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ASYMPTOTIC EXPANSION FOR THE SUM OF

INVERSES OF ARITHMETICAL FUNCTIONS

INVOLVING ITERATED LOGARITHMS

Hacène Belbachir, Djamel Berkane

A generalized formula is obtained for the sum of inverses of the prime counting

function for a large class of arithmetical functions related to the iterated

logarithms.

1. INTRODUCTION AND MAIN RESULT

Let π(x) be the number of primes not exceeding x. In 2000, using the asymp-
totic formula

(1) π(x) =
x

log(x)

(

m−1
∑

k=0

k!

logk(x)
+O

(

1

logm(x)

)

)

,

L. Panaitopol [4] obtained

1

π(x)
=

1

x

(

log(x)− 1−
k1

log(x)
− · · · −

km

logm(x)
+O

(

1

logm+1(x)

))

,

where m ≥ 1 and {kj}j is the sequence of integers given by the recurrence relation

kn + 1! kn−1 + 2! kn−2 + · · ·+ (n− 1)! k1 = n · n! .

2000 Mathematics Subject Classification. 11N37, 11N05.

Keywords and Phrases. Asymptotic expansion, arithmetical function, prime number theorem.

80



Asymptotic expansion for the sum of inverses of an arithmetical function. . . 81

Two years later, A. Ivić [3] proved that

∑

2≤n≤x

1

π(n)
=

1

2
log2(x) − log(x) − log log(x) + C

+
k2

log(x)
+ · · ·+

km

(m− 1) logm−1(x)
+O

(

1

logm(x)

)

,

where C is an absolute constant not depending on m.

In 2009, the first author and F. Bencherif [1] derived an asymptotic formula
for the sum of reciprocals of a large class of arithmetic functions having the following
expansion

f(n) =
n

log(n)

(

a0 +
a1

log(n)
+ · · ·+

am−1

logm−1(n)
+O

(

1

logm(n)

))

, with a0 6= 0,

they obtained

∑

2≤n≤x

′ 1

f(n)
=

b0

2
log2(x) + b1 log(x) + b2 log log(x) + C0

−
b3

log(x)
− · · · −

bm+1

(m− 1) logm−1(x)
+O

(

1

logm(x)

)

,

where
∑

2≤n≤x

′ 1

f(n)
is a sum restricted to integers n for which f(n) 6= 0 and bj =

Aj(a0, a1, . . . , aj) for 0 ≤ j ≤ m+ 1, with

A0(t0) =
1

t0
, A1(t0, t1) = −

t1

t 2
0

,

An(t0, t1, · · · , tn) =
(−1)n

t n+1

0

.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t1 t2 · · · · · · tn
t0 t1 · · · · · · tn−1

0 t0 t1 · · · tn−2

0
. . .

. . .
. . .

...
0 · · · 0 t0 t1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (n ≥ 1) .

More recently, the authors in [2] studied the arithmetical function nK (n) ,
where

K (x) := max {k ∈ N / p1p2 · · · pk ≤ x} ,

and pk is the kth prime number. Using the asymptotic expansion

(2) K(x) =
log(x)

log log(x)

(

m
∑

j=0

j!

[log log(x)]
j
+O

(

1

[log log(x)]
m+1

)

)

,
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they get a similar result to the one in A. Ivić [3], with three levels of logarithmic
iterations x, logx, log logx,

∑

2≤n≤x

1

nK(n)
=

1

2
log2 log(x)− log log(x)− log log log(x) + C1

+
k2

log log(x)
+ · · ·+

km

(m− 1) logm−1 log(x)
+O

(

1

logm log(x)

)

,

where C1 is an absolute constant not depending on m.

Let s ≥ 0 be an integer. We define the function

£s(x) :=

s
∏

i=0

logi(x), with logi(x) = log log . . . log
︸ ︷︷ ︸

(x)

i times

and log0(x) = x.

For s = 2, £2(x) = x log(x) log log(x).

