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Abstract. Let f(z) 6≡ 0 be a solution of f ′′ + P (z)f = 0, where P (z) is a
polynomial. Then the set of accumulation lines of zero-sequence is a subset

of the Borel directions of f(z). Let f1 and f2 be two linearly independent

solutions of f ′′ + P (z)f = 0, where P (z) is a polynomial of degree n and set
E = f1f2. Then, for every accumulation line arg z = θ of zero-sequence of E,

there is another accumulation line arg z = φ of zero-sequence of E such that

|φ− θ| = 2π
n+2

.

1. Introduction

We shall consider the differential equation

f ′′ + P (z)f = 0, (1.1)

where P (z) is a polynomial of degree n ≥ 1 . It is well known that every solution
f 6≡ 0 of (1.1) is an entire function of order n+2

2 . In past years, there have been a
lot of work done on the oscillation properties of the solutions of (1.1)( see [1], [3],
[5], [7], [14]). In this paper, we shall study the angular distributions of the solutions
of (1.1).

We shall use the standard notations of Nevanlinna theory of meromorphic func-
tion (see [9], [11] or [16]). Especially, for a meromorphic function f(z) in the finite
complex plane C, we use the notations ρ(f) and λ(f) to denote the order and the
exponent of convergence of zero-sequence of f(z), respectively.

Let f(z) be a transcendental meromorphic function with 0 < ρ(f) < ∞ in the
finite complex plane C. Recall that a ray arg z = θ from the origin is called a Borel
direction of f(z), if for any ε > 0 and for any complex number a ∈ C = C

⋃
{∞},

possibly with two exceptions, the following equality holds

lim sup
r→∞

log n(S(θ − ε, θ + ε, r), f = a)

log r
= ρ(f), (1.2)

where n(S(θ−ε, θ+ε, r), f = a) denotes the number of zeros, counting multiplicities,
of f − a in the region S(θ − ε, θ + ε, r) = {z : θ − ε ≤ arg z ≤ θ + ε, 0 < |z| ≤ r}.
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The fundamental result in angular distribution of meromorphic functions is due
to Valiron which says that a meromorphic function of order ρ > 0 must have at
least one Borel direction of order ρ (see [16]).

In order to state our results, we note that in [13], [14], [15], the authors intro-
duce the accumulation lines of zero-sequence to study the angular distributions of
solutions of the equation (1.1). The following is their definition.

Definition 1. Let g(z) be an meromorphic function in the finite complex plane
and let arg z = θ ∈ R be a ray. We denote, for each ε > 0, the exponent of
convergence of zero-sequence of g(z) in the angular region S(θ−ε, θ+ε) = {z|θ−ε ≤
arg z ≤ θ + ε, |z| > 0} by λθ,ε(g) and by λθ(g) = limε→0 λθ,ε(g).

We call the ray arg z = θ which has the property λθ(g) = ρ(g) a accumulation
line of the zero-sequence of g.

In this paper, we shall be continuing to study the accumulation line of zero-
sequence of the solutions of the equation (1.1). Our first result is the following:

Theorem 1. Let f(z) be a nontrivial solution of equation f ′′ + P (z)f = 0,
where P (z) = anz

n + · · · + a0 is a polynomial of degree n ≥ 1. Then the set of
accumulation lines of zero-sequence is a subset of the Borel directions of f(z).

Let f1 and f2 be two linearly independent solutions of (1.1) and set E = f1f2.
Since 1982, there have also been a lot of work on the distributions of the zeros
of E. In [1], Bank and Laine proved that λ(E) = n+2

2 , where n is the degree of
the polynomial P (z) in (1.1). Later Gundersen proved in [3] that the exponent
of convergence of the nonreal zero sequence of E is also n+2

2 . In [14], Wu stud-
ied the distribution zeros of solutions of (1.1) and, by using angular Nevanlinna
characteristics, obtained the following result.

Theorem A([14]). Let P (z) be a polynomial of degree n ≥ 1 and let f1 and f1
be two linearly independent solutions of f ′′ + P (z)f = 0. If for some real number
θ0

lim sup
r→∞

log+ log+ |E(reiθ0)|
log r

=
n+ 2

2
, (1.3)

where E = f1f2, then there exist θ1 and θ2 with θ1 ≤ θ0 ≤ θ2 such that θ2−θ1 = 2π
n+2

and λθ1(E) = λθ2(E) = n+2
2 .

It is obvious that Theorem A implies Gundersen’s result in [3]. In this paper, we
shall give a simple proof, which avoids the use of the complicated angular Nevan-
linna characteristics, of a generalization of Theorem A.

