
Advances in Electrical and Computer Engineering                                                                      Volume 11, Number 3, 2011

  71

1Abstract— The modern power systems consist of many 
interconnected synchronous generators having different inertia 
constants, connected with large transmission network and ever 
increasing demand for power exchange. The size of the power 
system grows exponentially due to increase in power demand. 
The data required for various power system applications have 
been stored in different formats in a heterogeneous 
environment. The power system applications themselves have 
been developed and deployed in different platforms and 
language paradigms. Interoperability between power system 
applications becomes a major issue because of the 
heterogeneous nature. The main aim of the paper is to develop 
a generalized distributed model for carrying out power system 
stability analysis. The more flexible and loosely coupled JAX-
RPC model has been developed for representing transient 
stability analysis in large interconnected power systems. The 
proposed model includes Pre-Fault, During-Fault, Post-Fault 
and Swing Curve services which are accessible to the remote 
power system clients when the system is subjected to large 
disturbances. A generalized XML based model for data 
representation has also been proposed for exchanging data in 
order to enhance the interoperability between legacy power 
system applications. The performance measure, Round Trip 
Time (RTT) is estimated for different power systems using the 
proposed JAX-RPC model and compared with the results 
obtained using traditional client-server and Java RMI models.

Index Terms— JAX-RPC, Power Systems Stability, SOAP, 
WSDL, XML

I. INTRODUCTION

The existing power system operations are primarily 
desktop applications and implemented in parallel processing 
super computers. The simulation package for analysing the 
power system stability problems are programmed in
FORTRAN or C. Later, these paradigms have been replaced 
using object oriented and component based technologies. In 
these technologies, the power system data and operations are 
encapsulated as objects that can interact with each other by 
sending messages between them to solve power system 
applications.

To monitor the power system operations, Supervisory 
Control and Data Acquisition (SCADA) and Energy 
Management System (EMS) are being developed. The 
systems provided by different power sector vendors run on 
different hardware and software platforms. The conventional 
client-server architecture for power system analysis is 
complicated, memory management is difficult, source code 
is bulky, and exception-handling mechanism is not so easy.

Monika [1] presented parallel implementation of the 
transient stability problem on Cluster of Workstations. All 
data partitioning and parallelization strategies are explored 
and classified using parallel-in-space approaches. Ramesh 
[2] described the emerging role of distributed computing for 
on-line Energy Management System (EMS) applications in 
power systems. He presented remarkable developments 
towards standardization in both hardware and software for 
distributed computing.

Hong Chen [3] developed a Web-based computing, which 
is based on Internet protocol, distributed processing and 
Java paradigm for the analysis of large scale interconnected 
power systems.  Kwok-Hong Mak [4] illustrated the
significant benefits in migrating SCADA systems to TCP / 
IP and Ethernet networking. Many power system operators 
already have the technical infrastructure, capability and 
capacity to develop a successful migration of SCADA to 
TCP / IP networking infrastructure. Chen [5] had an attempt 
to create a completely Web-based, platform-independent, 
power system simulation package with various analyses 
distributed in a clustered environment. Furthermore, it was 
stated that new software technologies will be incorporated 
as they become widely accepted, such as the eXtensible 
Markup Language (XML) to be used as the common format 
for interchanging data between the tiers. Keinosuke 
Matsumoto [6] proposed the communication network model 
of power trading systems using CORBA and Java RMI that 
can flexibly correspond to various network environments. 
The response time of these systems are more compared with 
other conventional systems. 

Quirino Morante [7] proposed a distributed architecture 
based on Web and Grid computing for Power Systems 
Analysis. The proposed grid middleware platform uses a 
broker system for reserving on-demand computational 
resources. The proposed architecture does not support the 
integration with other power systems applications. Chen [8] 
has developed a CORBA based power quality monitoring 
system for sharing the information between different 
applications operating in different phases of power quality 
measurements and analyzes. This approach can only be 
successful if the interfaces are accepted by the 
standardization bodies such as IEEE and IEC, and they are 
universally adopted by all vendors. Nithiyananthan [9], [10] 
developed an effective RMI based distributed models for 
monitoring the load flow and economic load dispatch of 
multi area power systems. They have been tried out in 
overcoming the overheads associated with sequential power 
system economic load dispatch computation. Afaneen [11] 

