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CONSTRUCTION OF GAUSSIAN QUADRATURE
FORMULAS FOR EVEN WEIGHT FUNCTIONS

Mohammad Masjed-Jamei, Gradimir V. Milovanovic*

Instead of a quadrature rule of Gaussian type with respect to an even weight
function on (—a,a) with n nodes, we construct the corresponding Gaussian
formula on (0, a®) with only [(n+1)/2] nodes. Especially, such a procedure is
important in the cases of nonclassical weight functions, when the elements of
the corresponding three-diagonal Jacobi matrix must be constructed numeri-
cally. In this manner, the influence of numerical instabilities in the process of
construction can be significantly reduced, because the dimension of the Jacobi
matrix is halved. We apply this approach to Pollaczek’s type weight func-
tions on (—1, 1), to the weight functions on R which appear in the Abel-Plana
summation processes, as well as to a class of weight functions with four free
parameters, which covers the generalized ultraspherical and Hermite weights.
Some numerical examples are also included.

1. INTRODUCTION

Let P be the set of all algebraic polynomials and P,, be its subset of degree
at most n. In this paper, we consider the Gauss-Christoffel quadrature rules with
respect to the even weight function  — w(z) = w(—=z) on a symmetric interval
(—a,a) for a > 0,

1) " f@w) de = 3 wef (@) + Balfiw),
—a k=1

where R, (f;w) = 0 for each f € Py,—1 and they are automatically exact for all
odd functions.
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Suppose that the moments u = ffa rFw(x) dz, exist and are finite for any
k=0,1,..., and also py = ffaw(a:) dz > 0. Then the quadrature rules (1) exist
for each n € N as well as the corresponding orthogonal polynomials. It is well
known that por+1 = 0 for any k£ = 0,1,..., and the monic symmetric polynomials
7 (x) orthogonal with respect to the even weight w on (—a, a) satisfy the three-term
recurrence relation (cf. [12, p. 102])

(2) 1 (z) = xmp(z) — Bemr—1(x), k=0,1,...,

with 7_1(x) =0, mo(x) =1 and m(z) =«

The recurrence coefficients Si in (2) can be computed from the moments in

terms of Hankel determinants

Ho  p1 ottt k-1
A, = u.1 H2 Pk 7
He—1 Mk H2k—2
by
Bk:% (k>1) with Ag=1.
k

Although Sy in (2) may be arbitrary, it is sometimes convenient to define it as
Bo = po = ffa w(z) dz. By noting the definition

= [ " p@a(euw(@) dz ad [p] = Vo),

one can prove that the norm of 7, equals to

A,
Imall = v/BoBr - B = | 5

For instance, the first few monic symmetric polynomials 7 in terms of mo-
ments are as follows

2 M2
T2(X = Tr — —
(x) o’
7'(3(1') = xg_&xv
M2
2
6140 — 42 612 —
m(z) = 4 Hek #l;szr#u ﬂg,
Hapbo — 13 Hafbo — 13
_ _ 2
m5(z) = L5 _ H8H2 ueg4x3+usu4 ugx.
Mot — My Hel2 — My

A standard method for calculating the nodes z; and the weight coefficients
(Christoffel numbers) wy, in the quadrature (1) is based on their characterization
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via an eigenvalue problem for the Jacobi matrix of order n associated with the even
weight function x — w(z). Thus, the nodes z;, are the eigenvalues of the symmetric
tridiagonal Jacobi matrix (cf. [12, pp. 325-328])

o uE o -
VB 0 VB

3) In(w) = VB 0 ;

6n—1
O ﬁnfl 0 .
and the weight coefficients wy, are given by wy = 50?);3,1 (k=1,...,n), where vy 1
is the first component of the eigenvector vi (= [vg1 ... vkn]T) corresponding to

the eigenvalue xy, normalized such that v vy = 1. This popular method is called
the Golub-Welsch procedure [8].

Unfortunately, for many weight functions the coefficients S in (2) are not
explicitly known. In such cases, the corresponding polynomials 7 are known as
strong non—classical orthogonal polynomials, and their recursion coefficients must
be constructed numerically from the moment information. Such problems are very
sensitive with respect to small perturbations in the input data. Fortunately, in the
eighties of the last century, Walter Gautschi developed the so-called constructive
theory of orthogonal polynomials on R, with effective algorithms for numerically
generating the first n recursion coefficients (the method of (modified) moments,
the discretized Stieltjes—Gautschi procedure, and the Lanczos algorithm), which
allow us to compute all orthogonal polynomials of degree < n by a straightforward
application of the three-term recurrence relation. A detailed stability analysis of
these algorithms as well as several new applications of orthogonal polynomials are
also included in the previously mentioned theory. The basic references are [6, 7, 15].

