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LINDELOF WITH RESPECT TO AN IDEAL
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Abstract. We define Lindelof with respect to an ideal and investigate basic
properties of the concept, its relation to known concepts,and its preservation
by functions, subspaces, pre-images, and products.

1. Introduction and Preliminaries.

An ideal on a set X is a nonempty collection of subsets of X closed under the
operations of subset ( “heredity” ) and finite union ( “finite additivity” ). If in
addition the ideal is closed under the operation of countable unions, it is called
a o — ideal. We denote a topological space (X,7) with an ideal I defined on
X as (X,7,I) and call (X,7,I) an ideal topological space. Given a space (X, T)
and A C X, we denote by Int,(A) and Cl,(A) the interior and closure of A,
respectively, with respect to 7. When no ambiguity is present we write simply
Int(A) and CIl(A). We abbreviate “if and only if” with “iff” and “neighborhood”
with “nbd.” The conclusion or omission of a proof is indicated by the symbol ||. No
separation properties are assumed unless explicitly stated. We denote the natural
numbers by N.

2. Basic Results.

We begin with the following definition.

Definition. A space (X, 7,1) is said to be I-Lindelof or Lindelof with respect to
I, if every open cover U of X has a countable subcollection V such that X —UV € 1.

Obviously, a space is Lindelof iff it is {(#}-Lindelof. Frolik [4] defines a space to
be weakly Lindelof if every open cover U of the space has a countable subcollection
V such that X = CI(UV). We now show that weakly Lindelof spaces are a special
case of Lindelof with respect to an ideal. If (X, 7) is a space, we denote the ideal
of nowhere dense sets by N(7) and the o-ideal of meager
( first category ) subsets by M(7). An ideal I on (X, 7) is said to be 7 — codense
it InT={0}.

Theorem 2.1. Let (X, 7) be a space.
(1) (X, 7) is weakly Lindelof iff (X, 7) is N(7)-Lindelof.
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(2) (X,7) is weakly Lindelof iff (X, 7) is Lindelof with respect to some T-codense
ideal.

(3) If (X, 7) is a Baire space, then (X,T) is weakly Lindelof iff (X, 1) is M(7)-
Lindelof.

Proof. (1) Necessity. Assume (X, 7) is weakly Lindelof and let U be an open
cover of X. Then by assumption there exists a countable subcollection V of U
such that X = CI(UV). X — UV is then a closed set with empty interior; i.e.,
X —UV € N(1).

Sufficiency. Assume (X, 7) is N(7)-Lindelof and let U be an open cover of X. By
assumption, there exists a countable subcollection V of U such that X —UV € N(7).
This implies that X — UV has empty interior and hence X = Cl(UV).

(2) Necessity. N () is T-codense.

Sufficiency. Assume that I is a 7-codense ideal on X and that (X,7) is I-
Lindelof. Let U be an open cover of X. Then, by assumption, there exists a
countable subcollection V of U such that X — UV € I. Since I is 7-codense,
X — UV has empty interior and hence X = CI(UV).

(3) (X, 7) is a Baire space iff M(7) is 7-codense, The result now follows from
(2)

Willard [11] defined a space to be almost Lindelof if for every open cover U of
X there exists a countable subcollection V of U such that X = U{CI(V) : V € V}.

Theorem 2.2. If a space (X, ) is almost Lindelof, then it is M (1)-Lindelof.

Proof. Let U be an open cover of X and let N denote the natural numbers.
By assumption, there exists a countable subcollection V = {V; : i € N} of U such
that X = U{CIl(V;) : i € N}. Now observe that

X —UV CU{CU(V;) —V;:i€ N}
and each set CI(V;) —V; € N(7). Thus U{Cl(V;) = V;:i € N} € M(7). |

The next example is of an M (7)-Lindelof space which is not almost Lindelof.
Observe that if T and J are ideals on a space (X,7) with I C J and (X,7) is
I-Lindelof, then (X, 7) is J-Lindelof.