An Effective Distributed Model for Power 
System Transient Stability Analysis

Balasingh Moses MUTHU1, Ramachandran VEILUMUTHU2, Lakshmi PONNUSAMY3

1Department of Electrical Engineering, Anna University Tiruchirappalli, Tamilnadu, 620024, India
2Department of Information Science and Technology, Anna University, Chennai, 600025, India 

3Department of Electrical and Electronics Engineering, Anna University, Chennai, 600025, India                                                                                  
moses@tau.edu.in, rama@annauniv.edu, p_lakshmi@annauniv.edu

1582-7445 © 2011 AECE

Digital Object Identifier 10.4316/AECE.2011.03012

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 21:34:55 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 11, Number 3, 2011

72

developed multi-agent technology for monitoring and 
controlling the electrical network to enhance power system 
transient stability. The instability of the power system after a 
three phase fault at bus bar was identified using the 
prediction agent and the stability of system is established by 
applying the control agents. Shekhar [12] demonstrated the 
efficient application of Web services in the SCADA systems 
in .NET platform using Multi Media Interface (MMI) and 
Wireless Application Protocol (WAP). The platform 
provides highly desirable features for modern executives so 
that they can avail the vital data at any place in the world 
without carrying much of computer hardware and software.

The software architecture had changed from central to 
distributed and distributed to Web-based, and now to Web 
service environment. Since the existing power system is 
highly complex and widely distributed, it is needed to 
develop service oriented open system made up of a variety 
of power system services operating on dissimilar platforms, 
so that more extensive data and applications can be shared 
easily and flexibly. The proposed JAX-RPC (Java API for 
XML based Remote Procedure Call) model for carrying out 
power system stability analysis will provide powerful set of 
features based on open standards like XML, SOAP, WSDL..

II. XML DATA REPRESENTATION FOR TRANSIENT 

STABILITY ANALYSIS

The data exchange and information sharing are the major 
problems in power system applications [13]. Nowadays, 
Energy Management system (EMS) and Database 
Management System (DMS) applications are based on 
standardized software and hardware platform. The data have 
been stored in different formats and are distributed in a 
heterogeneous environment. In this paper, an XML based 
model has been proposed for solving the data exchange 
problem between of heterogeneous systems and it is shown 
in Fig. 1. Different enterprises like generation, transmission 
and distribution have many isolated server and information 
management systems which are constructed with different 
core technologies make the data exchange complicated 
between the power system applications. Under these 
conditions, power sector needs a simple, effective and 
inexpensive way to realize the data sharing and exchange 
between applications. IEEE recommended common data 
format for exchanging power system data is limited to static 
data and not suitable for storing dynamic information [14]. 

Rapidly growing power sector environment changes their 
data structure or adds new data structure whenever new 
participants join in the power network. The data exchange 
must have a protocol which makes the data meaningful for 
each power system operation. The XMLised representation 
of power system data offers reliable data exchange between 
legacy power system applications. All the data required for 
stability analysis are stored in Oracle database. The Stability 
Service Data Objects (SSDO) is a container for information 
designed to promote open standards and interoperability.

Certain data are common to all power system 
applications. All clients in the interconnected power systems 
have to know the general specification of the system. The 
base value of the system, number of buses, number of 
generators, transmission lines, transformers, acceleration 
factor and tolerance value are classified as general data.

Figure 1. Conversion of Power System Data into XML document

The XML document generated from Oracle database for 
representing general data for power system analysis is as 
follows: 

<general>
  <basemva>Base value of the System</basemva>
  <nb>Number of Buses</nb>
  <ng>Number of Generators</ng>
  <nl>Number of Lines</nl>
  <nt>Number of Transformers</nt>
  <alpha>Acceleration factor</alpha>
  <tolerance>Tolerance  value</tolerance> 
</general>

The power system line data includes transformer line 
rating which is essential for reliable planning and operation 
of the interconnected systems. This rating incorporates 
values for resistance, reactance, off line charging admittance 
and acceptable electrical loading on equipment before, 
during and after system disturbances. The way in which the 
lines are connected between the buses is also stored in the 
line data. The transmission line data would have to be 
updated based on weather and seasonal conditions. The 
XML document obtained from Oracle database for 
representing line data required for stability analysis is as 
follows:  

