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Abstract. If G is a semidirect product N oH with N finitely generated then

G has the property that every finite group is a quotient of some finite index
subgroup of G if and only if one of N and H has this property. This has

applications to 3-manifolds; for instance for any fibred hyperbolic 3-manifold

M and any finite simple group S, there is a finite cyclic cover of M whose
fundamental group surjects to S. We also give a short proof of the residual

finiteness of ascending HNN extensions of finite rank free groups when the
induced map on homology is injective.

1. Introduction

One means of studying a finitely generated group G is to examine the set F(G)
consisting of the finite quotients of G, as is done when taking the profinite comple-
tion of G. Even if G is also a residually finite group, this might not give us the full
picture. For instance it is unknown whether the following is true (this is problem
(F14) in [15]): if there is n ≥ 2 such that the residually finite, finitely generated
group G has F(G) consisting of all n-generator finite groups, then G is isomorphic
to the free group Fn of rank n.

If a finitely generated group G has many finite quotients then it has many finite
index subgroups too and we can consider F(H) for any H of finite index in G. It
is the case that F(G) and F(H) might look rather different, for instance if G is a
perfect group (one which is equal to its commutator subgroup [G,G]) then there
will be no non-trivial p-groups in F(G) but there could be a complex collection of
p-groups in F(H) for many primes p. This can happen for the fundamental group
of a closed hyperbolic 3-manifold.

In this paper we are interested in the question of which finitely generated groups
G have the property that the union of F(H) over the finite index subgroups H of
G consists of all finite groups. It is clear that there are such groups, for instance
non abelian free groups or anything that surjects onto one of these groups. Some
other examples were given in [12] where it was shown that this property holds for
any finitely generated LERF group (one where every finitely generated subgroup
is the intersection of finite index subgroups) containing a non abelian free group.
They call our property “having every finite group as a virtual quotient”. Moreover
various consequences were given in [13], which collects together a large number of
results on subgroup growth. In Chapter 3 of this book it is mentioned that our
property, here called “having every finite group as an upper section”, holds for
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finitely generated groups with superexponential subgroup growth, and also with
superpolynomial maximal subgroup growth.

We first find many more examples of finitely generated groups having every finite
group as a virtual quotient by showing in Section 2 that if S ≤ G then the set of
finite quotients F(S) is contained in the union of F(H), where H varies over all
finite index subgroups of G, provided the following holds: whenever K is normal in
S with finite index, there exists a finite index subgroup L of G with L∩S = K. This
is straightforward if we impose that L is normal in G but our generalisation holds
by adapting an argument in [12]. As we expect there to be many more finite index
subgroups of G than finite index normal subgroups, we can exploit this in Section
3 where we examine semidirect products G = N o H, with N finitely generated.
We show that G has every finite group as a virtual quotient if and only if one of N
and H does (but this need not be true if N is infinitely generated). Thus we can
build up many groups with this property by taking repeated semidirect products
of finitely generated groups as long as we merely ensure that one of the factors has
the property.

In Section 4 we observe that if G = N o H for a finitely generated N which
surjects to the finite group F then N is contained in the finite index subgroup of G
which surjects to F as given by Section 2. We present a simple alternative proof of
this and apply it to semidirect products of the form G = NoZ. We have that F(N)
is contained amongst the union of F(Gn), where the Gn are the finite cyclic covers
of G. This has applications for closed or finite volume hyperbolic 3-manifolds M
which are fibred, such as every 2-generated finite group (in particular every finite
simple group) is a quotient of a cyclic cover of π1(M). Also the fundamental group
of any virtually fibred hyperbolic 3-manifold (it is an open question whether all
such 3-manifolds are) has every finite group as a virtual quotient.

In the last section we consider ascending HNN extensions. The reason for this
is that groups of the form G = N oα Z can be formed using an automorphism α
of N , whereas an ascending HNN extension G = N∗θ generalises this by allowing
θ to be an injective endomorphism. We might hope that similar results on virtual
finite quotients hold in this case as well, however we first have to recognise as
shown in [19] that if N is finitely generated and residually finite then G = N∗θ
need not be residually finite, in contrast to semidirect products G = N oα Z.
We adapt their construction slightly to obtain an example where the only finite
quotients of G = N∗θ are cyclic. However it was shown in [3] using deep results in
algebraic geometry that we do have residual finiteness when the base N of N∗θ is
a finitely generated free group Fr. We finish by presenting an elementary proof of
this in a special case: when the map θ induces an injective homomorphism on the
abelianisation Fr/[Fr, Fr]. The proof generalises to an ascending HNN extension
of any finitely generated group N having a prime p such that N is residually finite
p and the homomorphism that θ induces on the p-abelianisation N/Np[N,N ] is
invertible.

2. Virtual Finite Images

If a group is generated by n elements then any quotient has this property too,
thus no finitely generated group can surject to all finite groups. However we may
ask if every finite group is a virtual image of a given finitely generated group G:
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this means that for any finite group F there is a finite index subgroup H of G (for
which we write H ≤f G) with H surjecting to F . For instance the free group Fn of
rank n has this property when n ≥ 2. Other examples are large groups, where G
is large if there is a finite index subgroup of G which surjects to F2. These include
surface groups π1(Sg), where Sg is the orientable surface of genus g ≥ 2, and (non
abelian) limit groups. This definition of large comes from [16], where a “large”
property of groups is defined to be an abstract group property P such that if H
has P and G surjects to H then G has P , and if H ≤f G then H has P if and only
if G has P . It is shown there that if P is a “large” property satisfied by one finitely
generated group then any large finitely generated group must have P .

