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Abstract. For an orientable compact and connected hypersurface in the Eu-
clidean space R4 with positive scalar curvature S, the shape operator A and
the mean curvature α, it is shown that the inequality

6α det A ≥ α2S + 4 ‖∇α‖2

implies that the hypersurface is a sphere, where ∇α is the gradient of α. A
similar characterization is also obtained for spheres the Euclidean space R3

(cf. Theorem 2).

1. Introduction

The class of compact hypersurfaces with positive scalar curvature in a Euclidean
space Rn is quite large and therefore it is an interesting question in Geometry to
obtain conditions which characterize spheres in this class. It is known that compact
positively curved hypersurfaces with constant mean curvature in Rn are spheres
(cf. [7] p.375) as well as that embedded compact hypersurfaces with constant
scalar curvature in Rn are spheres (cf. [8]). However all such characterizations
use mean curvature, scalar curvature as well as bounds on sectional curvature.
Given a hypersurface its geometry is mostly controlled by the restriction on shape
operator A and natural invariants associated with A such as det A ( Lipschitz-
Killing curvature), the mean curvature (given by tr.A) and other invariants given
by symmetric functions of eigenvalues of A. The invariants given by the symmetric
functions of eigenvalues of A and the mean curvature are used by by Chen in his
series of papers to obtain interesting results on submanifolds of Euclidean spaces (cf.
[2], [3], [4]). The invariant detA has been used to define total absolute curvature
by Chern and Lashof (cf. [5]) where they used it to obtain a characterization for
a compact hypersurface to be homeomorphic to a sphere. We would like to add
following brief note on the use of the invariant det A in the geometry of submanifolds
and specially on its role in the fundamental work of Chern-Lashof (cf. [5], [6]):

Recall that in the classical theory of surfaces, the normal mapping of Gauss is
used to define the Gauss-Kronecker curvature of the surface and the integral of
this curvature for a compact surface is the Euler characteristic of the surface (The
Gauss-Bonnet theorem). Then the basic question was to generalize the classical
Gauss mapping for the immersed submanifolds in a Euclidean space, which was
accomplished without much difficulty. Perhaps the difficult part was to obtain a
curvature measure for arbitrary immersed submanifold Mn in a Euclidean space
Rn+k similar to that of Gauss-Kronecker curvature. The crucial observation of
Cher-Lashof theory in meeting this aim was the coincidence that the dimension of
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the unit normal bundle of the submanifold is same as the dimension of the unit
hypersphere in the ambient Euclidean space Rn+k centered at the origin. Then the
volume form of this unit sphere when pulled back by the generalized Gauss map
must be proportional to the volume form of the unit normal bundle (being forms of
the same top degree). This proportionality function G(p, N), p ∈ Mn, N is the unit
normal vector at p in the unit normal bundle, defined on the nunit normal bundle is
then the desired curvature measure called the Lipschitz-Killing curvature similar to
the Gauss-Kronecker curvature which on integration gave the total absolute curva-
ture of the submanifold. Chern and Lashof used used height function hN : Mn → R
with respect to the unit normal vector N to show that the Lipschitz-Killing cur-
vature G(p,N) = (−1)n det (AN ), where AN is the shape operator (Weingarten
map) with respect to the unit normal N , (For surfaces in R3, n = 2 and AN = A,
G(p,N) = det A is the classical Gauss-Kronecker curvature). As Gauss-Bonnet the-
orem relates the geometric invariant (the integral of Gauss-Kronecker curvature) to
the topological invariant (Euler characteristic) of the surface, Chern and Lashof (cf.
[6]) have shown that for compact immersed submanifolds in a Euclidean space, the
geometric invariant the total absolute curvature is related to the topological invari-
ant the total Betti number of the submanifold. They have also proved that if the
total absolute curvature of an immersed compact submanifold in a Euclidean space
is less than 3 then the submanifold is homeomorphic to a sphere. For an orientable
hypersurface M in Rn+1 as there is only one unit normal vector field N , the shape
operator AN = A and the Lipschitz-Killing curvature G(p,N) = det A, the above
mentioned result of Chern and Lashof uses det A to obtain a characterization for a
compact hypersurface in Rn+1 to be homeomorphic to a sphere.

However this invariant is not used in characterizing the geometry of a sphere in
a Euclidean space. In this paper we use this invariant to obtain a characterization
of spheres in R4. Indeed in this paper we prove the following:

Theorem 1. Let M be an orientable compact and connected hypersurface with
positive scalar curvature S in the Euclidean space R4. If the shape operator A and
the mean curvature α of M satisfy

6α detA ≥ α2S + 4 ‖∇α‖2 ,

then α is a constant and M = S3(α2), where ∇α is the gradient of α.