Because of w(—z) = w(z) on (—a,a), the nodes in the quadrature sum

Qn(fiw) == wyf(x)
k=1

in (1) are symmetrically distributed with respect to the origin, and their weight
coeflicients are mutually equal for symmetric nodes. Taking only positive nodes, de-
noted by xén) and the corresponding weight coefficients by Aén) fork=1,...,m (=

[n/2]), the quadrature sum can be expressed as

S A (f) + f(—aM)), n = om,
(4) Qulfiw):=4 "

AP FO)+ S AP (F@) + f(—a™)),  m=2m+1,
k=1



180 Mohammad Masjed-Jamei, Gradimir V. Milovanovié

where, in the case of odd n, A(()n) (> 0) is the weight coefficient for the node 0.
Here,
0<azi™<.i<al®<a and AL") >0, k=1,...,m.

This paper is organized as follows. In Section 2, we shortly describe a simple
transformation from (—a, a) to (0,a?) and give recurrence coefficients for the corre-
sponding orthogonal polynomials. Section 3 is devoted to the construction of two
quadratures on (0,a?) and their connection with symmetric Gaussian quadratures
on (—a,a). These sections are introductory and record material that is essentially
known (cf. [12], [13]), but needed in subsequent sections. The numerical construc-
tion of Gaussian rules related to the Pollaczek-type weight functions on (—1,1) is
presented in Section 4, together with some numerical examples. Symmetric Gaus-
sian quadrature rules on R, which appear in the Abel-Plana summation formulas,
are considered in Section 5. Finally, a class of symmetric weight functions with
four free parameters that covers many well-known weights on (—1,1) and R are
considered in Section 6.

2. TRANSFORMATION AND PRESERVATION OF
ORTHOGONALITY

Suppose in (1) that x — f(x) is an even function, so that

(5) _a f(z)w(z)dz = 2/0a f(@)w(z)ds = /Oa £V wi\[f) "

On the other hand, according to (1), (4) and (5) we have

(6) I(@l;w1)=/0a f(V) wi}? dt = Qu(f;w) + Ru(f;w),

where two new functions are defined on (0, a?) as

(7) w(t) = and 1 (1) = (V).

Similarly, we need to define

FVE) = 10)

(3) wa(t) == Vtw(Vt) and (t) = .

The orthogonal polynomials with respect to the weight functions wy (t) and
wo(t) defined on (0,a?) can be directly expressed in terms of the polynomials ()
which are orthogonal with respect to the symmetric weight w on (—a,a). In fact,
according to Theorem 2.2.11 of [12, p. 102] we have:

(i) p,(t) := m2,(V/t) are orthogonal with respect to the weight function w () =

w(v)/VE on (0,a2), and
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(ii) gn(t) := m2nt1(v1)/V/t are orthogonal with respect to the weight function

we(t) = \/Ew(\/i) on (0,a?).

Also, these (monic) polynomials satisfy the three-term recurrence relations
(Theorem 2.2.12 in [12, p. 102]),

(9) pl/Jrl(t) - (t - au)pu(t) - bl/pufl(t)v v = 07 ]-a cr
and
(10) QV+1(t) = (t - Cu)Qu(t) - dvqy—l(t)a v=0,1,...,

with po(t) = 1, p—1(t) = 0 and qo(t) = 1, g_1(t) = 0, respectively, where the
coefficients in (9) and (10) are given by

ao =P, av = Pov+ Povt1, by = Pav—1P2,

and
co =P+ B2, ¢ =Povs1 + Pavt2, dv = PovPavyr,

in which () are the same values as in (2). In addition, we can define

bo := /:2 wl(t)dt:/a w(z)dz = po

—a

and
2 2

do ::/ wg(t)dt:/ twl(t)dt:/ 2w(z) dz = po,
0 0

—a
i.e., bo = 50 and do = 6061.

In the case of strong nonclassical weights, the coefficients a,, and b, in (9), as
well as ¢, and d, in (10), must be constructed numerically (cf. [6], [12, pp. 160—
166]).

The orthogonal polynomials p,, (¢) and their recurrence relation (9) are applied
in constructing Gaussian quadratures with respect to the weight function w; (¢) =
w(v/t)/v/'t on (0,a?), while the polynomials g, () and their recurrence relation (10)
are appropriate for constructing Gauss-Radau rules (cf. [12, p. 329]).

By noting these comments and (4), the construction of quadratures (1) will
be significantly simplified. Namely, instead of constructing a quadrature formula
on (—a,a) with n nodes, we construct a quadrature formula on (0,a?) with only
[(n 4+ 1)/2] nodes. In particular, it is very important in the cases of nonclassical
weight functions, when the recurrence coefficients in the three-term relations for the
corresponding orthogonal polynomials must be constructed numerically, before the
procedure for constructing nodes and Christoffel numbers (by the Golub-Welsch
procedure from the Jacobi matrices). In this manner, the influence of numerical
instabilities in the process of construction can be significantly reduced. Also, in
this way, the dimensions of the corresponding Jacobi matrices are halved.
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3. CONSTRUCTION OF TWO RULES OF GAUSSIAN TYPE

We consider now two quadrature formulas for computing the integral I(¢1;w1)
given in (6).