Proposition 2.1. Having every finite group as a virtual image is a “large” prop-
erty.

Proof. We just need to show that if H ≤f G and G has every finite group as a
virtual image then so does H.

Suppose that [G : H] = n. Given a finite group F , we have L ≤f G with a
homomorphism θ from L to the direct product F × . . .×F of k copies of F , where
2k > n. Now if A = L ∩H then [L : A] ≤ n and moreover θ(A) also has index at
most n in F × . . . × F . Now consider the projection πi from F × . . . × F to the
ith factor. If πi(θ(A)) = F for any i then we are done because A ≤f H, but if not
we have that |πi(θ(A))| ≤ |F |/2 for all i, giving |θ(A)| ≤ (|F |/2)k so that θ(A) has
index at least 2k in F × . . .× F , which is a contradiction. �

This property is also considered in [13] Chapter 3 under the title of having
every finite group as an upper section (where a section of G is a quotient H/N
of a subgroup H of G, and upper means that N , hence H, has finite index in
G). We will use the two phrases interchangeably throughout. Theorem 3.1 of this
book, which is originally Theorem 1.1 in [17], states that if a finitely generated
group G does not have every finite group as an upper section then G can have at
most exponential subgroup growth type, whereas free groups and large groups have
superexponential subgroup growth of type nn. To define these terms, let an(G) be
the number of index n subgroups of G and sn(G) = a1(G) + . . . + an(G). If G is
finitely generated then an(G) is finite for all n ∈ N. We say that G has exponential
subgroup growth type if there exist a, b > 0 such that sn(G) ≤ ean for all large
n and sn ≥ ebn for infinitely many n (and more generally growth of type f(n) by
replacing en with f(n)).

Thus having subgroup growth type which is bigger than exponential, meaning

that lim sup(
logsn(G)

n ) is infinite, is a major restriction as it implies that every finite
group is an upper section. However it is also shown in this book that there exist
finitely generated groups with exponential or slower subgroup growth type which
have every finite group as an upper section. This is done in Chapter 13 Section 2
by considering profinite groups which are the product of various alternating groups
and then taking finitely generated dense subgroups.

We can also count subgroups with a specific property, such as being maximal,
normal or subnormal. Another related result, which is Theorem 3.5 (i) in the same
book and from [4] Theorem 1.1, states that if G does not have every finite group
as an upper section then G has polynomial maximal subgroup growth. Again the
converse is not true, with similar examples verifying this.
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Suppose that H is a subgroup of G (with both finitely generated) and H has
every finite group as an upper section. If H has infinite index in G then one would
not expect that this property would transfer across to G, for instance if G is an
infinite simple group containing a non abelian free subgroup then G has no finite
images at all except for the trivial group I = {e}. However there is one obvious
situation when this can be done.

Proposition 2.2. Suppose that H ≤ G and for any finite index normal subgroup
K of H there exists a finite index normal subgroup N of G such that H ∩N = K.
If H surjects to the finite group F then G has F as a virtual image.

Proof. This is simply because if K �f H with H/K ∼= F and H ∩ N = K for
N �f G then NH/N ∼= H/K with NH ≤f G. �

Corollary 2.3. Suppose H ≤ G and H has every finite group as an upper section.
If for all M ≤f H and K �f M we have L�f G such that L ∩M = K then G has
every finite group as an upper section.

Proof. If we have a finite group F and M ≤f H with K�fM such that M/K ∼= F
then LM also has F as a finite quotient by Proposition 2.2. �

In [12], Theorem 2.1 states that if H is a finitely generated subgroup of G with
H having every finite group as an upper section and G is LERF, that is every
finitely generated subgroup of G is an intersection of finite index subgroups, then
G also has every finite group as an upper section. However on examining the proof,
it seems that the LERF property is rather stronger than required for the result to
hold and so we offer a version of this result with essentially the same proof but with
a different hypothesis.

Theorem 2.4. Suppose that H ≤ G and for any finite index normal subgroup K
of H there exists a finite index subgroup L of G, but not necessarily normal in G,
such that H ∩L = K. If H surjects to the finite group F then G has F as a virtual
image.

Proof. On being given K �f H with H/K ∼= F and L ≤f G with L ∩ H = K
we let ∆ be the intersection of hLh−1 over all h ∈ H. As ∆ is a subgroup, it is
invariant under conjugation by its own elements, and by elements of H too as this
just permutes the terms in the intersection. Thus ∆ is normal in the subgroup
generated by ∆ and H, which therefore is ∆H. We have ∆H/∆ ∼= H/(∆∩H) and
we now show that ∆∩H = K: certainly ∆ ≤ L so ∆∩H ≤ L∩H. Conversely we
need to show that for any h ∈ H and k ∈ K we have h−1kh ∈ L, but this is true
because K is normal in H and is contained in L. Finally ∆ ≤f G because L ≤f G
implies that L ∩H ≤f H, with the elements of L ∩H conjugating L to itself. �

Corollary 2.5. Suppose H ≤ G and H has every finite group as an upper section.
If for all M ≤f H and K �f M we have L ≤f G such that L∩M = K then G has
every finite group as an upper section.