Theorem 2. Let P (z) be a polynomial of degree n ≥ 1 and let f1 and f1 be
two linearly independent solutions of f ′′ + P (z)f = 0. Set E = f1f2. If the ray
arg z = θ ∈ [0, 2π) satisfies λθ(E) = n+2

2 , then there exists another ray arg z = φ

with |θ − φ| = 2π
n+2 , such that λφ(E) = n+2

2 .

This paper is organized as follows. In Section 2, we consider the distributions
of the accumulative lines of zero-sequence of a single solution of the equation (1.1),
prove Theorem 1 as well as discuss some further related results. In Section 3,
we investigate the complex oscillations of the product of two linearly independent
solutions of the equation (1.1) and prove Theorem 2.



ZERO DISTRIBUTION OF SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS 11

2. Angular Distributions of a Solution of (1.1)

In this section, we will investigate the distribution of zeros of a single solution
of the equation (1.1). In order to prove Theorem 1, we need more notations. Let
α < β such that β−α < 2π and let r > 0. We denote S(α, β) = {z : α ≤ arg z ≤ β},
S(α, β, r) = {z : α ≤ arg z ≤ β}

⋂
{z : |z| ≤ r}. Let f(z) be an entire function of

order 0 < ρ < ∞ and let S = S(α, β) be a sector. For simplicity, set ρ(f) = ρ, we
shall say that f(z) blows up exponentially in S if for any θ(α < θ < β)

lim
r→∞

log log |f(reiθ)|
log r

= ρ (2.1)

holds. We shall also say that f(z) decays to zero exponentially in S if for any
θ(α < θ < β)

lim
r→∞

log log |f(reiθ)|−1

log r
= ρ (2.2)

holds.
The following lemma, which is due to Hille, plays an important role in the proof

of our results.

Lemma 1([6]). Let f(z) 6≡ 0 be a solution of (1.1), where P (z) = anz
n +

· · · + a0(an 6= 0). Set θj = 2jπ−arg(an)
n+2 and Sj = {z : θj < arg z < θj+1} (j =

0, 1, 2, · · · , n+ 1). Then f(z) has the following properties:
(1)In each sector Sj , f either blows up or decays to zero exponentially in it;
(2)If, for some j, f decays to zero in Sj , then it must blow up in Sj−1 and Sj+1

(if j = n + 1, set Sj+1 = S0). However, it is possible for f to blow up in many
adjacent sectors;

(3)If f decays to zero in Sj , then f has at most finitely many zeros in any closed
sub-sector within Sj−1 ∪ S̄j ∪ Sj+1;

(4)If f blows up in Sj−1 and Sj , then for each ε > 0, f has infinitely many zeros
in each sector θj − ε ≤ arg z ≤ θj + ε, and furthermore, as r →∞,

n(S(θj − ε, θj + ε, r), f = 0) = (1 + o(1))
4
√
|an|

π(n+ 2)
r

n+2
2 , (2.3)

where n(S(θj − ε, θj + ε, r), f = 0) is the number of zeros, counting multiplicities,
of f(z) in the region S(θj − ε, θj + ε, r).

We also need the following lemma to prove Theorem 1.
Lemma 2([10, P.193]). Suppose that S(α, β) and S(α′, β′) are two sectors such

that α < α′ < β′ < β and that g(z) is analytic on S(α, β). If

lim sup
r→∞

log logM(r, S(α′, β′), g)

log r
≡ ρ(S(α′, β′), g) >

π

β − α
,

where M(r, S(α′, β′), g) = maxz∈S(α′,β′,r) |g(z)|, then we have for every a ∈ C with
at most one exception

lim sup
r→∞

log n(S(α, β, r), g = a)

log r
≥ ρ(S(α′, β′), g),

where n(S(α, β, r), g = a) denotes the roots of the equation g(z) = a, counting
multiplicities, in S(α, β, r).
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Proof of Theorem 1. Let f(z)(6≡ 0) be a solution of (1.1), where P (z) =
anz

n + · · · + a0. Suppose that arg z = θj , which is defined in Lemma 1, is a
accumulation line of zero-sequence of f(z). We shall prove that arg z = θj is a
Borel direction of f(z).

For any 0 < η < π
n+2 , set

α = θj−1 + η, β = θj+1 − η,

α′ = θj−1 + 2η, β′ = θj+1 − 2η.

Obviously, we have that α < α′ < θj < β′ < β. It follows from Lemma 1 that there
certainly exists θ ∈ (α′, β′) such that

lim sup
r→∞

log logM(r, S(α′, β′), f)

log r
≥ lim sup

r→∞

log log |f(reiθ)|
log r

=
n+ 2

2
>

π

β − α
.