Our proof depends on the dimension of the Euclidean space R4 and therefore it
could be an interesting question to extend this result for the hypersurfaces in the
Euclidean space Rn, n > 4. For the surfaces in R3 the scalar curvature becomes 2K,
K being the Guassian curvature and the invariant det A is also K. The condition
scalar curvature being positive translates to the surface being positively curved and
in this case we prove the following:

Theorem 2. Let M be an orientable compact and connected positively curved
surface in the Euclidean space R3. If the mean curvature α and the Guassian
curvature K of M satisfy

α2K ≥ K2 + ‖∇α‖2 ,

then α is a constant and M = S2(α2), where ∇α is the gradient of α.
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2. Preliminaries

Let M be an orientable hypersurface of the Euclidean space Rn+1. We denote
the induced metric on M by g. Let ∇ be the Euclidean connection on Rn+1 and ∇
be the Riemannian connection on M with respect to the induced metric g. Let N
be the unit normal vector field to the hypersurface M . Then for any X ∈ X(M),
X(M) is the Lie algebra of smooth vector fields on M , we have Xg(N,N) = 0, which
gives g(∇XN,N) = 0, that is ∇XN is tangential to M . Thus we can define a map
A : X(M) → X(M) by A(X) = −∇XN called the shape operator of M . The shape
operator A is symmetric and linear follows from the porperties of the Riemannian
connection ∇. The Gauss and Weingarten formulas for the hypersurface are (cf.
[1])

∇XY = ∇XY + g(AX, Y )N, ∇XN = −AX, X, Y ∈ X(M). (2.1)

We also have the following Gauss and Codazzi equations (cf. [1])

R(X, Y ; Z, W ) = g(AY,Z)g(AX, W )− g(AX, Z)g(AY, W ) (2.2)

(∇A)(X, Y ) = (∇A)(Y,X), (2.3)

where R is the curvature tensor field of the hypersurface and (∇A)(X, Y ) = ∇XAY−
A∇XY . The mean curvature α of the hypersurface is given by nα =

∑
i g(Aei, ei),

where {e1, .., en} is a local orthonormal frame on M . If A = λI holds for a constant
λ, then the hypersurface is said to be totally umbilical . The square of the length
of the shape operator A is given by

‖A‖2 =
∑

ij

g(Aei, ej)2 = tr.A2.

The scalar curvature S of the hypersurface is given by

S = n2α2 − ‖A‖2 . (2.4)

The second covariant derivative (∇2A)(X, Y, Z), X, Y, Z ∈ X(M) of A is defined by

(∇2A)(X,Y, Z) = ∇X(∇A)(Y,Z)− (∇A)(∇XY, Z)− (∇A)(Y,∇XZ)

and we have the Ricci identity

(∇2A)(X, Y, Z)− (∇2A)(Y, X,Z) = R(X, Y )AZ −A(R(X,Y )Z). (2.5)

3. Some Lemmas

Let M be an orientable hypersurface of the Euclidean space Rn+1 and ∇α be
the gradient of the mean curvature function α. Then we have

Lemma 3. Let M be an orientable hypersurface of the Real space form Rn+1 and
{e1, .., en} be a local orthonormal frame on the hypersurface M . Then

∑

i

(∇A)(ei, ei) = n∇α.

The proof is straightforward and follows from the symmetry of A and the equa-
tion (2.3).
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Lemma 4. Let M be an orientable hypersurface of the Euclidean space Rn+1.
Then

‖∇A‖2 ≥ n ‖∇α‖2 ,

where ‖∇A‖2 =
∑

ij ‖(∇A)(ei, ej)‖2 for a local orthonormal frame {e1, .., en} on
M .

Proof. Define an operator B : X(M) → X(M) by B = A− αI. Then we have

(∇B)(X,Y ) = (∇A)(X, Y )− (Xα)Y ,

which gives
‖∇B‖2 = ‖∇A‖2 + n ‖∇α‖2 − 2

∑
ij g ((∇A)(ei, ej), ej) g(∇α, ei)

= ‖∇A‖2 + n ‖∇α‖2 − 2
∑

j g (∇α, (∇A)(ej , ej))
= ‖∇A‖2 − n ‖∇α‖2 .

This proves that ‖∇A‖2 ≥ n ‖∇α‖2.

Lemma 5. Let M be an orientable compact hypersurface of the Euclidean space
Rn+1. Then ∫

M

(∑

i

g(∇ei(∇α), Aei)

)
dV = −n

∫

M

‖∇α‖2 dV,

where {e1, .., en} is a local orthonormal frame on M .