Proof. This is the same proof as Corollary 2.3 but applying Theorem 2.4 instead
of Proposition 2.2. �
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The Long-Reid result in [12] follows because if G is LERF and there is a finitely
generated subgroup M of G with K�fM such that M/K is the finite group F then
we can find L ≤f G with L∩M = K. This is done by taking coset representatives
e = m1,m2, . . . ,mn of K in M and finding Li ≤f G for 2 ≤ i ≤ n with K ≤ Li
but mi /∈ Li, then intersecting the Li.

3. Semidirect Products

In order to apply Corollary 2.5, one needs a wide class of groups where not all
members are (or are known to be) large or LERF. Semidirect products provide such
a class. If we have groups N and H with an homomorphism θ : H → Aut(N) then
we can form the semidirect product G = N oθ H with G/N ∼= H. Given a group
G we may be able to see it as an internal semidirect product, by finding subgroups
N and H of G, with N normal, where NH = G and N ∩H = I. In this case the
homomorphism θ is given by the conjugation action of H on N .

One nice feature of semidirect products G = NH is that their subgroup structure
is not too complicated. If L is a subgroup of G then it might not be the case that
L = SR for S ≤ N and R ≤ H: indeed this is not even true for direct products.
However finite index subgroups of a semidirect product are “not too far away” from
having this structure.

Proposition 3.1. Suppose that G = N oθ H. Then any finite index subgroup
L ≤f G contains a finite index subgroup of the form S oθ R, where S ≤f N and
R ≤f H. Moreover if N is finitely generated and we are given any finite index
subgroup S ≤f N then we can find L ≤f G with L ∩N = S.

Proof. Given L ≤f G we have that S = L ∩ N has finite index in N and is also
normal in L. On setting R = L∩H we have that S is preserved under conjugation
by R so SR is the subgroup generated by S and R with S � SR, thus SR is also
a semidirect product. Also SR has finite index in G: for this we can assume that
L � G by replacing L with a smaller finite index subgroup which will only reduce
SR. Then on taking left coset representatives ni for S in N and hj for R in H, we
have that any g ∈ G is equal to nh for n ∈ N and h ∈ H, thus also equal to nishjr
for s ∈ S, r ∈ R. But this is equal to nihjs

′r ∈ nihjSR because here S �G.
Now suppose we have S with [N : S] = i and note that the set Si of index

i subgroups of N is finite because N is finitely generated. As H acts on Si by
conjugation, the stabiliser R of S in H has finite index in H and we can form the
finite index subgroup L = S oθ R of G where we restrict θ from R to Aut(S). But
if g ∈ SR ∩ N , so that we have respective elements s, r, n with g = sr = n then
r ∈ N ∩R = I, thus g ∈ S. �

If G = N oH and G is finitely generated then so is H as it is a quotient of G.
However this need not imply that N is finitely generated, so our main interest will
be in semidirect products where H and N (hence G) are finitely generated. If H
has every finite group as a virtual quotient then so does G (indeed this applies if H
is merely a quotient of G, by the correspondence theorem). However we can now
prove the more surprising fact that the same is true with N and H swapped.

Corollary 3.2. If G = N oH with N finitely generated, and N has every finite
group as a virtual quotient then so does G.
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Proof. We need to show that the conditions of Corollary 2.5 are satisfied, where
in the hypothesis H has now become N . Given M ≤f N and K �f M , we can find
R ≤f H such that MR is also a semidirect product by the second part of the proof
of Proposition 3.1. Now on applying this proposition again to MR = M o R, we
obtain L ≤f MR ≤f G with L ∩M = K because M is finitely generated too. �

Notes:
(1) We certainly need N to be finitely generated in Corollary 3.2 as the example in
[2] is a semidirect product G = F∞ o Z where F∞ is a free group of infinite rank
but the only finite quotients of G, and of its finite index subgroups, are cyclic.
(2) Although the conditions of Corollary 2.5 are satisfied for semidirect products
N o H when N is finitely generated, we remark that the conditions in Corollary
2.3 need not be. For instance, take H = Fn with G = Fn oθ Z, M = H and K an
index 2 subgroup of H. If there is L normal in G with L ∩H = K then L ∩H is
the intersection of normal subgroups and so is normal in G too. This means that
tKt−1 = K where t ∈ G generates the factor Z, thus forcing θ(K) = K which need
not be the case.

We now say a few words on largeness and LERF of semidirect products as in the
statement of Corollary 3.2, so that G = N oH with both factors finitely generated
and N has every finite group as a virtual quotient. First if we have a direct prod-
uct G = N ×H, or if H is finite so that N �f G, then the corollary says nothing
new. For a direct product G, if one factor is large then G is large but if N and
H are LERF then N × H need not be, as shown by the example F2 × F2 in [1].
However in both cases virtual quotients of N and of H are also virtual quotients
of G. Moreover if H is finite then G is large or LERF if and only if N is large or
LERF respectively.