3.1. Gauss-Christoffel quadrature formula with the weight wy(t)

The first formula is a m-point Gauss-Christoffel quadrature formula with
respect to the weight function t — wy (t) = w(v/t)/v/t on (0,a?),

2

a m
(1) Igw) = / g(t)wi(t)dt = B g(r™) + RS (g:wn),

0 k=1
with the nodes 0 < 7'1(m) < e < T»r(: Y < 42 and the corresponding weight co-
efficients B,(Cm) (k = 1,...,m). The remainder term RSC(g;w;) = 0 for each
(A fP2m—1-

Proposition 3.1. The nodes T,Em) (k=1,...,m) in the formula (11), that is, the
zeros of the polynomial py,(t) in (9), are the eigenvalues of the Jacobi matrix

B1 VP12 0] T
VB1B2 B2+ B3 VB384

Im(w1) = VB384 Ba + Bs

e e v Bam—3B2m—2
L O VBam—3Bam—2  Pam-—2 + Bam—1 |

where By are the same values as in (2). Also, the weight coefficients B,(Cm) are

given by B,(cm) = 6011,%’1, where vy 1 1s the first component of the eigenvector vy, (=

[Vk1 .. Vkm|T) corresponding to the eigenvalue T,im) and normalized such that

Ty, —
v v = 1.

3.2. Gauss-Radau quadrature formula with the weight w1 (t)

The (m+1)-point Gauss-Radau quadrature formula with respect to the same
weight function wy (t) as before and the new nodes 0 = Hém) < 95"” << <
a? and weight coefficients C,gm) are given by

2

(12) I(g;wn) = / g wi(t)dt = T g(0) + 3 O™ g(0™) + RSR, (g3 wn).
0 k=1

It is clear that RG%, (g;w1) = 0 for each g € Py,

m
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In order to construct the formula (12), we need to introduce a function h,
9(t) = g(0) + th(t), to get

a2

Hgio) =90 [ woae+ [ "Rt () d.

0

This means that

2

(13) T(giwn) = Bog(0) + / " h(ws(t) dt = Bog(0) + 1(hs ws),

because ws(t) = tw;(t) according to (7) and (8). To compute the integral I(h;wz)
we can directly construct the Gauss-Christoffel rule with respect to the second
weight function wo(t) = vt w(v/t) on (0,a?) as

(14) I(h;ws) = /0 ’ h(t) wo(t) dt = zm: D™ h(00™) + RGC (h;wy),
k=1

where 0 < 0§m) << 05,? ) < a2 and D,gm) are the corresponding weight coeffi-
cients. Note in (14) that the remainder term RSC(h;wq) = 0 for each h € Payy,_1.
Thus, by noting (13) and (14) we first get

I(giwi) = Bog(0)+ > D™ h(O7™) + RS (hiws)
k=1

m (m)
m) 90 ) — 9(0)
= Bog(0) + > DYk e + RSC (h; ws)

k=1 k

- 60 - Z g(m) g(O) + ; g(ek ) + Rm (h;w2)a

k=1 Y gl(cm)

and then comparing this with (12), the weight coefficients of the Gauss-Radau
quadrature (12) are

m  y(m) (m)

LIS Dy (m) _ Di

(15) C(O - /80 - (m) ) Ck - (m)
k=1 ek Hk

(k=1,...,m),

and RS}, (g;w1) = RS (h;ws) for h(t) = (g(t) — g(0))/t. This means that the
nodes of the Gauss-Radau quadrature rule with respect to the weight function
w1 (t) are in fact the nodes of the Gauss-Christoffel formula with respect to the
weight function ws(t) = twq(t) on (0,a?).

Proposition 3.2. The nodes Hlim) (k=1,...,m) in the formula (12), that is, the
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zeros of the polynomial g, (t) in (10), are the eigenvalues of the Jacobi matriz

[ Br+ B2 VB2P3 o i
VB2B3 B3+ s VBB
I (w2) = VBaBs  Bs+ Bs

v/ Bam—2B2m—1
L O V B2m72ﬁ2m71 62m71 + 62m i

where By are the same values as in (2) and the weight coefficients C’,gm) are given

by (15), where D,(Cm) is determined by the first component vy 1 of the normalized
eigenvector vi (= [vg1 .. Vkm]T) of the Jacobi matriz J,,(w2) corresponding to

the eigenvalue 9,(!”’), i.e., D,im) = ﬁoﬂlv,%m k=1,...,m.
REMARK 3.3. The quadratures (11) and (12) can be related to the basic quadrature

(1), which allows a much simpler construction of these symmetric quadratures given
in form

(16) " J@ywte) 4 = Quifiw) + Raliw),

where @, (f;w) is defined by (4). If we have the recursion coefficients [ in the
explicit form, in our construction we use Proposition 3.1 for even n and Proposi-
tion 3.2 for odd n. However, in the case of strong nonclassical weights, we first
numerically construct the recursion coefficients a,, and b, in (9), and ¢, and d,, in
(10), and then the Jacobi matrices Jp,(w1) and J,(w2) are given by

[ a0 Vb1 o ]
\/Eal\/g

I (wr) = Vbe  as

and
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Corollary 3.4. The positive nodes a:,(cn) of the symmetric quadrature rule (16)
are given by a:,(cn) = \/T,Em) (n = 2m) and x,(cn) = \/9,(;”) (n =2m+ 1), and the
corresponding weight coefficients by

n 1 m
1° AIEJ):§B]E; ) (k=1,...,m) for even n=2m,

and
n m n 1 m
2° A(()):Cé ),A,(C)ZECIE ) (k=1,...,m) forodd n=2m+1,

where T,im) and B,(Cm) and Hl(cm) and C’,gm) are defined in Propositions 3.1 and 3.2,
respectively.