<linedata>
   <sb>Sending Bus</sb>
   <rb>Receiving bus</rb>
   <r>Resistance of the line</r>
   <x>Reactance of the line</x>
   <b>Off line Charging admittance</b>
   <rating> Maximum rating of the line</rating> 
 </linedata>

The generation capacity and the consumer demand are 
major factors for analysing the stability of the power 
systems [15]. The power system bus data includes 
magnitude and phase angle of voltages, real and reactive 
power flow on the interconnected systems and the rating of 
shunt capacitor. The operating limits of the buses have to be 
represented for the violations of the power system 

  Stability Service Data Object          
                                (SSDO)

General 
Data

Line Data Bus Data

Synchronous
m/c Data

XmlGen.javaa XmlLine.java XmlBus.java XmlSyn.java

GenData.xml

LineData.xml

BusData.xml

SynData.xml

<syndata>
     .........
     .......
</syndata>

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 21:34:55 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 11, Number 3, 2011

  73

operations.  
The XML document for representing bus data required 

for stability analysis is as follows:  

  <busdata>
    <slackbus>
          <voltage>Voltage at the bus</voltage>
          <angle>Load angle of the bus</angle>
     </slackbus>
    <generatorbus>

           <mw>Real Power</mw>
           <voltage>Generating Voltage</voltage>
      </generatorbus>
       <loadbus>
              <mw>Real Power</mw>   
              <mvar>Reactive Power</mvar>
       </loadbus>
       <limits unit=mvar>
             <max>Maximum Réactive Power  
                                                          Limit</max>   
             <min>Minimum Réactive Power 
                                                          Limit</min>
       </limits>
</busdata>

The synchronous machine data are essential to ensure 
stable operation of the power systems. The generating 
capability to meet the projected demands is the most 
important factor in the transient stability analysis. The 
synchronous machine data emphasize the values of 
synchronous reactance, synchronous speed, moment of 
inertia, number of poles and damping factor. The XML 
document obtained for representing synchronous machine 
data is as follows: 

<machinedata>
       <xs>Synchronous reactance</xs>
       <w>Synchronous speed</w>
       <n>Number of poles </n>
       <j>Moment of Inertia</j>
       <d>Damping factor</d>
</machinedata>

The conversion of power system data into an XML form 
enables the independency of the data used by various power 
system applications. The proposed XMLised power system 
data representation model significantly reduces the 
engineering efforts required to integrate its data in the Web 
service environment. This ensures interoperability between 
various power system applications in a heterogeneous 
environment.

III. PROPOSED DISTRIBUTED MODEL FOR TRANSIENT 

STABILITY ANALYSIS

The power system transient stability operation is 
represented as a Web service in a distributed environment 
using JAX-RPC. The power system clients communicate 
with stability service endpoints for invoking the stability 
services in JAX-RPC model as shown in Fig. 2. The API for 
JAX-RPC allows the exchange of power system data in 
XML format. The XMLised power system data is attached 

with SOAP message and can be communicated to the 
stability services through Stability Service Descriptors 
(SSDs). The power system client needs only the SSDs to 
access the stability services. 

Figure 2. Implementation of power system stability services in JAX-RPC

The power system client makes a request to a particular 
Stability Service by invoking a Java method, along with 
setting up and passing the required parameters such as 
general data, line data, bus data and machine data and 
receives the appropriate response as the result of method 
invocation. The JAX-RPC runtime maps the Java types to 
standard XML types and forms a SOAP message that 
encapsulates the method call and parameters, then passes the 
SOAP message through the SOAP handlers and then to the 
server-side service port. The JAX-RPC enables exchange of 
SOAP requests and responses through an API that hides the 
details about the SOAP message to the power system client. 
The power system client can access the deployed stability 
services using a Stability Service Endpoint Interface (SSEI). 
The SSDs have a reference to the SSEI. The SSEI is a 
remote interface that declares the remote methods through 
which the power system client interacts with the stability 
services. 