Now suppose that H is not normal in G (which is equivalent to G = N o H
not being the direct product of N and H) but is infinite. Let us take H to be
the smallest infinite group Z and N to be a group known to have all finite groups
as virtual images. If N is the free group Fn for n ≥ 2 then Fn o Z need not be
LERF in general by [5], and it is known to be large if it contains Z× Z by [6] but
otherwise this is open. Similarly if N = π1(Sg) for Sg the closed orientable surface
of genus g ≥ 2 then π1(Sg) o Z need not be LERF in general (for instance one
can put together two copies of the above example for Fn o Z so that the resulting
group contains subgroups which are not LERF), and although some groups of this
form have been proved large by geometric considerations, the question of whether
all of these groups are large is very much open too. Thus Corollary 3.2 tells us that
all groups of the form Fn o Z or π1(Sg) o Z have every finite group as a virtual
quotient.

We now look at the reverse situation where G = N oH and G has every finite
group as an upper section, to see what this implies for N or H.

Lemma 3.3. A group G has every finite group as an upper section if and only if
it has infinitely many distinct alternating groups An as upper sections.

Proof. Every finite group F is a subgroup of AN for some N (and hence for all
n ≥ N): this is clear for SN and if the resulting subgroup has odd permutations
then we can increase N by 2 and add a 2-cycle to the odd elements.
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Now for F and N above, suppose that we have L ≤f G with a surjection θ from
L to An for some n ≥ N . As F ≤ An we can pull it back to get θ−1(F ) ≤f L ≤f G
with θθ−1(F ) = F . �

Theorem 3.4. If G = N o H and G has every finite group as an upper section
then either N or H does too.

Proof. We can assume that there is n0 ≥ 5 such that for all n ≥ n0 the group An
is not an upper section of H, as otherwise we are done by Lemma 3.3. Now given
any n which is at least n0, we know there is L ≤f G and a surjection θ : L→ An.
As N �G we have that S = L ∩N � L. Thus θ(S) is normal in An, meaning that
if we can eliminate θ(S) = I we obtain θ(S) = An, and as L ≤f G we get S ≤f N
so An is an upper section of N and we are done by Lemma 3.3 again.

Now if θ(L) = An but θ(S) = I we see that θ factors through L/S ∼= LN/N .
But LN/N is a finite index subgroup of G/N ∼= H, which does not have An as an
upper section. �

We can form repeated semidirect products G = G1 oG2 o . . .oGn for finitely
generated groups Gi, where for this to be defined we would need to bracket all
terms in some way and provide the appropriate homomorphisms. What Corollary
3.2 and Theorem 3.4 show is that no matter how this is done, G has every finite
group as an upper section if and only if at least one of the Gi does.

We also have the following.

Corollary 3.5. If G is a repeated semidirect product of finitely generated groups
G1, . . . , Gn and G has bigger than exponential subgroup growth type then at least
one of the Gi has every finite group as an upper section. Conversely if one of the
Gi has bigger than exponential subgroup growth type then G has every finite group
as an upper section.

Proof. The subgroup growth condition implies that G or Gi has every finite group
as an upper section, so now repeatedly apply Theorem 3.4 or Corollary 3.2 respec-
tively. �

We remark that if G = N o H and N has bigger than exponential subgroup
growth then it is not known whether G does, even when N = Fn and H = Z.

4. Cyclic Covers of Groups and Fibred Manifolds

If we look back to Theorem 2.4 and assume the conditions are satisfied, where
we now replace H with S, we conclude that if S ≤ G and S surjects to the finite
group F then a finite index subgroup of G surjects to F as well. But if we examine
the proof, we see that this subgroup contains S. If we now specialise to the case
where G = N oH for N finitely generated with N = S above then any subgroup
L of G which contains N must be of the form L = N o (H ∩ L), because if l ∈ L
and l = nh for n ∈ N and h ∈ H then h ∈ L too.

We give here a quick alternative proof for semidirect products which can be more
useful for constructive purposes.

Proposition 4.1. If G = N o H for N finitely generated and N surjects to the
finite group F then there exists L ≤f G containing N with L surjecting to F .
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Proof. If K�f N with N/K ∼= F then, as N is finitely generated, we have a finite
index characteristic subgroup C of N which is contained in K. Consequently N/C
surjects to F too and the conjugation action of H on N descends to one on N/C.
As N/C is finite, we take the intersection S ≤f H of all point stabilisers of this
action, so sns−1 = nC for all n ∈ N and s ∈ S. We then let L = NoS and observe
that the surjection from N to F via N/C extends to L by sending all of S to the
identity. �

This result might not be of interest if there is no reason to favour finite index
subgroups of G that contain N over other finite index subgroups. However there is
one setting, motivated by topology, where these subgroups are given an important
rôle. This is when G = N oα Z for α an automorphism of N . If Z is generated by
the element t then we define the cyclic cover Gn of G to be the index n subgroup
〈N, tn〉. We have that Gn � G; indeed we can think of Gn as being the kernel of
the map from G to the cyclic group Cn given by the exponent sum of t modulo n.
If N has a presentation 〈g1, . . . , gk|r1, r2, . . .〉 then a presentation for G would be