Proof. Choosing a point wise covariant constant local orthonormal frame {e1, ..., en}
on M , we compute

div (A(∇α)) =
∑
i

eig(∇α,Aei) =
∑
i

g(∇ei(∇α), Aei) +
∑
i

g(∇α, (∇A)(ei, ei))

=
∑
i

g(∇ei(∇α), Aei) + n ‖∇α‖2 .

Integrating this equation we get the Lemma.

Lemma 6. Let M be an orientable compact hypersurface of the Euclidean space
Rn+1 and {e1, ..., en} be a local orthonormal frame on M . Then
∫

M

{
‖∇A‖2 − n2 ‖∇α‖2 +

∑

ik

[
R(ek, ei; Aek, Aei)−R(ek, ei; ek, A2ei)

]
}

dV = 0.

Proof. Define a function f : M → R by f = 1
2 ‖A‖2. Then by a straightforward

computation we get the Laplacian ∆f of the smooth function f as

∆f = ‖∇A‖2 +
∑

ik

g
(
(∇2A)(ek, ek, ei), Aei

)
. (3.1)

Using equations (2.3) and (2.5) in (3.1) we arrive at

∆f = ‖∇A‖2 +
∑

ik

g((∇2A)(ei, ek, ek), Aei)

+
∑

ik

[
R(ek, ei; Aek, Aei)−R(ek, ei; ek, A2ei)

]
. (3.2)
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We integrate (3.2) and use Lemma 5 together with
∑

k(∇2A)(ei, ek, ek) = n∇ei(∇α)
to get the Lemma.

4. Proof of the Theorem 1

Let M be an orientable compact and connected hypersurface of the Euclidean
space R4. Then for a local orthonormal frame {e1, e2, e3} on M and equation (2.2)
we have
∑

ik

R(ek, ei; Aek, Aei) =
∑

ik

[g(Aei, Aek)g(Aek, Aei)− g(Aek, Aek)g(Aei, Aei)]

=
∑

i

g(A4ei, ei)− ‖A‖4

= tr.A4 − ‖A‖4 (4.1)

and similarly
∑

ik

R(ek, ei; ek, A2ei) = tr.A4 − 3αtr.A3. (4.2)

Thus from the equations (4.1) and (4.2) we arrive at
∑

ik

[
R(ek, ei; Aek, Aei)−R(ek, ei; ek, A2ei)

]
= 3αtr.A3 − ‖A‖4 . (4.3)

The Cayley-Hamilton theorem for the linear operator A gives

A3 − 3αA2 +
S

2
A− (det A)I = 0.

Multiplying this equation by 3α and taking trace we arrive at

3αtr.A3 = 9α2 ‖A‖2 − 9
2
Sα2 + 9α det A.

Using this equation in (4.3) together with equation (2.4) we get

∑

ik

[
R(ek, ei; Aek, Aei)−R(ek, ei; ek, A2ei)

]
= ‖A‖2 S − 9

2
α2S + 9α detA.

We use this equation in Lemma 6 to arrive at

∫

M





(
‖∇A‖2 − 3 ‖∇α‖2

)
+ S

(
‖A‖2 − 3α2

)

+ 3
2

(
6α detA− α2S − 4 ‖∇α‖2

)


 dV = 0.

Since the scalar curvature S > 0 and the Schwartz inequality implies ‖A‖2 ≥ 3α2

(with equality holding if and only if A = αI), the last equation together with Lemma
4 and the condition in the statement of the theorem gives A = αI. Also as the
dim M > 2 from the equation (2.3) it is easy to conclude that α is a constant, that
is, M is totally umbilical and consequently that M = S3(α2).
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5. Proof of Theorem 2

Let M be an orientable compact and connected surface in R3. Choosing a local
orthonormal frame {e1, e2} on M which diagonalizes A, we get

∑

ik

[
R(ek, ei;Aek, Aei)−R(ek, ei; ek, A2ei)

]
=

(
λ2

1 + λ2
2

)
K − 2λ1λ2K

= ‖A‖2 K − 2K2 (5.1)

=
(
‖A‖2 − 2α2

)
K + 2

(
α2K −K2

)
,

where Aei = λiei, and K = R(e1, e2; e2, e1) = det A = λ1λ2 is the Guassian
curvature of M . Thus by Lemma 6 we get

∫

M





(
‖∇A‖2 − 2 ‖∇α‖2

)
+

(
‖A‖2 − 2α2

)
K

+2
(
α2K −K2 − ‖∇α‖2

)


 dV = 0.

Using the Schwartz inequality ‖A‖2 ≥ 2α2 and Lemma 4 together with the condi-
tion in the statement of the theorem in the above integral we get A = αI. Finally
using equation (2.3) together with A = αI we get that α is a constant, that is, M
is totally umbilical and consequently M = S2(α2).
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