IV. IMPLEMENTATION OF PROPOSED DISTRIBUTED MODEL

The various stages involved in the implementation of 
proposed JAX-RPC model for Stability analysis are data 
representation, defining stability service endpoint interface, 
service configuration, service description, service mapping, 
service deploying and invoking. 

A.  Stability Service Endpoint Interface

In JAX-RPC, the stability service endpoint interface must 
extend the java.rmi.Remote interface. All methods 
implemented by this interface must throw a 
java.rmi.RemoteException. The method parameters must be 
JAX-RPC-supported Java types. The service interface 
provides the contract between the power system client and 
server as shown in Fig. 3. The power system clients can 

Power System 
Client

Stability Service 
Implementation

1. Maps Java to
    XML
2. Forms SOAP
    message

1. Maps XML   
    to  Java
2. Disassemble
   SOAP        
    message

Outgoing
SOAP 

Handler
actions

Incoming
SOAP 

Handler
actions

1. Maps Java    
     to  XML
2.  Forms 
     SOAP
     message

1. Maps XML   
    to Java
2. Disassembles
    SOAP   
    message

1. Outgoing   
SOAP 
Handler
2. Container    
    services

1. Incoming  
     SOAP   
      Handler 
2.  Container
      Services

Stability 
Service 

Port

INTERNETSOAP Message

Java call,
parameter

Return 
Value

Return 
Value

Java call,
parameter

JAX-RPC client-side runtime JAX-RPC server-side runtime 

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 21:34:55 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 11, Number 3, 2011

74

communicate to the stability service providers through 
stability service endpoints.

Figure 3. Stability Service Interface and Implementation

The Pre-Fault, During-Fault, Post-Fault and Swing curve 
services are included in the service endpoint interface. The 
service implementation class actually defines the methods 
declared in the service endpoint interface. The service 
endpoint interface for computing swing curve is as follows:

package TSARPC;
public interface tsaInt extends Remote    
                            // transient stability analysis     interface tsaInt

     {
        public String computeSwing( ) throws                                                                                                                                          
                                                    RemoteException ;
      }

The power system clients need not be aware of any 
underlying technology or programming paradigm which the 
service is using. The service interface encapsulates all 
aspects of the network protocol used for communication 
between clients and service provider. All other services are 
declared similarly.

B.  Configuring the Stability Service

The configuration of power system stability services are 
as follows:

<?xml version="1.0" encoding="UTF-8"?>
<configuration xmlns="http://java.sun.com/
                                       xml/ns/jax-rpc/ri/config">
        <service
              name="RPCStability"
              targetNamespace="urn:TSA"
              typeNamespace="urn:TSA"
              packageName="TSARPC">
             <interface name="TSARPC.tsaInt"/>
       </service>
</configuration>

This configuration file contains the information and 
details about the deployed stability services  and metadata 
such as their service name (RPCStability), package name 
(TSARPC), namespace (TSA) and the interface (tsaInt). 
This configuration file is used to create the stability service 
descriptors and mapping information about the services in 
order to communicate between power system client and 
stability service provider.

C.  Stability Service Description 

 The power system applications are implemented using 
various language paradigms. In JAX-RPC, the WSDL is 
used as the metadata language for defining the stability 
services. It describes how the service end point and client 

communicate with each other. WSDL is capable of 
describing services that are implemented using any language 
and deployed on any platform. It represents information 
about the interface and semantics of how to invoke a 
service. It contains the information about the data type, 
binding and address information for invoking the services 
from the service provider. The swing curve stability service 
is described as follows:

<definitions name="RPCStability" 
                targetNamespace="urn:TSA" 
                                        xmlns:tns="urn:TSA"-->    
      <types>
          <schema targetNamespace="urn:TSA" 
                                             xmlns:tns="urn:TSA">
          </schema>
          <complexType name="ArrayOfdouble"> 
          </complexType>
      </types>
      <message name="tsaInt_computeSwing"/>  
           <part name="result" type="xsd:string"/>  
       </message>
       <portType name="tsaInt">
            <operation name="computeSwing”>
                <input                                 
                  message="tns:tsaInt_computeSwing"/>
               <output   
                  message="tns:tsafacecompute
                                                    SwingResponse"/>
           </operation>
        </portType>
        <binding name="tsaIntBinding" 
                                                     type="tns:tsaInt">
           <soap:binding transport=
                 "http://schemas.xmlsoap.org/soap/  
                                                            style="rpc"/>
         </binding>
        <service name="RPCStability">
           <port name="tsaIntPort"  
                                   binding="tns:tsaIntBinding">
           <soap:address   location="http://
                           loacalhost:8080/stability"/></port>
       </service>
</definitions>