〈g1, . . . , gk, t|r1, r2, . . . , tg1t
−1 = α(g1), . . . , tgkt

−1 = α(gk)〉

and for Gn we have

〈g1, . . . , gk, s|r1, r2, . . . , sg1s
−1 = αn(g1), . . . , sgks

−1 = αn(gk)〉

where s = tn.
In particular all of the Gn are generated by k + 1 elements. The connection

with topology is that if N = π1(M), the fundamental group of a d dimensional
manifold M , then on taking a homeomorphism h of M , we can form the d + 1
dimensional manifold which is fibred over the circle S1 with fibre M using h, and
this has fundamental group N oh∗ Z where h∗ is the automorphism of N induced
by h. If d = 2 then N must be the fundamental group of a surface, and if this
surface is compact and orientable then N = Fn for a bounded surface and π1(Sg)
if it is closed. In particular this discussion applies to fibred knots, where N is free
and the cyclic covers take on particular importance. We see that in the case where
G = N oZ, any finite index subgroup L of G that contains N is a cyclic cover, as if
G = 〈N, t〉 then L = 〈N, tn〉 for n the smallest positive integer with tn ∈ L. Thus if
there is a surjection from N to a finite group F then there is also a surjection from
a cyclic cover of G to F . Consequently we see all the finite images of N amongst
the finite images of the cyclic covers of G. We also have:

Corollary 4.2. If the finitely generated group N surjects to the finite group F then
for any G = N oα Z there are infinitely many cyclic covers of G that surject to F .

Proof. On looking at the proof of Proposition 4.1 we see that the cyclic cover Gn
of G surjects to F provided that the automorphism of N/C induced by α satisfies
αn = id. Thus any integer multiple of n works too. �

This observation has various consequences if we are interested in (non abelian)
finite simple images of groups, as by the classification of finite simple groups all of
them are 2-generated.

Corollary 4.3. If the finitely generated group N surjects to the free group F2

and G is any group of the form N oα Z then for any finite list of finite simple
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groups S1, . . . , Sl there exist infinitely many cyclic covers of G which surject to all
of S1, . . . , Sl.

Proof. As N surjects to F2 it consequently surjects to each of the Si. Applying
Corollary 4.2 gives us an integer ni such that any cyclic cover of G having index
0 modulo ni surjects to Si. Thus we can take any multiple of the lowest common
multiple of n1, . . . , nl. �

Again applications are provided by compact 3-manifolds which are fibred over
the circle, as if the fibre is a surface of negative Euler characteristic then the fun-
damental group is either (non abelian) free, a closed orientable surface group (of
genus at least 2), or a closed non-orientable surface group (of genus g ≥ 3) with
fundamental group having a presentation 〈x1, . . . , xg|x2

1x
2
2 . . . x

2
g〉. This also surjects

to F2 unless g = 3 (see [14] page 52), although even in this case we have every finite
simple group as a quotient (for instance by the Corollary of [11] which implies that
every finite simple group has a generating pair where one element is an involution).

In particular if M is a compact 3-manifold (with or without boundary) that
fibres over the circle and the fibre has negative Euler characteristic then any finite
simple group is a quotient of a cyclic cover of M .

We now say a few words on what is known about the finite simple images of the
fundamental group of an orientable hyperbolic 3-manifold M of finite volume. It is
certainly true that M has infinitely many images of type PSL(2,F) for F a finite
field, coming from the fact that π1(M) is a subgroup of PSL(2,C). However a lot
less seems to be known about other types. There exist examples M , both closed and
with boundary, where π1(M) surjects to F2 and so all finite simple groups appear. A
range of results are obtained in [8] which fixes a finite simple group F and considers
the question of whether π1(M) has F as a quotient from a probabilistic point of
view. In particular the authors take a genus g ≥ 2 and define the concept of a
manifold M of a random Heegaard splitting of genus g and complexity L. There
are only finitely many of these for fixed g and L so the probability that M has a
particular property, such as π1(M) surjecting to a finite group F , is well defined. It
is shown in Proposition 6.1 that for any F this probability tends to a limit p(F, g)
as L tends to infinity. Moreover when F is any non abelian finite simple group,
Theorem 7.1 obtains the limit of p(F, g) as g tends to infinity: in particular it is
strictly between 0 and 1.

But if we specialise to a family of simple groups not involving PSL(2,F) then
things are less clear: for instance Question 7.6 of this paper asks whether every
closed (or finite volume) hyperbolic 3-manifold has a quotient An for some n ≥
5. We can have variants on this question: does every closed (or finite volume)
hyperbolic 3-manifold have a quotient An for infinitely many n or all but finitely
many n? We do not know of a specific example proven not to have either one of
these properties.