Let fs be the arithmetical function admitting, for all m ≥ 1, the following
asymptotic formula

(3) fs(n) =
£s(n)

logs+1
(n)

{

m−1
∑

i=0

ai

logis+1(n)
+O

(

1

logms+1
(n)

)

}

, a0 6= 0.

For s = 0 and ai = i!, we obtain (1), which corresponds to π (n) . For s = 1
with ai = i!, we find (2), which corresponds to nK (n) .

Considering the above background, here is our main result:

Theorem 1. For all integers m ≥ 1 and s ≥ 0, we have

∑

n≤x

′ 1

fs(n)
=

δ0

2
log2s+1

(x) + δ1 logs+1(x) + δ2 logs+2(x) + Cs

−
δ3

logs+1(x)
− · · · −

δm+1

(m− 1) logm−1

s+1
(x)

+O

(

1

logms+1
(x)

)

,

where
∑

n≤x

′ 1

fs(n)
is a sum restricted to integers e(s) < n ≤ x for which fs(n) 6= 0,

Cs is an absolute constant not depending on m, {δi}i is the sequence given by the
recurrence relation

a0δn + a1δn−1 + · · ·+ anδ0 = 0, a0δ0 = 1,

and e (s) := exp exp . . . exp
︸ ︷︷ ︸

(0)

s times

.

For ai = i! and s = 0 and s = 1, respectively we find the results of A. Ivić

[3] and H. Belbachir and D. Berkane [2].
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2. LEMMAS AND PROOF OF THE MAIN RESULT

Let {δi}i be the sequence of real numbers defined by expanding the following
expression of the rational function ∆, for y > 0 we consider

∆(y) :=

(

m
∑

i=0

ai

yi+1

)(

m+1
∑

i=0

δi

yi−1

)

, m ≥ 1,

such that a0δ0 = 1, and terms with
1

yi
, 1 ≤ i ≤ m vanish.

Then, when y → ∞, we obtain

(4) ∆ = 1 +O

(

1

ym+1

)

.

Lemma 1. The coefficient δn, n ≥ 1, is given by the relation

δn =
1

an+1

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 a1 . . . an−1 an
0 a0 . . . an−2 an−1

...
...

. . .
...

...
0 0 . . . a0 a1
1 0 . . . 0 a0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Proof. From the definition of ∆(y), we notice that the vector δ = (δ0, ..., δn), is
the unique solution to the following Cramer’s system



























a0δn + a1δn−1 + · · ·+ anδ0 = 0
a0δn−1 + · · ·+ an−1δ0 = 0

...
a0δ1 + a1δ0 = 0

a0δ0 = 1.

�

Lemma 2. For n sufficiently large, we have

fs(n) =
£s(n)

δ0 logs+1
(n) + δ1 + ε(n)

,

where lim
n→∞

ε(n) = 0.

Proof. From (3), we have

(5) fs(n) = £s(n)

(

m
∑

j=0

aj

logj+1

s+1
(n)

)

+O

(

£s(n)

logm+2

s+1
(n)

)

,

and from (4) it follows

(6)

m
∑

j=0

aj

yj+1
=

1 +O
(

1

ym+1

)

δ0y +
m+1∑

j=1

δj

yj−1

=
1

δ0y +
m+1∑

j=1

δj

yj−1

+O

(

1

ym+2

)

.
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The substitution of y = logs+1
(n) in (6) and in relation (5) gives

fs(n) =
£s(n)

δ0 logs+1(n) + δ1 +
δ2

logs+1
(n)

+
δ3

log2s+1
(n)

+ · · ·+
δm+1

logms+1
(n)

(7)

+O

(

£s(n)

logm+2

s+1
(n)

)

.

Thus we can write

fs(n) =
£s(n)

δ0 logs+1(n) + δ1 + ε(n)
,

with ε(n) = O
(

1

logs+1
(n)

)

from which it follows that limn→∞ ε(n) = 0.