Corollary 3.5. Let f: (—a,a) — R be an even function and o1 : (0,a%) — R and
@2 : (0,a%) — R be defined by (7) and (8) respectively. The remainder term in (16)
is given by

RiC(pr;un)  n=2m,

Rn(f;w)—{

Rﬁc(m;wg) n=2m-+1,

where RGC(-;w,) is the remainder term of the Gauss-Christoffel rule with respect
to the weight function w, (v =1,2) on (0,a?).

REMARK 3.4. Some fast variants of the Golub-Welsch algorithm for symmetric
weight functions in MATLAB have been considered in [13], including numerical
experiments with Gegenbauer and Hermite weight functions.

4. GAUSSIAN RULES RELATED TO THE POLLACZEK WEIGHT

Recently De Bonis, Mastroianni, and Notarangelo [5] have considered Gaus-
sian quadrature rules with respect to the Pollaczek-type weight w(a; A) = e=(1=2)™
A > 0,o0n (—1,1) in order to evaluate integrals of the form

(17) I(f:)) = /_ et aa,

where f is a Riemann integrable function, in particular, f can increase exponen-
tially at the endpoints £1. Also, their rule is useful for approximating integrals of
functions that decay exponentially at +1 (e.g., when f is bounded or has a slower
growth than exponential at the endpoints).

In [5], the authors use the first 2n moments

1
uk:/ cfw(z; ) dz, k=0,1,...,2n—1,

—1

in order to construct the first n recursive coefficients and the corresponding Gaus-
sian quadratures with < n nodes, by the package OrthogonalPolynomials ([1]),
which is downloadable from the web site http://www.mi.sanu.ac.rs/ gvm/.
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Since w(z; A) is even on (—1, 1), in our construction, we can use the following
weight functions on (0, 1)

e_(l_t)7>\
Vit

The weight functions z — w(z;A) on (—1,1) and = — wi(x;A) on (0,1) for A =
1/10, A = 1/2 and A = 10 are displayed in Fig. 1, left and right, respectively. Note

(18) wy (t;A) = and  wa(t; ) = Vie =97,

A=1/10

A=100 a1

Y R— ‘. . 02 04 06 08

Figure 1: The weight functions w(z; A) = e~ (== (left) and w1 (x; \) (right) for
three parameters A = 1/10, A = 1/2 and A = 10.

that for a very small value of A, the weight « — w(x; \) is very close to a constant
value (Legendre weight) in (—1, 1) and tends exponentially to zero at the endponts
+1.

According to results of Section 3, to construct Gaussian quadrature rules with
respect to the weight w on (—1, 1), for n (or less) nodes, we need the corresponding
Gaussian quadrature rules with respect to the weight function w; (and ws) on
(0,1), but only for [n/2] nodes. Thus, if we want to construct the quadrature sum
Qn(f;w) for even number of nodes < n (= 2m), we should first compute the first
m coefficients a,, and b, for v =0,1,...,m — 1 (see Remark 3.3), starting with the
first 2m moments with respect to the weight function wy, i.e.,

1
pV () = / t=126=0=0"" gk =0,1,...,2m — 1.
0

As an illustration, we take m = 25 (i.e., n = 50) and A = 10. In this case,
with the moments ufﬁl) (10), k =0,1,...,49, calculated with WorkingPrecision ->
80, using MATHEMATICA package OrthogonalPolynomials (see [1, 17]), we get
the first 25 recursive coefficients a, and b, with maximal relative error less than
3.30 x 1070,

These coefficients enable us to establish the Gaussian quadrature rules (11)
for each m < 25, i.e., the symmetric quadratures (16) on (—1,1) for each even
n = 2m < 50, according to Corollary 3.4.
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EXAMPLE 4.1. For a given function f, defined on (—1,1) by

B 3e VT _ 2sin(3z) — 22
(19) fla) = o ,

we consider the integral I(f;A) (with respect to the Pollaczek weight function),
given by (17). For A =1/2 and X = 10, the corresponding values are

I (f; %) = —0.1008535784477012537049661323701106088715102790788130235270 . ..