It follows from Lemma 2 that, for every a ∈ C with at most one exception,

lim sup
r→∞

log n(S(α, β, r), f = a)

log r
≥ n+ 2

2
. (2.4)

For any ε > 0(< η), we have

α− ε

2
< α < θj − ε < θj −

ε

2
< θj < θj +

ε

2
< θj + ε < β < β +

ε

2
.

Thus

S(α, β) ⊂ {S(α− ε

2
, θj −

ε

2
) ∪ S(θj − ε, θj + ε) ∪ S(θj +

ε

2
, β +

ε

2
)}. (2.5)

For any a ∈ C with at most one exception, we deduce from Lemma 1 that

lim sup
r→∞

log n(S(α− ε
2 , θj −

ε
2 , r), f = a)

log r
<
n+ 2

2
, (2.6)

and

lim sup
r→∞

log n(S(θj + ε
2 , β + ε

2 , r), f = a)

log r
<
n+ 2

2
. (2.7)

Therefore, combining (2.4), (2.5), (2.6) and (2.7) we have

lim sup
r→∞

log n(S(θj − ε, θj + ε, r), f = a)

log r
≥ n+ 2

2
.

Thus it follows from the definition of Borel direction that arg z = θj must be a Borel
direction of f(z). It is not hard to see from Lemma 1 (4) that the accumulation lines
of zero-sequence of f(z) only come from these rays arg z = θj , j = 0, 1, 2, · · · , n+1.
This implies that the set of accumulation lines of zero-sequence is a subset of the
Borel directions of f(z). The proof of Theorem 1 is completed.

Remark 1. However, it is possible that a Borel direction of solution of the
equation (1.1) is not its accumulation line of zero-sequence. The following example
shows that fact.

The well-known Airy differential equation

f ′′ − zf = 0 (2.8)

possesses a solution f0 such that the zeros of f0 are all real and negative(see [12],
p.413–415 ). It is easy to see that arg z = 0, arg z = 2π

3 and arg z = 4π
3 are all the

Borel directions of f0.
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In order to state our second result on the angular distributions of the zeros of
solutions of (1.1), we need some more preparations.

For the solutions of the equation (1.1), where P (z) = anz
n + · · · + a0. In [3],

Gundersen proved that either f has only finitely many zeros, or the exponent of
convergence of the nonreal zero-sequence of f equal to n+2

2 when n = 4k + 2 for
some non-negative integer k. We next discuss the exponent of convergence of the
nonreal zero-sequence of a solution of (1.1). In order to state our results, we need
give another definition. It follows Lemma 1 that the set of the accumulation lines
of zero-sequence of a solution f 6≡ 0 is the subset of {θj , 0 ≤ j ≤ n+ 1}.

Definition 2. Let f(z) be a nontrivial solution of the equation f ′′+P (z)f = 0,
where P (z) = anz

n + · · ·+ a0 is a polynomial of degree n. We denote by p(f) the
number of the rays arg z = θj(j = 0, 1..., n+ 1) which are not accumulation lines of
zero-sequence of f(z).

Remark 2. It follows from Lemma 1(2) that p(f) must be an even number.

Theorem 3. Let f(z) be a nontrivial solution of equation f ′′ + P (z)f = 0,
where P (z) = anz

n + · · ·+ a0 is a polynomial of degree n with Im (an) 6= 0. Then
either f(z) has only finite zeros, or the exponent of convergence of the nonreal zero-
sequence of f(z) is n+2

2 . In particularly, when n = 2k for some non-negative integer
k, then either f(z) has only finite zeros, or f(z) has at least two accumulation lines
of nonreal zero-sequence.

Proof. Suppose that f(z) is a nontrivial solution of equation (1.1). Note that
the accumulation lines of zero-sequence of f(z) come only from those rays arg z =

θj = 2jπ−arg(an)
n+2 (j = 0, 1, ..., n+ 1). Since Im(an) 6= 0 and

arg(an) = 2jπ − (n+ 2)θj ,

for j = 0, 1, 2, · · · , n+1. It is easy to deduce that none of these rays arg z = θj is the
positive or the negative real axis. Now suppose that f(z) has infinitely many zeros
in the complex plane. For any ε(0 < ε < c), where c = min0≤j≤n+1{|θj |, |θj − π|},
it follows from Lemma 1 that there exists at least one ray arg z = θj0 such that, as
r →∞,

n(NR)(S(θj0 − ε, θj0 + ε, r), f = 0)