The service descriptor document consists of several key 
structural elements for describing stability service. The 
<definitions> element defines the name of the service as 
‘RPCStability’ and declares the namespace as ‘TSA’. The 
<types> element defines the schema and data types that 
would be used to describe the stability data. The <message> 
element represents the name of the method to be invoked 
and the response type. The <portType> element provides the 
abstract definition of the operation (tsaInt) of the service, 
request and response messages. The <binding> element 
specifies a concrete protocol (SOAP) used for representing 
messages. The <service> element represents the port name 
(tsaIntport) and location of the services. 

WSDL to JAVA
ServiceEndpoint 

Interface
(tsaInt.java)

Javax.rmi.Remote

Stability Service 
Implementation class

(tsaimpl.class)

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 21:34:55 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 11, Number 3, 2011

  75

D.  Configuring the Stability Service

In the traditional distributed environment paradigm such 
as RMI, the method call and the associated parameters are 
marshalled (i.e.) converted into a wire format while clients 
try to invoke a remote method. At the server end, the
marshalled data has been unmarshalled (i.e.) converted back 
to original method call and parameters. Marshalling and 
unmarshalling will be applicable only to Java paradigm and 
confine to RMI framework.  Since the existing power 
system applications are implemented in different language 
paradigms, they need a common serialization / de-
serialization of information for invoking the remote 
services. 

The common format has to be flexible and interoperable 
in a heterogeneous environment. In this model, all the 
stability service objects are translated and mapped into 
XML.  The mapping file describes the elements like 
package, type, port, method, and endpoint.  While invoking 
the stability service endpoint interface method, the method 
call and its parameters are mapped in to XML and sent 
through SOAP communication protocol. When received at 
the client or server end, the request / response parameters 
must be mapped from XML to their proper types or objects. 
While WSDL converts the java interface to XML form, the 
mapping.xml describes the conversion from XML to Java 
objects and vice versa.

E.  Deploying the Stability Services

In the proposed model, Tomcat Web server is used for 
deploying the stability services. The stability services have 
been deployed and packaged into Servlet container as shown 
in Fig. 4.

Figure 4. Deploying and Configuring the Stability Services

The service endpoint interface, service implementation 
class, and web.xml file, along with other generated artifacts 
and configuration properties file are bundled into a standard 
WAR file called as “stablity.war”. In JAX-RPC stubs and 
ties are classes that enable communication between a service 
endpoint and client. The stub class resides on the client side 
(i.e.) between the client and the JAX-RPC client runtime 
system. The stub class is responsible for converting a 
request from a JAX-RPC client to a SOAP message and 
sending it across to the server using HTTP protocol. It also 
converts the response from the server, which it receives in 

the form of a SOAP message, to the format required by the 
client. These types of SOAP communication make the entire 
system interoperable.

Similarly, the tie class resides on the server side, between 
the service endpoint and the JAX-RPC runtime system. A 
stub is a local object that acts as a proxy for the service 
endpoint. The WAR file is then deployed on to the Servlet 
container. Successful deployment results in an URL 
http://192.168.1.1:8080/servlet-examples/servlet/stability
(endpoint). Any power system client can use the endpoint 
address for accessing the stability services

F.  Invoking the stability Services

An effective Dynamic Invocation Interface (DII) model is 
proposed to invoke the power system stability services 
deployed in remote server. The stability service endpoint is 
available to any type of client, regardless of the language or 
platform used. A power system client can invoke the method 
in the endpoint interface using Dynamic Invocation 
Interface model as shown in Fig. 5. The DII is a call 
interface that supports programmatic creation and 
invocation of a RPC request.