We did however locate an example of a closed hyperbolic 3-manifold which sur-
jects to all but finitely many, but not all An. In [7] the extended [3, 5, 3] Coxeter
group Γ, which is now known to be the fundamental group of the smallest closed
non orientable hyperbolic 3-orbifold, is studied along with its orientable double
cover Γ+ (the smallest orientable example). Theorem 4.1 in this paper states that
for all large n, An and Sn are quotients both of Γ and of Γ+. This is proved by
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an intricate argument that links together copies of particular permutation repre-
sentations of each group in order to form transitive permutation representations
of arbitrarily large degree. However it is easily checked, using the given presenta-
tion and MAGMA or GAP, that Γ+ does not surject to small An. If one wants a
3-manifold, rather than a 3-orbifold, with this property then they show that the
group Σ60a with index 60 in Γ+ is torsion free, thus H3/Σ60a is a closed orientable
hyperbolic 3-manifold. Again the computer tells us that it does not surject to An
for n = 5, 6, 7, 10 (though it does for 8 and 9). As for large n, any homomorphism
sending Γ+ to An maps Σ60a to a subgroup of index at most 60, which must be
An for n ≥ 61. In particular this observation shows that if a group G surjects to
infinitely many An, or all but finitely many An, then any finite index subgroup has
this property too.

Another point of interest in this question is provided by [13] Theorem 3.5 (iii),
originally Corollary II (ii) in [18], which states that if a finitely generated group
surjects to only finitely many groups from all An and Sn then the growth type
for the number of maximal subgroups of index n is at most n

√
n. Now for the

free group F2 it is nn (the same growth type as for all subgroups of index n) and,
as maximal subgroups pull back to maximal subgroups under any surjection by
the correspondence theorem, any hyperbolic 3-manifold with a surjection from its
fundamental group to F2 must also have this property. Thus if there exist hyperbolic
3-manifolds with only finitely many surjections to An and Sn, we would witness
two markedly different types of growth of a natural quantity purely within the class
of hyperbolic 3-manifolds.

5. Ascending HNN Extensions

One generalisation of a semidirect product of the form N oα Z is an ascend-
ing HNN extension N∗θ. Whereas α must be an automorphism of N , we only
require that θ : N → N is an injective homomorphism, not necessarily surjective
(although N needs to have proper subgroups isomorphic to itself, namely N is non
co-Hopfian, in order for existence of a θ which is not an automorphism). If 〈X|R〉
is a presentation for N then, on taking a stable letter t we obtain the presentation
〈X, t|R, txt−1 = θ(x)∀x ∈ X〉.

Ascending HNN extensions sometimes have comparable properties to semidirect
products, so we can ask whether N having all finite groups as virtual images implies
the same for N∗θ. In fact we can even ask the same question for any HNN extension
in which N is the base. It is certainly not true for non ascending HNN extensions,
which is where we have an isomorphism θ : A → B of the associated subgroups A
and B of N , with both A and B proper subgroups. To see this, let N = 〈x, y|x3 =
y2〉 which is the fundamental group of the trefoil knot, thus has every finite group
as a virtual image (for a number of reasons, for instance by Corollary 3.2 as the
knot is fibred). But on taking A = 〈x〉 and B = 〈y〉 with θ(x) = y we get

N∗θ = 〈x, y, t|txt−1 = y, x3 = y2〉

which on eliminating y is seen to be the famous non Hopfian Baumslag Solitar
group BS(2, 3) whose only finite quotients are metabelian.

Unfortunately a similar phenomenon can happen for ascending HNN extensions,
as was demonstrated in [19], where the ascending HNN extension Γ = G∗σ of the
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Grigorchuk group G formed by using the Lysenok endomorphism σ is shown to have
all finite images metabelian: indeed G maps to a quotient of (C2)2 in any finite
image of Γ. If a group Γ has every finite image metabelian then the finite residual
RΓ (the intersection of all finite index subgroups) contains the second derived group
Γ′′. But as RΓ = R∆ for any ∆ ≤f Γ, we would have ∆′′ ≤ Γ′′ ≤ R∆ so all virtual
finite quotients of Γ are metabelian too. Now the Grigorchuk group G is a 2-group
so certainly does not have every finite group as a virtual image: only finite 2-groups,
which must be nilpotent, can appear here. But G has a much wider range of finite
images than the finite index subgroups of Γ: if G had only metabelian finite images
then it would be metabelian itself, as G is residually finite so RG = I. However
this is not true as G is a finitely generated infinite torsion group. In particular Γ
cannot be metabelian and so this paper gives us an example of a non residually
finite ascending HNN extension where the base is finitely generated and residually
finite. This is in contrast to semidirect products where Malce’ev showed that if
N is finitely generated then N o H is residually finite if both N and H are too.
The proof is essentially Proposition 3.1, although we again remind ourselves of the
example in [2] showing that this result fails if N is not finitely generated.

This suggests that if we are given a finitely generated residually finite group N
which has every finite group as a virtual quotient then it seems unreasonable to
expect that an ascending HNN extension N∗θ will have this property too unless we
already know that the extension is residually finite as well. One case where this has
been established is in [3] which shows that ascending HNN extensions of free groups
Fr are residually finite. In contrast to the quick proof for semidirect products, this
argument is deep and highly non trivial, involving material in algebraic geometry
(further use is made of this area, as well as some model theory, to generalise the
conclusion to ascending HNN extensions of finitely generated linear groups). Whilst
we do not invoke this theorem to establish that ascending HNN extensions of free
groups Fr have every finite group as a virtual quotient (which we leave open), in
the course of looking for a proof we were able to come up with a considerable
simplification of the residually finite result for certain endomorphisms; those that
induce an injective map on the abelianisation of Fr.