Example 1. Let R denote the real numbers and let X = R x [0,400) denote the
upper half plane together with L = {(x,0) : x € R}. Equip X with the Niemytzki
tangent disk topology, denoted by 7. Points in R x (0, +00) have the usual Euclidean
nbds while points on the line L have nbds of the form D U {(x,0)} where D is the
interior of a disk ( circle ) lying in X tangent to L at the point (x,0). Let Q
denote the rational numbers and let QT denote the positive rational numbers. Since
Q x QT is countable and dense in X, X is separable and hence weakly Lindelof
[8], hence N(7)-Lindelof, hence M (7)-Lindelof ( since N(t) C M(r) ). However,
this space is not almost Lindelof. To see this, for each (x,0) € L, let D, be a basic
nbd of (x,0); i.e., each D, is the interior of a disk lying in X tangent to L at the
point (z,0) together with the point (x,0). Let U be an open cover of R x (0,400)
consisting of open sets whose closures do not intersect L. For each (x,0) € L, let
D, be a basic nbd of (x,0) as described above. Now V =U U{D, : x € R} is an
open cover of X and each point (x,0) is an element of the closure of exactly one
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set in V; i.e., (x,0) € Cl(D,). Hence there can be no countable subcollection of V
whose closures cover X, and therefore (X, T) is not almost Lindelof.

3. Subspaces.

Let (X, 7,I) be an ideal topological space and let A C X, A # (). We denote by
I,4 the collection {IN A : I € I}. We denote by 74 the subspace topology on A.
Then we have the following theorem.

Theorem 3.1. Let (X, 7,1) be an I-Lindelof space and let A be a closed subset of
X. Then (A,7a,14) is 14-Lindelof.

Proof. Let {UNA:U € U C 7} be a 74-open cover of A. Then UU {X — A}
is an open cover of X and hence there is a countable subcollection V = {U; : i €
N}U{X — A} such that X —UV =TI € I. Now we must have A CU{U, : i € N}UI
and A=U{U;NA:ie N}U{INA}. Hence

A—U{UiﬁAZiEN}gIﬂAEIA. H

The well known result that a closed subspace of a Lindelof space is Lindelof is a
special case by taking I = {@}. Closed subspaces of weakly Lindelof spaces are not
necessarily weakly Lindelof ( as the subspace L of Example 1 shows ), however we
obtain the following known result as a corollary.

Corollary 3.2. [9] If A C (X, 1) is a clopen ( closed and open ) subset of a weakly
Lindelof space (X, T), then (A,T4) is weakly Lindelof.

Proof. By Theorem 3.1, (A,74) is N(7)4-Lindelof. Since A is open N(71)4 =
{INA:Te¢eN(r)}is Ta-codense; i.e., if Int.,(I N A) # 0, then Int. (I NA)# 0.
Now apply Theorem 2.1, (2). ||

4. Preservation by Functions and Products.

Lindelof with respect to an ideal is preserved by continuous functions in the
following manner. First note that if f : X — Y and I is an ideal on X, then
f(@)={f(I): 1 €1} is an ideal on Y. Also if J is an ideal on Y, then f~1(J) =
{f~Y(J):J € J} is an ideal on X.

Theorem 4.1. Let f : (X,7,I) = (Y,0) be a continuous surjection. If (X,T) is
I-Lindelof, then (Y, o) is f(1)-Lindelof.

Proof. Let V be an open cover of Y. Then f~Y(V) = {f~1(V):V € V} is
an open cover of X and hence there exists a countable subcollection U = {U; =
7Y (V;):ie N}of f71(V) and an I € I such that X =U U U { I }. Now we have

Y = f(X) = U{Vi i € NYULF(D}. |

By taking I = {0} in the above theorem, we get the well known result that
Lindelof is preserved by continuous surjections. We also have the following results
concerning pre-images.

Theorem 4.2. Let f : X — (Y,0,J) be a surjection onto a J-Lindelof space. If
f~Y(0) is the weak topology on X induced by f and o, then (X, f~1(o)) is f~1(J)-
Lindelof.
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Proof. Let U = {f~}(V):V € V} be an open cover of X. Then V is an open
cover of Y and hence there exists a countable subcollection {V; : i € N} of V and
J € J such that

Y=U{V,:ie N}U{J}.
Now we have
X=U{f' (Vi) :i e N}U{fTH (D)} |
The following Lemma is used in the proof of the Corollary that follows.

Lemma 4.3. If f: X — (Y,0,J) is a surjection and J is o-codense, then f~1(J)
is f~1(o)-codense.