I(f;10) = 0.18289521923348319938801221433094240150942326723262931505276 . . .,

obtained in MATHEMATICA with WorkingPrecision -> 60. Graphics of the func-
tion (19) and the corresponding integrands in (17) are presented in Fig. 2 and

Fig. 3, respectively.
10} ‘ ‘ ]
o (\ ]
0

—10F E

—15L E
_20L E

_as5h. | .
-1.0 -05 0.0 05 10

Figure 2: Graphic of the function = — f(x) given by (19)

o T T | 0.6F

[\ 05EF
0

04F
ol 1 03f

02F
—4r 1 01f
00
6l ] V4
-10 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Figure 3: Integrand in I(f;\) for A = 1/2 (left) and A = 10 (right)

Now, let us apply Gauss-Pollaczek quadrature rule with n = 10(10)50 nodes
to the integral I(f;\) and compare the results by ones obtained by the standard
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Gauss-Legendre rules. Here, @, (f;w) denotes the Gauss-Pollaczek quadrature sum
defined by (4), and 7P (f; \) shows their relative errors,

Qu(f;w) = 1(f; )
I(f;\) '

Relative errors for A = 1/2 and A = 10 are given in Table 1. Numbers in paren-

rE(fiA) =

Table 1: Relative errors in quadrature sums when n = 10(10)50
n | i (£:1/2) | rp(f:1/2) | ) (£:10) | rr(f:10)
10 || 1.66 1.01 1.32(—13) | 3.52(-2)
20 || 2.38(—1) | 1.43(=1) | 2.94(—24) | 1.21(-3)
30 || 4.54(=2) | 1.12(=2) | 5.27(-35) | 1.57(—5)
40 || 1.04(=2) | 4.87(=3) || 1.86(—45) | 2.93(—6)
50 || 2.71(=3) | 7.09(—4) 1.09(—55) | 1.82(-7)

theses indicate decimal exponents. The corresponding relative errors in Gauss-
Legendre sums are denoted by 72 (f; \). As we can see, for A = 1/2 both quadra-
tures are slow and have similar behaviour, while for a larger A (= 10) the advantage
of the Gauss-Pollaczek quadrature is clearly evident.

5. A CLASS OF SYMMETRIC WEIGHTS ON R

In this section, we consider symmetric quadrature rules on R which play an
important role in summation formulas of Abel-Plana type, which were intensively
studied by Germund Dahlquist [2, 3, 4] (also see Milovanovié [14, 16]). Such rules
can be constructed in a simpler way if the corresponding formulas on R™ are first
constructed. By noting the results of Sections 2 and 3, instead of the polynomials
7, orthogonal with respect to  — w(z) on R, we need the polynomials p, and
qv, given by the recurrence relations (9) and (10), respectively. In other words, the
recursive coefficients {a, } and {b, } for polynomials orthogonal with respect to the
weight function ¢ +— w(v/%)/v/t on R*, as well as the coefficients {c,} and {d,} for
polynomials orthogonal with respect to the weight function ¢ — v/tw(v/t) on Rt
must be computed.

In the sequel, let us mention some important cases of the symmetric weight
x— w(z) on R.

1° In [12, p. 159] three interesting even weight functions on R are given, for
which the recurrence coefficients fj in (2) are known explicitly. They are respec-
tively known as the Abel weight

w(z) = wA(x) = x x

T — o 2sinh(nz)’

the Lindelof weight
!
e™ +e~™  2cosh(mx)’

w(z) = wk(z) =
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and the logistic weight

—TT

_ . lo _ €
w(z) = w(r) = o)
The corresponding recurrence coefficients are
k(k + 1) k2 k4
A L _ log _ o
6k_ 4 ’ /Bk—Z and 6kg_4k2_1 (k—l,Z,),

with B¢t = 1/4, BF =1/2 and 5% = 1/x.
We mention also that w!°8(z) = [wl(z/2)]%.
For these weight functions, in the sequel we give the recurrence coefficients in

(9) and (10) for polynomials orthogonal on (0, 00) with respect to t — w(v/t)/V/t
and t — w(\/i)\/i, respectively.

(i) In the Abel case we compute these coefficients as

2v+1)2 1 242 — 1
af:w (veNy), bl==>, bfzw (v € N);
2 4 4
1 1 (2v + 1)2
A =20+1)?% (weNy), dj = g’ a2t = vy + )i v+l (v eN).

(ii) Similarly in the Lindeldf case the corresponding coefficients are

244 1 1 242 — 1
b= EELeny, =l W ZD o,
4 2 4
2412 1 2(2 1)2
=TS eny, dp =g =T )

(iii) Finally, in the case of the logistic weight the recurrence coeflicients in (9)
are

3204 + 3208 + 82 — 1
log _ N
i (4 — 1)(dv + 3) (v € No),

1 16v4(2v — 1)*
log —— log _
= Wi m T m oy VEY

and in (10) they are

3204 + 9603 + 10402 + 48v + 7
1602 +24v +5
1 16042 + 1)*

w Y c T mrpwry YEV

log __
) =

(l/ S NQ),

log
dy® =

The first two weight functions appear in the so-called Abel-Plana summation
formulas (cf. [16]). For example, under certain conditions for an analytic function



190 Mohammad Masjed-Jamei, Gradimir V. Milovanovié

n

f in the complex plane, the finite sum S, (f) = Z(—l)kf(k:) can be obtained

from the Abel summation formula e
Suon($) = 5 (V" 5(m)+ (1" f 0+ 1) = [ i,y o)

where

flm +ia) = f(m — ia)
2ix

+(_1)nf(n+1+ix).—f(n+1—ix).