To provide the necessary background, first note that any ascending HNN exten-
sion Γ = G∗θ with stable letter t has an associated homomorphism χ : Γ→ Z given
by the exponent sum of t in an element of Γ. Now Γ is also a semidirect product
K o Z where K = ker(θ) but K = ∪i∈Nt−iGti which is an ascending union, and a
strictly ascending union if θ is not surjective (which means that K is not finitely
generated). Thus any element not in K survives under some homomorphism to a
finite cyclic group. Moreover any element in K is conjugate to one in G, so if a
conjugate of g ∈ G is in RΓ then g will be as well because RΓ � Γ.

Consequently if G is residually finite, in order to establish residual finiteness
for an ascending HNN extension Γ = G∗θ we need only consider the non identity
elements x of G and look for some finite index subgroup ∆ ≤ Γ with x /∈ ∆. We
would like to use the fact that we have finite index subgroups H of G with x /∈ H,
for instance we would be done if such an H somehow gave rise to a ∆ satisfying
∆∩G = H. However in the strictly ascending situation, there are severe restrictions
on which H ≤f G are the intersection with G of a finite index subgroup of Γ.
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Proposition 5.1. If Γ = G∗θ is an ascending HNN extension of a group G and
H ≤f G then there exists ∆ ≤f Γ with ∆∩G = H if and only if there is l > 0 with
θ−l(H) = H.

Proof. Suppose on being given H we have such a ∆. Being of finite index implies
there is l > 0 with tl ∈ ∆. As any h ∈ H is in ∆, we have that tlht−l = θl(h) is in
∆ but also in G, so θl(H) ≤ H, implying H ≤ θ−l(H). Now take g ∈ θ−l(H), so
that g ∈ G of course. We have g = t−lh0t

l for some h0 ∈ H, and tl, h0 ∈ ∆ implies
that g is too, thus g ∈ H.

Conversely it is shown in [6] Proposition 4.3 (iv) by a short but careful argument
that if H is any finite index subgroup of G then 〈H, t〉 ≤f Γ. Now, just as for
semidirect products over Z, we have cyclic covers Γn = 〈G, tn〉 of Γ which are
themselves ascending HNN extensions with s = tn as stable letter, formed by using
the endomorphism θn. Thus if we have H = θ−l(H) = θ−2l(H) = θ−3l(H) = . . .
then set ∆ = 〈H, s = tl〉 ≤f Γl = 〈G, s〉 ≤f Γ. It is clear that H ≤ ∆ ∩ G so let
g ∈ ∆ ∩ G. As θl(H) ≤ H, we have that ∆ is also an ascending HNN extension
with stable letter s, by restricting θl to H. This means that any element of ∆ can
be expressed in the form s−phsq for p, q ≥ 0 and h ∈ H. Now if g = s−phsq then
we must have p = q as g is in the kernel of the associated homomorphism (which
is just restriction to ∆ of that for Γ). Thus θpl(g) = spgs−p ∈ H, meaning that
g ∈ θ−pl(H) = H. �

As for finding such subgroups which are invariant under pullback by (a power of)
θ, it is shown in [6] Theorem 4.4 that if G is finitely generated (which henceforth
we will assume) then on repeatedly pulling back H via θ, we obtain θ−k(H) =
θ−k−l(H) for some k ≥ 0 and l > 0. This means that on setting L = θ−k(H) we
have θ−l(L) = L. However it could well be that we find L is all of G anyway. What
is required is a good supply of fully invariant subgroups, meaning that θ(L) ≤ L
for any endomorphism θ, which implies that L is contained in θ−1(L).

Now further suppose that L has finite index in G. In this case we would have
L = θ−1(L) if and only if [G : L] = [G : θ−1(L)]. In fact this happens if and
only if θ(G)L = G. This follows because the right hand side is equal to [θ−1θ(G) :
θ−1(L∩θ(G))], and as θ(G) and L∩θ(G) are obviously in the image of θ, this index
is preserved on removing θ−1 to get [θ(G) : L ∩ θ(G)] = [θ(G)L : L].

Possibilities for these fully invariant subgroups are, given a prime p, the derived
p-series and the lower central p-series, both of which intersect in the identity in the
case of a free group Fr and have first term F pr [Fr, Fr] with quotient (Cp)

r.

Theorem 5.2. If Fr is the free group of rank r ≥ 2 and θ is an injective endomor-
phism of Fr then consider the induced homomorphism of abelianisations θ : Zr → Zr
given by θ(x)[Fr, Fr] = θ(x[Fr, Fr]). If det(θ) 6= 0 then the ascending HNN exten-
sion Γ = Fr∗θ is residually finite.

Proof. Given any prime p, we can consider the endomorphism θp of (Cp)
r by

reducing θ mod p. If det(θ) 6= 0 when considered as an endomorphism of Zr then,
by taking a prime p which does not divide det(θ) we have that θp is invertible.