Proof. (Contrapositive). Assume f : X — (Y,0,J) is a surjection and f~1(J)
is not f~!(o)-codense, then there exists a J € J such that f=1(J) € f~(o) — {0},
say f~4(J) = f~Y(V) where V € 0 — {0}. Then J =V € o — {0} and J is not
o-codense. ||

Corollary II1.4. Let f : X — (Y, 0) be a surjection and let f~1(o) denote the
weak topology on X induced by f and o.

(1) If (Y,0) is Lindelof, then (X, f~*(c)) is Lindelof.
(2) If (Y, 0) is weakly Lindelof, then (X, f~1(c)) is weakly Lindelof.

Proof. (1) Let J = {0} and apply Theorem 4.2.

(2) If (Y, o) is weakly Lindelof then there exists a o-codense ideal J such that
(Y, o) is J-Lindelof. By Lemma 4.3, f~1(J) is f~!(o)-codense and apply Theorem
4.2

Recall that a function f : (X,7) — (Y, 0) is said to be open if f preserves open
subsets and is said to be perfect if f is continuous, closed ( preserves closed subsets
), and has compact fibers ( f~!(y) is compact for every y € Y ). The following
Theorem and Lemma are useful for our consideration of products.

Theorem 4.4. Let f: (X,7) = (Y,0,J) be a perfect open surjection. If (Y, o) is
J-Lindelof, then (X, 7) is f~1(J)-Lindelof.

Proof. Let U be an open cover of X. For each y € Y there exists a finite
subcollection {Uy, : i =1,2,3,...,n,} of U which covers f~!(y). Let U, = U{U,, :
i=1,2,3,...,n,}. Each Uy, is an open set in (X,7) and f~'(y) C U,. Now each
set f(X —Uy)isclosedin Y and y ¢ f(X —Uy), hence V, =Y — f(X - U,) is a
nbd of y. Note that f~'(V,) C U,. The collection {V, : y € Y} is an open cover of
Y, hence there exists a countable subcollection {V,, : ¢ € N} and J € J such that

Y =U{V, :ie NJU{J}.

We claim that X = U{U,, :i € N}U{f~*(J)}. Indeed, let z € X; then y = f(z) €
Vy; U J for some y;. Then

ze fTy) SNV UfTHT) C U, U ).

Since x was arbitrary, the claim is established and the theorem is proved. ||
The following Lemma is used to prove the corollary which follows it.

Lemma 4.5. If f : (X,7) = (Y,0,J) is an open surjection and J is o-codense,
then f=1(J) is T-codense.
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Proof. ( contrapositive ). Suppose that f~1(J) is not 7-codense. Then there
exists J € J such that f~1(J) € 7—{0}. Since f is open and surjective, f(f~1(J)) =
J €0 — {0} and J is not o-codense. ||

The following known results are now obtained as corollaries.

Corollary 4.6. Let f: (X,7) — (Y,0) be a perfect open surjection.
(1) If (Y, o) is Lindelof, then (X, T) is Lindelof.
(2) [9] If (Y,0) is weakly Lindelof, then (X, T) is weakly Lindelof.

Proof. (1) Let J ={0} and apply Theorem 4.4.

(2) Assume that (Y, o) is weakly Lindelof. Then (Y, o) is J-Lindelof with respect
to some o-codense ideal J. Then by Lemma 4.5, f~1(J) is 7-codense and apply
Theorem 4.4. ||

Utilizing Theorem 4.4, we obtain the following theorem concerning products and
some known results as corollaries.

Theorem 4.7. If (X, 7,1) is I-Lindelof and (Y, o) is compact, then(X x Y, 7 X o)
is p~1(I)-Lindelof where T x o is the usual product topology andp: X xY — X is
the projection map onto X defined by p(x,y) = .

Proof. The projection p: (X x Y, 7 x 0) = (X, 7) is a perfect open surjection.
Now apply Theorem 4.4. ||
The following results are known.

Corollary 4.8. (1) If (X, 7) is Lindelof and (Y, o) is compact, then (X XY, 7x o)
s Lindelof.

(2) [9] If (X,7) is weakly Lindelof and (Y, o) is compact, then (X X Y, T X o) is
weakly Lindelof.

Proof. (1) Let I = {} and apply Theorem 4.7.
(2) If (X,7) is weakly Lindelof, then by Theorem 2.1, (2), there exists some
r-codense ideal I such that (X, ) is I-Lindelof. By Lemma 4.5, p~1(I) is 7 x o-

codense where p: X XY — X is the projection map onto X. Now apply Theorem
4.7. |
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