The case s = 0 and ai = i!, gives the approximation given by L. Panaitopol

[4],

π (n) =
n

log(n)− 1− ε (n)
. �

Proof of the main result. Simplifying formula (7), we can write for all m ≥ 1,

fs(n) =
£s(n)

δ0 logs+1
(n) + δ1 +

δ2

logs+1
(n)

+
δ3

log2s+1
(n)

+ · · ·+
δm+1

(
1 + εm(n)

)

logms+1
(n)

,

with

εm(n) �m

1

logs+1(n)
.

Then, for all m ≥ 1 and all n > e(s), we obtain

1

fs(n)
=

1

£s(n)

(

δ0 logs+1(n) + δ1 +
δ2

logs+1(n)

+
δ3

log2s+1(n)
+ · · ·+

δm+1

(

1 + εm(n)
)

logms+1
(n)

)

,

and by summation, we obtain

(8)
∑

n≤x

′
1

fs(n)
= A1 +A2 +A3 +

m
∑

r=2

Br +
∑

e(s)<n≤x

δm+1εm(n)

£s(n) log
m
s+1(n)

,

with

A1 =
∑

e(s)<n≤x

δ0 logs+1(n)

£s(n)
, A2 =

∑

e(s)<n≤x

δ1

£s(n)
,

A3 =
∑

e(s)<n≤x

δ2

£s(n) logs+1(n)
, Br =

∑

e(s)<n≤x

δr+1

£s(n) log
r
s+1(n)

, 2 ≤ r ≤ m.
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Let us evaluate these sums. First we can notice that the functions involved
in the previous sums are all positive and decreasing for a given constant ω ≥ e(s).
Let’s compose for A1,

∑

bωc<n≤x

logs+1(n)

£s(n)
=

∫ x

dωe

logs+1(t)

£s(t)
dt+O

(

logs+1(x)

£s(x)

)

.

Thus there is a constant α1 which includes the sum
bωc∑

n=2

logs+1
(n)

Ls(n)
such that

A1 =
δ0

2
log2s+1(x) + α1 +O

(

logs+1
(x)

£s(x)

)

.

Using similar argument, we also obtain

A2 = δ1 logs+1(x) + α2 +O

(

1

£s(x)

)

,

A3 = δ2 logs+2(x) + α3 +O

(

1

£s(x) logs+1(x)

)

,

Br =
−δr+1

(r − 1) logr−1

s+1(x)
+ βr +O

(

1

£s(x) log
r
s+1

(x)

)

.

As εm(n) is bounded and the series

∑

n>e(s)

1

£s(n) log
m
s+1(n)

,

is convergent for all m ≥ 2 (Bertrand’s series), with the sum noted Sm, we deduce
that

∑

e(s)<n≤x

δm+1εm(n)

£s(n) log
m
s+1

(n)
= Sm +O

(

1

logms+1
(x)

)

.

Putting together the above expression in (8) we infer that

∑

n≤x

′ 1

fs(n)
=

δ0

2
log2s+1(x) + δ1 logs+1(x) + δ2 logs+2(x)

+ α1 + α2 + α3 +
m
∑

r=2

βr + Sm

−
δ3

logs+1(x)
− · · · −

δm+1

(m− 1) logm−1

s+1 (x)
+O

(

1

logms+1
(x)

)

.

Setting Cs = α1 + α2 + α3 +
m∑

r=2

βr + Sm we find the formula mentioned in

the main Theorem. This constant is independent of the value of m because the

difference between two developments of
∑

n≤x

′ 1

fs(n)
is a quantity which is absorbed

by the roundness when x → +∞.
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3. A. Ivić: On a sum involving the prime counting function. Univ. Beograd. Publ.

Elektrotehn. Fak. Ser. Mat., 13 (2002), 85–88.

4. L. Panaitopol: A formula for π(x) applied to a result of Koninck-Ivić. Nieuw Arch.
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