= n(S(θj0 − ε, θj0 + ε, r), f = 0)

= (1 + o(1))
4
√
|an|

π(n+ 2)
r

n+2
2

holds, where n(NR)(S(θj0 − ε, θj0 + ε, r), f = 0) is the number of nonreal zeros,
counting multiplicities, of f(z) in the region S(θj0 − ε, θj0 + ε, r) = {z : θj0 − ε ≤
arg z ≤ θj0 +ε, 0 < z ≤ r}. From the definition of exponent of convergence, we have
that

λ(NR)(f) = ρ(f) =
n+ 2

2
,

where λ(NR)(f) is the exponent of convergence of nonreal zero-sequence of f(z).
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Now assume that n = 2k and that f(z) has infinitely many zeros in the complex
plane. Since both p(f) and n + 2 are even numbers, we see easily that f has at
least two accumulation lines of nonreal zero-sequence. The proof of Theorem 3 is
completed.

Remark 3. There are many examples which show that the condition Im(an) 6= 0
in Theorem 3 is necessary. For any given real constant a > 0 and b ≥ 0, Gundersen
in [5] proved that there exists an infinite sequence of real constants λk satisfying
λ0 < λ1 < λ2 < · · · < λk < · · · , where λk → ∞ as k → ∞, such that for each λk,
the equation

f ′′ + (az4 + bz2 − λk)f = 0 (2.9)

possesses a solution f = fk(z) that has an infinite number of real zeros and at most
a finite number of nonreal zeros.

3. Complex Oscillations of Two Linearly Independent Solutions of (1.1)

In this section, we prove Theorem 2. Let f1 and f1 be two linearly independent
solutions of (1.1) and P (z) = anz

n + · · · + a0 is a polynomial of degree n. Set
E = f1f2. Suppose that θ ∈ [0, 2π) such that λθ(E) = n+2

2 . It follows from
Theorem 1 that there must exist some integer j0 : 0 ≤ j0 ≤ n + 1 such that

θ = θj0 = 2j0π−arg(an)
n+2 . By using Lemma 1, we see that f1 or f2 must blow up

exponentially in Sj0−1 and Sj0 . Without loss of generality, we assume that f1
blows up exponentially in the sectors Sj0−1 and Sj0 . Now we treat the following
three cases.

Case 1. The solution f2 blows up exponentially in Sj0 and decays to zero expo-
nentially in Sj0−1. In this case, both f1 and f2 blow up exponentially in the sector
Sj0 , so we need only to consider the behaviors of f1 and f2 in Sj0+1. Now we claim
that it is impossible that both f1 and f2 decay to zero exponentially in common
sector. To prove our claim, without loss of generality, we suppose that f1 and f2
decay to zero exponentially in S0. Set h = f2

f1
. We arbitrarily choose a constant

b ∈ C̄, such that b is not a deficient value of h. Set f = f2 − bf1. It is easy to
see that f is a solution of the equation (1.1), and 0 is not a deficient value of f .
Therefore, f blows up exponentially in every sector Sj (j = 0, 1, 2, · · · , n+ 1)(see,
[3, Lemma 3]). This contradicts the fact that f decay to zero exponentially in S0.
The claim is proved.

Now we return to the proof of the theorem. It follows from Lemma 1(2) that
one of the functions f1 and f2 must have λθj0+1

(fi) = n+2
2 if fi(i=1 or 2) blows up

exponentially in Sj0+1. This implies that

λθj0 (E) = λθj0+1(E) =
n+ 2

2
.

Set φ = θj0+1(if j0 = n+ 1, set θj0+1 = θ0), we have

|θ − φ| = |θj0+1 − θj0 | =
2π

n+ 2
.
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Case 2. The solution f2 decays to zero exponentially in Sj0 and blows up expo-
nentially in Sj0−1. In this case both f1 and f2 blow up exponentially in the angular
region Sj0−1. As we did in case (1), we have λθj0−1(fi) = n+2

2 if fi(i=1 or 2) blows
up exponentially in Sj0−2.

Therefore it is easy to see that

λθj0 (E) = λθj0−1(E) =
n+ 2

2
.

Set φ = θj0−1(if j0 = 0, set θj0−1 = θn+1), we have

|θ − φ| = |θj0 − θj0−1| =
2π

n+ 2
.

Case 3. The solution f2 blows up exponentially in Sj0−1 and Sj0 . In this case,
we have

λθj0 (E) = λθj0−1
(E) = λθj0+1

(E) =
n+ 2

2
.

The proof of Theorem 2 is completed.
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