Thus in the case where G is the free group Fr, on being given a non identity
element x of G we choose a term Li of the derived or other appropriate p-series
for Fr where x /∈ Li. Then θ(Li) ≤ Li �f G, allowing us to take the finite index
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subgroup Si = 〈Li, t〉 of Γ. We are done if we can show θ(G)Li = G because then we
would have θ−1(Li) = Li by the above, so we can apply Proposition 5.1 to conclude
that Si ∩ G = Li and x /∈ Si. Now θ(G)Li = G if and only if θ(G)Li/Li = G/Li
but θ(G)Li/Li is the image of θ(G) under the quotient map qi from G to G/Li.

We certainly have that qi(θ(G)) = G/Li if i = 1 in which case L1 = Gp[G,G],
since by our assumption on p we have that q1θ(G) = θp((Cp)

r) is all of (Cp)
r =

G/L1. However as G/Li is a finite p-group, we can utilise the Frattini subgroup
(intersection of all maximal subgroups). If this subgroup is finitely generated then a
set generates the whole group if and only if it generates the group when quotiented
by the Frattini subgroup. Now in the case of a finite p-group P , the Frattini
subgroup is P p[P, P ]. Thus for any i we have that the Frattini subgroup of P =
G/Li is the image of Gp[G,G] under qi, so the quotient of G/Li by this subgroup
is G/(Gp[G,G]Li). But Li ≤ Gp[G,G] = L1 and so the image of θ(G) in G/Li is
all of G/Li. �

We have written out this proof so that it applies in more general situations:

Corollary 5.3. If G is any finitely generated group which is residually finite p and
θ is an injective endomorphism of G then the associated HNN extension G∗θ is
residually finite provided that the induced endomorphism of G/Gp[G,G] is invert-
ible.

Proof. The residually finite p condition is equivalent to the derived or lower central
p-series intersecting in the identity. Now the proof proceeds as before and the
invertible condition is used to invoke the Frattini argument at the end. �

There are a range of groups which are residually finite p, for instance any finitely
generated linear group in characteristic 0 is virtually residually finite p for all but
finitely many primes p (again due to Malce’ev), thus we can find examples amongst
the finite index subgroups of any such linear group. We remark though that a nec-
essary condition for a non-cyclic finitely generated group G to be residually finite p
is that G surjects to Cp ×Cp, as otherwise all finite p-images of G are cyclic which
would imply in this case that G was too.

Example: The finitely presented ascending HNN extension Γ = G∗σ of the Grig-
orchuk group G = 〈a, c, d〉 which is shown to be non residually finite in [19] is
formed using the injective endomorphism σ, where σ(a) = aca, σ(c) = dc, σ(d) = c.
As G/G2[G,G] = (C2)3, generated by the images of a, c, d, we see that the induced
homomorphism on G/G2[G,G] is not injective, with ad in the kernel. (If it were
then Corollary 5.3 would give us the first example of a finitely presented, residually
finite group which is not virtually soluble nor contains F2. This is because G is a
2-group and residually finite, so residually finite 2.)

In fact we can adjust Γ slightly to come up with a group which is “even less
residually finite”. Any ascending HNN extension must surject to Z and so have
some finite index subgroups, namely the cyclic covers. However here we have an
example where these are all the finite index subgroups, even though the base is
finitely generated and residually finite.
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Proposition 5.4. Let G be the Grigorchuk group and [G,G] its commutator sub-
group of index 8. Then the only finite index subgroups of the ascending HNN ex-
tension ∆ = [G,G]∗σ, where we restrict σ to [G,G], are the cyclic covers.

Proof. We have that ∆ is a finite index subgroup of Γ = G∗σ by [6] Proposition
4.3 (iv); in fact it can be checked that ∆ has index 4. Moreover it is shown in [19]
that in any finite quotient of Γ, the base G maps to an abelian subgroup and so
[G,G] maps to the identity. Suppose there exists a finite index normal subgroup N
of ∆ such that the image of [G,G] is non trivial in ∆/N . Although N need not be
normal in Γ, we can find M �f Γ with M ≤ N , so that the image of [G,G] is non
trivial in Γ/M which is a contradiction.

This means that every finite index normal subgroup of ∆ contains [G,G] and
hence also the kernel of the associated homomorphism for ∆ = [G,G]∗σ, thus the
only finite quotients of ∆ are cyclic and the only finite index subgroups are the
cyclic covers. �

Taking the 2-generator 4-relator presentation for Γ as given in [10] Section 4, we
can use MAGMA to identify and obtain a finite presentation for ∆ which is

〈s, u|u−1s2u−1su−1susu−1s−1us−1us−1, (su−1s)4, [s, u]4, (su−1s−1us−2u)4〉

for u = asasa, where a is as above in the Grigorchuk group and s is the inverse of
the stable letter in the HNN extension.

Example: In [9] the injective endomorphism θ(a) = b, θ(b) = a2 of the rank two
free group F (a, b) is considered. The resulting ascending HNN extension F (a, b)∗θ
is shown to be a 1-relator group 〈a, t|t2at−2 = a2〉 which is non linear (by using
results of Wehrfritz) but residually finite (using [3]). Here we see the conditions
in Theorem 5.2 are satisfied because det(θ) = −2, so we can use any prime but
2 to complete a proof that F (a, b)∗θ has these properties without recourse to the
sophisticated results in [3].
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