Figure 5.  Invoking Stability Services

The following code delineates how the power system 
stability services being invoked by the power system client 
using Dynamic Invocation Interface.

ServiceFactory factory
                                  =ServiceFactory.newInstance(); 
Service service =  factory.createService(new                                                    
                                             QName(stabilityService)); 
QName port = new QName(tsaPort);
Call call = service.createCall(port);
call.setTargetEndpointAddress                                              
                                ("http://localhost:8080/stability");    
QNAME_TYPE_STRING = new 
                                        QName(NS_XSD, "String");
 call.setReturnType(QNAME_TYPE_STRING);  
 call.setOperationName( new QName(BODY_
                 NAMESPACE_VALUE,"computeSwing"));
 String result = (String)call.invoke();
 System.out.println(result);

Using DII, a client can call a service or a remote 
procedure on a service without knowing the exact service 
name or the procedure's signature ahead of time.  The power 
system client can discover the information at runtime, and 
can dynamically look up the service and its remote 
procedures. 

Power 
System 
Client

JAX
-

RPC
API

Dynamic 
Invocation 
Interface 
(DII)

JAX-RPC 
Run-Time

Handler Chain

Deployment 
XML

SOAP 
HTTP

Stability 
Services

JAX
-

RPC
API

Stability Services
1. Y bus service
2. Pre-Fault Service
3. During-Fault service
4. Post-Fault Service
5. Swing Curve Service

tsaInt.java
stabilityImpl.java

a

WSDL

Java

stub file

StabilityClient.class

Power System 
Client 

StabilityService_Config.properties 
configuration file

tie file

WAR 
file

Servlet Container

JAX-RPC Runtime

tsaInt.class
StabilityImpl.class
Web.xml

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 21:34:55 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 11, Number 3, 2011

76

V. PERFORMANCE ANALYSIS

The major factor that influences the performance of the 
proposed distributed model is the Round Trip Time (RTT). 
RTT is the time that elapses between the initiations of a 
method invocation by the power system client until the 
results are returned to the client. The power system transient 
stability analysis is being carried out for 6, 14 and 39 bus 
systems. The performance measure, Round Trip Time 
(RTT) is estimated for different power systems using the 
different models such as Client / Server, Java RMI and JAX-
RPC. The RMI uses the JRMP (Java Remote Method 
Protocol), which uses TCP/IP for communication. RMI 
client requires an open port to communicate with RMI 
server. When there is a firewall between the client and the 
server, RMI communication is blocked by default. This can 
be a major problem, particularly with applications, which 
require connectivity and interoperability over different 
LANs, each secured by its own firewall. The Java-RMI is 
more efficient with regard to the handling of individual 
packets. In an Intranet, the resulting large number of small 
packets may cause congestion; on the Internet, there is 
greater chance of packet loss. Because the methods used for 
performance evaluation did not do any processing, the round 
trip time expresses the overhead of remote method 
invocation. The performance analysis of the different 
distributed models has been carried out with respect to 
round trip time and the numbers of clients invoking the 
services and the results are shown in Fig. 6.

Figure 6. Number of clients vs RTT

JAX-RPC uses the XML-based SOAP communication 
between remote services.  SOAP builds on top of existing 
Internet protocols, such as HTTP, FTP or SMTP. Therefore 
SOAP can transverse firewalls seamlessly, because firewalls 
will treat SOAP messages similarly as other HTTP (or FTP, 
SMTP) messages, respectively to the transport protocol used 
for SOAP messages. The JAX-RPC enables the 
communication over the XML-based SOAP protocol and 
thus enables interoperability with other Web services, which 
do not have to be developed in Java. The XML-based 
protocol for communication makes the performance of Web 
services will be lower than the performance of RMI.  But 
this overhead will be inevitable due to enhancement in the 
interoperability between power system applications in 
heterogeneous environment. Each formula should occupy 
one line. Consecutive numbers should be marked in 
brackets.