2ir

h(am,n) = (—1)™

2° For other weight functions which also appear in summation formulas, since
the explicit expressions of the coefficients [ are not known, using the MATHE-
MATICA package OrthogonalPolynomials (see [1, 17]) enables us to obtain S in
rational forms.

For instance, consider the Plana weight function

T el2mx| 17

which appears in the so-called Plana summation formula (cf. [19], [14])

Tonlf) = | f@)de = [ glaim,no” (@) do
m R
for the composite trapezoidal sum

Ton() = 3" F6) = SF0m) + 32 1)+ 2 o),

k=m k=m+1

where

(20) g(z;m,n) = f(n+ 1$)2:xf(n —ix) B flm+ 1$)2:xf(m i) |

This formula holds for analytic functions in the strip €, , = {z cC:m<
Rez < n}, such that

+oo
/0 F@+iy) — flz —iy)e 27! dy

exists, and ‘ ‘lim e 1?ml| f(z 4+ iy)| = 0 uniformly in z, for every m < z < n
Yy|—4o0

(m,n € N, m <n).
Using the package OrthogonalPolynomials, we can obtain the sequence of
coefficients {8} }r>0 in rational forms as
1 1 79 1205 _p 262445 33461119209

P - P:— P:— P:—. = = 3
60_12’ A 10’ Pz 210° Pa 16597 7% T 2094297 "° T 18089284070’

_361969913862291 p _ 85170013927511392430

55 = TamAamAAr Ao 7 = , etc.
137627660760070 24523312685049374477
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When k increases, these values are becoming more complicated (see [16]).
The corresponding weights for polynomials p, and g, on RT are

1

) wnl) =l () = g and wat) = wf () = 5
respectively. It is interesting to mention that at the Helsinki International Congress
of Mathematicians (1978), Nikishin [18] pointed out the importance of some classes
of orthogonal polynomials different from classical ones. In particular, he proposed
obtaining explicit forms of polynomials (if possible) orthogonal with respect to the
weight function w! .

Taking the moments

+oo
P voP (v +1)IC(2r +2) _
MLV_/O twf (1) dt = =i v=0.1,.,2m - 1
and
too (2v +3)I¢(2v + 4)
MQV:/O t wf(t)dt:ﬂiy+1 YIRS DT v=0,1,...,2m —1,

we can obtain the corresponding coefficients in (9) as

P 1 P 871 P 1672667011 p _ 50634486717810987107

% T 700 M T 790" “2 T 539062030 0 “? T 8296534235776787390 '

P 3241115879498605269828015564949609681
a, = ,
4 320801324751624360801327631933415050

1 P 79 P 1312225 p _ 2491734801234609

by =, by =, by = ;b= :
O 7127 7P T 21007 % T 14416710 2 512172182993900

P 27698062380526543547153670700

b, = , etc.,
1769555822315229089057426013
as well as in (10),
p 10 p 110200 p 239533652610  p  31261160632702992474327200
cg = —, ¢ = , Cqp = ————— ¢y = s
© T210 LT 55671 2T 53469214601 0 3917478728549923835709789

P 20322996172719322878237864291826792460487499568690
c, = s
4 1628454245165190286597605307125063916376617814289

etc.;

gP o L ogp_ 24 p 423558471, 821210997517832607
O 71207 TP T 8827 2T 182722826 0 0 89904292554749621

p 80876419660630210535853917968583415257
= ete.,

dy = )
N 3206594662841751899714894730399285285

but their explicit expressions (for each index) remains a mystery!
Another interesting summation formula is

n n+1/2

SFCEN

k—m m—1/2

f(z)dx = / g(m;m— %,n—i— %)wM(x)dm,
R
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where the so-called midpoint weight function is defined by

]

w(z) = w () = ol2mal 11

and g(x; m— %, n—+ %) by (20). As before, one can consider the polynomials p, and
q, orthogonal on RT with respect to the weight functions

1 " t

(22) w (t) = wi(t) = i1 and  wa(t) = wy' (t) =

eVt 41’
and in a similar way, one can obtain the corresponding coefficients in (9) and (10)
in the following the rational forms

M _ T am 97153, 2143300949275717 ,,  220953557093736349691768417054261
T 300" T 82840° "2 T T675664735216120 ' 3 T 35800501215823265013355797106040 '

M 13086134692539302585317174640117515705018056399360242497207
T 1286538803151559855777866179684631498656991773534847212200 N

Y| M 2071 M _ 15685119025  ,  5895324568676150049511881
0 T 247 ! T 336007 2 15852295536° °  1170833101982789404702400’

pM 919480999258696959661346213448241024976800075 te.:
4 7 57654080259790880043758405109730039860100212 ’ ores

155 M 654837850 M 49647154589257771035
—, ¢ =, ¢ = ,
2047 1 323155833 2 10966854047350313398 °

54308858122280742671267557574002767329800
6765310743275018623908418926036774608781

M 23838072108838598641060574731766928201727321108514773479969006343251318055
c, = , etc
4 1902789007849170506061772395575191790930210358707162334205873293472321134

g T M _ 199849 360669459296427
0 960" ! 691488 ° 2 154646219485472°

aM — 2644652549156041551189819109731
3 7 286002885915941819991126155408

v 70719511061081626527366043397565453286193455371009119954911
= , etc..
4 2782343550785232136311735142019287634629029202932721468080

Unfortunately, we were unable to discover their explicit forms!

