its integration in distributed 
systems like cloud computing for accelerating 
computational intensive tasks, thus potentially increasing 
service execution speeds and decreasing energy 

consumption.  
Also, the enhanced security allows the hardware 

implementation of offloading critical tasks, enabling higher 
security guarantees to be offered to clients by the service 
providers. 

REFERENCES 
[1] A. Hayek, S. Domes, J. Borcsok. “Internet-controlled dynamic 

reconfiguration for FPGA-based embedded systems”, in Proc. of 3rd 
Int. Conf. on Communications and Information Technology (ICCIT), 
Jun.19-21, 2013, Beirut, LB, pp.190-194. doi: 10.1109/ 
ICCITechnology.2013.6579547 

[2] K. Mershad, A.R. Kaitoua, H. Artail, M.A.R. Saghir, H. Hajj, “A 
framework for multi-cloud cooperation with hardware reconfiguration 
support”, in Proc. of IEEE 9th World Congress on Services 
(SERVICES), June 28-July 3, 2013, Santa Clara, CA, pp.52-59. doi: 
10.1109/SERVICES.2013.12 

[3] S. Pedre, T. Krajnik, E. Todorovich, P. Borensztejn, “A co-design 
methodology for processor-centric embedded systems with hardware 
acceleration using FPGA”, in Proc. 8th Southern Conf. on 
Programmable Logic (SPL), Mar.20-23, 2012, Bento Goncalves, BR, 
pp.1-8. doi: 10.1109/SPL.2012.6211770 

[4] T. Huffmire, B. Brotherton, T. Sherwood, R. Kastner, T. Levin, T.D. 
Nguyen, C. Irvine, “Managing Security in FPGA-Based Embedded 
Systems”, in IEEE Journal on Design & Test of Computers, vol.25, 
no.6, Nov.-Dec.2008, pp.590-598, doi: 10.1109/MDT.2008.166 

[5] W. Chao, L. Xi, Z. Junneng, C. Peng, Z. Xuehai, “CaaS: Core as                   
a service realizing hardware services on reconfigurable MPSoCS”,              
in Proc. 22nd Int. Conf. on Field Programmable Logic and 
Applications (FPL), Aug.29-31, 2012, Oslo, NO, pp.495-498. doi: 
10.1109/FPL.2012.6339263 

[6] A. Cilardo, L. Coppolino, A. Mazzeo, L. Romano, “Combining 
programmable hardware and web services technologies for delivering 
high-performance and interoperable security”, in Proc. 15th Int. Conf. 
on Parallel, Distributed and Network-Based Processing (PDP’07), 
Feb.7-9, 2007, Napoli, IT, pp.381-386, doi: 10.1109/PDP.2007.30 

[7] J. Mao, Q. Xu, Z. Sun, X. Lu, “FSArch: Enables FPGA-Based 
platforms to provide network services”, in Proc. 4th World Congress 
on Software Engineering (WCSE), Dec.3-4, 2013, Hong Kong, CN, 
pp.241-245. doi: 10.1109/WCSE.2013.44 

[8] D. Rodriguez, J.M. Sanchez, A. Duran. “Distributed reconfigurable 
computing using XML Web services”, in Proc. IEEE Workshop on 
Signal Processing Systems Design and Implementation, Nov.2-4, 
2005, Athens, GR, pp.613-617. doi: 10.1109/SIPS.2005.1579939 

[9] A. Melnyk, V. Melnyk, "Self-Configurable FPGA-Based Computer 
Systems," Advances in Electrical and Computer Engineering, vol.13, 
no.2, pp.33-38, 2013, doi:10.4316/AECE.2013.02005 

[10] B. Perry, Java Servlet & JSP Cookbook, pp. 119-120, Sebastopol, 
CA: O’Reilly, 2004. 

[11] D. Chappell, T. Jewell, Java Web Services, pp. 39-45, Sebastopol, 
CA: O’Reilly, 2002. 

[12] A. Sarangi, S. MacMahon, U. Cherukupaly, “LightWeight IP 
application examples”, Application Note XAPP1026 v5.1, Xilinx 
Corp., San Jose, CA,  2014. 

[13] M. Schramm, A. Grzemba, “Reconfigurable trust for embedded 
computing platforms”, in Proc. IEEE Int.Conf. on Applied Electronics 
(AE), Sep.5-7, 2012, Pilsen, CZ, pp.261-264. 

[14] S. McNeil, “Solving today's design security concerns”, White Paper 
WP365, Xilinx Corp., San Jose, CA, 2012. 

[15] J. D. Corbett, “The Xilinx Isolation design flow for fault-tolerant 
systems”, White Paper WP412, Xilinx Corp., San Jose, CA, 2012. 

[16] S.M. Trimberger, J.J. Moore, “FPGA Security: Motivations, features 
and applications”, Proceedings of the IEEE, vol.102, no.8, pp.1248-
1265, 2014. doi: 10.1109/JPROC.2014.2331672 

[17] R. Pellizzoni, M. Caccamo. “Real-Time Management of Hardware 
and Software Tasks for FPGA-based Embedded Systems”, in                  
IEEE Trans. Computers, vol.56, no.12, pp.1666-1680, 2007. doi: 
10.1109/TC.2007.70763 

[18] D. Dye, “Partial reconfiguration of Xilinx FPGAs using ISE Design 
Suite”, White Paper WP374, Xilinx Corp., San Jose, CA, 2012. 

[19] Z. Zheng, Y. Zhang, M.R Lyu, “Investigating QoS of Real-World 
Web Services”, in IEEE Trans. Services Computing, vol.7, no.1, 
pp.32-39, 2014. doi: 10.1109/TSC.2012.34 

[20] D. McKee, D. Webster, J. Xu, "Enabling Decision Support for the 
Delivery of Real-Time Services", in Proc. of 16th IEEE Int. 
Symposium on High Assurance Systems Engineering (HASE), Jan.8-
10, 2015, Daytona Beach, FL, pp.60-67. doi: 10.1109/HASE.2015.18 

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 21:20:34 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]