VI. CONCLUSION

An effective distributed model has been developed for 
representing transient stability analysis of a large 
interconnected power system and tested for a sample of 6, 
14 and 39 bus systems. This proposed model is scalable for 
any number of power system clients and the stability 
services can be invoked without any limitation in this Web 
service environment. Based on the performance analysis, the 
system provides excellent scalability and has a capacity to 
meet the huge computation requirement, which is suitable to 
carry out transient stability analysis for large interconnected 
power systems. The various power system services can be 
plugged into this model and the services are made available 
anytime and anywhere for the power system operations.

REFERENCES

[1] Monika ten Bruggencate, Suresh Chalasani,“Parallel Implementations 
of the Power System Transient Stability Problem on Clusters of 
Workstations,” Int. Conf. High Performance Networking and 
Computing, Article no 34, 1995.

[2] V.C. Ramesh, “On Distributed Computing for On-Line Power System 
Applications,” Int. J. Electrical Power & Energy Systems, vol. 18, no. 
8, pp. 527-533, 1996. 

[3] Hong Chen, Claudio A. Canizares, Aajit Singh, “Web Based 
Computing for Power System Applications,” North American Power 
Symposium, California, 1999. 

[4] Kwok-Hong Mak and Barry Holland, “Migrating Electrical Power 
Network SCADA Systems to TCP / IP and Ethernet Networking”, 
Power Engineering Journal, vol. 16, no. 6, pp. 305-311, 2002.

[5] S. Chen, F.Y. Lu, “Web-Based Simulations of Power Systems,” IEEE 
Trans. Computer Application in Power, vol. 15, no. 1, pp. 35-40, 
2002.

[6] Keinosuke Matsumoto, Tomoaki Maruo, Naoki Mori, Masashi 
Kitayama and Yoshio Izui, “A Communication Network Model of 
Electric Power Trading Systems using Web Services,” IEEE power 
Tech conf.  Proceedings, vol. 3, pp. 1-6, 2003.

[7] Quirino Morante, Alfredo Vaccaro, Domenico Villacci and Eugenio 
Zimeo, “A Web based Computational Architecture for Power Systems 
Analysis,” Bulk Power System Dynamics and Control - VI, August 
22-27, 2004.

[8] S. Chen, “Open Design of Networked Power Quality Monitoring 
Systems,” IEEE Trans. Instrumentation and Measurement, vol. 53, no. 
2, pp. 597-601, 2004.

[9]  K. Nithiyanandan and V. Ramachandran, “RMI Based Multi-Area 
Power System Load Flow Monitoring,” Iranian J. Electrical and 
Computer Engineering, vol. 3, no. 1, pp. 28-30, 2004.

[10] Kannan Nithiyanandan and Velimuthu Ramachandran, “RMI Based 
Distributed Model for Multi–Area Power System On–Line Economic 
Load Dispatch,” J. Electrical Engineering, vol. 56, no. 1-2, pp. 41–44, 
2005. 

[11] Afaneen A. Abood, Ahmed N. Abdalla and Shant K. Avakian, “The 
Application of Multi-Agent Technology on Transient Stability 
Assessment of Iraqi Super Grid Network”, American J. Applied 
Sciences, vol. 5, no. 11, pp 1494-1498, 2008.

[12] M. Shekhar, S.S.K. Kelapure, Sastry Akellay and J. Gopala Raoz, 
“Application of Web Services in SCADA Systems,” Int. J. Emerging 
Electric Power Systems, vol. 6, no. 1, pp 1-15, 2006.

[13] Jun Zhai, Jianfeng Li, Qinglian Wang, “Using Ontology and XML for 
Semantic Integration of Electricity Information Systems,” 3rd Int. 
Conf.  Electric Utility Deregulation and Restructuring and Power 
Technologies, pp. 2197-2201, 2008. 

[14] F. Milano, L. Vanfretti, “Open Model for Exchanging Power System 
Data”, presented in IEEE Power & Energy Society General Meeting, 
2009

[15] P. Kundur, J. Paserba, V. Ajjarpu, G. Anderson, A. Bose,                  
C. Canizares, N. Hatziargyriou, D. Hill, A. Tankovie, C. Taylor,    
T.V. Cutsem  and V. Vittal, “Definition and Classification of Power 
System   Stability,” IEEE Trans. Power System, vol. 19, no. 3, pp. 
1387-1401, 2004.

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 21:34:55 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]