6. A CLASS OF SYMMETRIC WEIGHTS WITH FOUR FREE
PARAMETERS

In this section, we consider a special case of symmetric weight functions on
(—a,a) with four free parameters that covers many well-known classical weights
such as Legendre, first and second kind Chebyshev, ultraspherical, generalized ul-
traspherical, Hermite and generalized Hermite weight, i.e.,

w(z) = exp </j 75(7;75227—:—; dt> =w(—x),
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where p, ¢, 7, s are real parameters and ¢ is a constant in (—a,a).
It is shown in [11] that a special solution of the differential equation

1—(—
Poa )0 0)-+(ra? 498 (0) = (mlr+ (0= 1p)a + 7T ) (o) =
is the symmetric polynomial in the form
‘)

[n/2] 9 [n/2]—(k+1) 2% — (—=1)" +21n/2 r _9
Z</]) H ( (=1)"+2[n/2])p+ 22k

(2i—(-1)"+2)q+s ’

ro s
p

(23)  Dp(z) = 5n<

=0

whose monic form is given by

[n/2]—1 .
R (s B (20 — (-1)"+2)g+s ros
Sn(x)sn(p q ‘x> H (2i—(—1)”+2[n/2])1’+7’5 <P q

=0

§2<T ’ x>_x2+Q+s
P q p+r’
§3<T 5 x>:$3+3q+8

P q 3p+r’
a7 s 4, 534ts 5 (3¢+s)(g+s)
S. =z +2—— Bt BULPAS S
4(}7 q a:) . 5p+rJU Gp+r)Bp+7)
s (r s 5¢+s 5 (bg+s)(3g+s)
S X :CL'5+2—CL' + ——
5<p q > p+r (Tp+7)(5p + 1)

According to [11], the monic form of these polynomials satisfies the three-
term recurrence relation

(24) Sunle) =aBi(e) = () 2 )Biale) (k)
where §0(x) =1, Si(z) = z, and

3 < s) _ pgk*+ ((r—2p)g— (—=1)"ps)k + (r — 2p)s(1 — (—-1)")/2
\p ¢ (2pk + 1 — p)(2pk + 7 — 3p) '

This means that for the monic polynomials 7 (z) = Sj(x), the coefficients

(25) Bk - Bk(pv%ra S) 6k<p Z) (k > 1)7



194 Mohammad Masjed-Jamei, Gradimir V. Milovanovié

depend on four parameters p, g, r, s. Moreover, if Sx(p, g, r, s) > 0, the generic form
of the orthogonality relation is as
S (r
X Sk
) (p

(26) /W(p : )g(p :

J?) dx = (/8061 e 6n)5n,k;

where
T ) 2
P q ¢ tpt?+q)
and

a
r s
= W x| dx.
%o /, <p q >
Without loss of generality, we can assume only a = 1 for finite intervals and

a = oo for the infinite interval.

Regarding [11], the function (pz? + q) W(

r
p

x> must vanish at £ = a

in order to hold the orthogonality relation (26).

In general, there are four main sub-classes of distribution families (27) whose
probability density functions are as follows (see [11])

—20-28-2 2a Pla+B+3) | N
28 KW T | = z]**(1 — =z
) (TP e = p o e - )
for -1 <z <1, and
-2 2« 1 2% —z?
29 KW = faPe
29 (75 ) -t

a—20+2 —2«
1 1

(30) KsW ( —2

) - r() 272
F(E+a=3)T(—a+3)(1+a2)"

—20+2 2 _ 1 —2a_—1/a°
(31) K4W< 1 0 ‘m) _F(a—%)lml e

for —oo < x < oo, where the values {K;}}_; play the normalizing constant role
in relations (28) to (31). Consequently, there are four sub-sequences of symmetric
orthogonal polynomials (23).

According to (28), if (p,q,7,s) = (—1,1, —2a — 25 — 2, 2v) is substituted into
(23), then
/)

Sn<—2a—2ﬂ—2 2«
[n/2] o\ /AUt o0 26 +2a+2— (~1)" +2[n/2]) . _,
_ Z( /]) 11 ( (=D)" +2[n/2]) ok

-1 1
bl 2i4+2a+2—(-1)" ’
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represents the explicit form of generalized ultraspherical polynomials (GUP). By
noting (24) and (25), the recurrence relation of monic GUP takes the form

§k+1($) = xgk(x) — B ( —2a __?ﬁ -2 210[ ) §k—1($),

in which

—2a0-26-2 2\ _ (k+ (1= (=D"a) (k+ (1~ (=1)")a +2p)
(32) &< -1 1) (2k + 20 + 28— 1)(2k + 2a + 28 + 1)

Hence, its orthogonality relation reads as

-1

-1 1 -1 1

x)s,\m(—Zoz—Z,B—Z 20

x)dx
1 n
_ 2001 2\B [ —20-28-2 2a
where

F(a+3)TB+1)
I(a+B+3)

1
1
/immﬂ—ﬁfmZB@+§ﬁ+Q:
-1
The above relation shows that the constraints on the parameters o and S should

bea+1/2>0and S+ 1> 0.
The second sub-class is the generalized Hermite polynomials

so(72 2 [) o (e = -
"o 1 N k 2i + (—1)"*t1 + 2 + 2 ’

k=0 i=0
satisfying the monic recurrence relation

B (@) = 2 5(x) — e < - Zf‘> SN
with
k
(33) &(f ?)=§+31§Qﬂ7

and the orthogonality relation

> 2a —22 3 -2 2a
/ |z]|“%e Sn< 0 1

—0o0
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provided that «+1/2 > 0. According to Favard’s theorem [7, 12], if 8, (p, ¢, 7, s) >
0 holds only for a finite number of positive integers, i.e., n = 1,..., N, then the
related polynomials are finitely orthogonal. In this sense, there are two kinds of
classical symmetric finite orthogonal polynomials.

The first finite class is orthogonal with respect to the weight function z —
|z]72%(1 4+ 22)~# on (—o0, 00) with the initial vector (p,q,r,s) = (1,1, —2a — 25 +
2, —2ar), whose explicit form is as

§n(—2a—2ﬁ—|—2 —2a x)

1 1

[n/2] [n/2]—(k+1) . n

Z /2] H 2i 4+ 2[n/2) + (=)t + 2 — 2a — 2b o
2+ (=1)"*t +2 — 2¢ ’

i=0
and satisfies the recurrence relation (24) with

—20-28+2 —2a\ _ [k—a+(=Dfa] (k-1 - (-1)")a—2p)
(34) ﬁ’“( 1 1 >_ (2k —2a—2B+1)(2k —2a—28-1)

Hence, its orthogonality relation takes the form

|| T2 5 —200—26+2 —20 2\ g —20—-28+2 —2a
(14 22)8 7" 1 1 m 1 1

1 E) P

) ds
lj ( 22042 —2a>F(ﬁ+a—%)F(_a+%)

if and only if

Bn(—2a—2ﬂ+2 —2a

1 1
1 1 >>O; b+a>=, a<= and [>0.

2 2
In other words, the finite polynomial set {S, (1,1, —2a — 28+ 2 a,x)} Zév is
orthogonal with respect to the weight function |x| 221+ 22)7% on (—o0,00) if
and only if N <a+8-1/2, a <1/2 and g > 0.

Similarly, the second finite class is orthogonal with respect to the weight
T |az:|_2(’e_1/’”2 on (—o0o, 00) with the initial vector (p, ¢, 7, s) = (1,0, —2a+ 2, 2),
whose explicit form is as

g, (—2oi+2 (2) }x) B [:Zi ([ IéQ]) [n/i]j)kﬂ)(ﬁ {g} B (—21)" 41 _a>xn2k’

and satisfies the recurrence relation (24) with

—2a+2 2\ 2(-D"(k—a)+2a
(35) 5k< 1 o>(2k—2a+1)(2k—2a—1)’
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and finally has the orthogonality relation
(oo}
—2a _1/x2A —20[+2 2 -~ —20[+2 2
/_Oo|a:| e Sn( 1 NE Sm 1 NE dz
. —2a+2 2 1
:Hﬁz( 1 O)F(Q_E) 6n,m;

if and only if N = max{m,n} < a — 1/2. This means that the finite polynomial
set {S,(1,0,—2a+ 2,2; x)}ZiéV is orthogonal with respect to the weight function
|z|~2e~/*" on (=00, 00) if N < a—1/2. The following table summarizes the main
characteristics of the four introduced sub-classes. For other symmetric orthogonal
polynomials see e.g. [9, 10].

Table 2: Four special cases of Sn(p,q,7,s;x)
| Definition | Weight ] B |

—2a—28 -2 22« 2 20 g (kta—(=1)*a)(k+(1—(-1)F)a+28)
S"( 1 1 x) || (1 = 2%) (2h12a128—1)(2k12a12811)
-2 2 a2 (K
Sn< 0 1a x) |z|**e £y % a
g (20—-28+2 —2a, S _ (k—ot(=D*a) (k=(1—(~1)*)a—28)
n 1 1 (1 +.’K2)ﬁ (2k—2a—2B+1)(2k—2a—25—1)
—2a+2 2 20 —1/a? 2(=D)* (k=) +2
S"( 1 0 x) |z[~"e /e (2k72a+1)(2§72ai1)

In the last column of this table we give the explicit expressions for the re-
cursion coefficients [ in the three-term recurrence relation. We use them in the
construction of the corresponding Jacobi matrices.
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