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iAbstract—Access to the fine spatial resolution has always 

been a hotspot in digital imaging. One way to improve 
resolution is to use signal post-processing techniques. In this 
study, an improved multi-frame image super-resolution (SR) 
algorithm is proposed. The objective function should be 
minimized consists of a data error term, a regularization term 
and a regularization parameter. Based on the bilateral-total-
variation (BTV) regularization, in the proposed method on one 
hand, the data error term incorporates frames with high 
accuracies in the reconstruction process, where an indicator 
weights each frame proportional to the frame error. On the 
other hand the regularization parameter is updated in each 
iteration based upon the Morozov’s discrepancy principle. 
Iterative adjustment of the regularization parameter 
guarantees the SR solution to satisfy discrepancy principle. 
Visual evaluation and also quantitative measurements show 
that the performance of the proposed algorithm is better than 
of the several state-of-the-art methods. 
 

Index Terms—image processing, image reconstruction, 
maximum a posteriori, spatial resolution, statistical analysis. 

I. INTRODUCTION 

The spatial resolution of an imaging system is always 
affected by hardware and physical constraints which lead to 
generate low-resolution (LR) images or sequence. However, 
in most applications high-resolution (HR) images are 
required and often desired. On the other hand, once an 
imaging system is manufactured, modifying the imaging 
hardware is not an available choice, thus highlighting a need 
for an image post-processing technique. One of these 
techniques is called super-resolution (SR) reconstruction 
which is a process that aims to fuse multiple LR images to 
compose a HR image. Generally, the relative sub-pixel 
motion between LR frames provides some redundant 
information which can be combined to produce a HR image. 
In SR literature, reconstruction-based algorithms are well 
developed in spatial domain. This can be due to their less 
sensitivity to errors and also more capability in 
incorporating prior knowledge about the HR image than the 
frequency domain [1]. The iterative back projection (IBP) 
[2], non-uniform interpolation [3], and the projection onto 
convex sets (POCS) [4] are such as non-statistical spatial 
domain approaches. Bayesian-based statistical algorithms, 
which are considered in this paper, consist of maximum 
likelihood (ML), maximum a posteriori (MAP), hybrid 
ML/MAP/POCS, variational Bayesian [5-9] and so forth. 
Since the SR reconstruction is an ill-posed problem, 
Bayesian regularized algorithms have become an appealing 

research topic in this area. This can be due to their strong 
statistical inference, robustness against the errors, and 
employment of priors as the regularization terms. A rich 
class of regularization-based functions is the MAP 
estimator. Generally, the MAP estimation can be formulated 
as the solution of a two-term optimization problem of the 
form [10]: 

 min ( , ) ( )
H

H L Hx
C x x R x   (1) 

where is the data error term, measuring lack of 

similarity to the data ,  is a measure of 

smoothness/roughness of solution which called 
regularization function and 0

(.)C

Lx (.)R

  is the regularization 
parameter, attributing  andC R . There are two key points in 
successfully solving the MAP-based super-resolution 
problem: 1) specification of the methods entail making 
choice of and C R , and 2) estimation of the regularization 
parameter   that balance the relative weights between 

and C R . Estimators include Lorentzian, Huber, Tukeys’ 
Biweight,  and  norms have been used as data error 

term , in several works [10-13]. The  norm has a good 

performance of preserving edges for the speckle noise 
model and misregistration errors, whereas the  norm for 

Gaussian noise model can well keep the smoothness of the 
image. This motivates everyone to find a way which merges 
both advantages of  and  norms. The success of other 

above-mentioned estimators is highly dependent on accurate 
selection of their threshold values. As a choice of 
regularization term 

1L 2

L

L

C 1L

2L

2 1L

R , Tikhonov method [14] is one of the 
most classical regularization terms which introduces 
smoothness constraints in reconstructed image, but it loses 
sharpness in the HR image. Total variation (TV) [15] is 
another regularizer which overcomes the shortcoming of 
Tikhonov method and is widely used in image restoration 
tasks. A progressive regularization function presented in 
[16] based on a bilateral total variance (BTV) as a 
modification of TV method. We will also use BTV as 
regularization term, in our formulation. 

As one of the objectives, we focus our attention on the 
second mentioned essential problem, finding the 
regularization parameter  . However the wise choice of   is 
a delicate object: if   is too large, the super-resolved image 
is oversmoothed, and conversely, if   is too small, the noise 
will not be effectively suppressed. In many works the 
regularization parameter is determined manually by trial-
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and-error. However, this procedure can be time-consuming 
and chanceful. To avoid these drawbacks, up to now, several 
adaptive selection strategies have been proposed. For 
example, the generalized cross-validation (GCV) method 
[17], the L-curve method [18], the U-curve method [19], the 
variational Bayesian framework [9], and the discrepancy 
principle [20]. The GCV method is based on a-priori 
knowledge of the input errors in LR frames [21] and it can 
be used when the regularization term is a quadratic function. 
It is well known that the computational cost of GCV is high 
[19]. The L-curve criterion is implemented by the plot of the 
norm of regularization term versus the norm of the 
corresponding data error term. Generally, the L-curve has a 
“vertical” part and a “horizontal” part. The optimum 
regularization parameter is located in the L-shaped corner of 
the L-curve. Sometimes, finding the exact corner of the 
curve is difficult. Moreover, to do so, one should solve (1) 
many times for different  ’s. Another practical method is 
the U-curve criterion which has a similar procedure to L-
curve method. The U-curve provides a truncated interval 
where the optimal   locates. Therefore, as the main 
difference, U-curve has a reduced computational cost than 
the L-curve method. The variational Bayesian framework 
can provide good solutions, but since it is dependent on 
some attached parameters, it is not fully adaptive. In image 
restoration field with a single LR frame, based on the primal 
dual approach and discrepancy principle, an efficient TV-
regularized restoration problem is handled in [22].  Another 
TV-based image restoration work using variable splitting 
technique is presented in [23] based on discrepancy 
principle. In this paper, in order to select the regularization 
parameter we use the Morozov’s discrepancy principle, 
which less attention has given to it in super-resolution 
literature. This method chooses   by adjusting the 
discrepancy between observed and expected images to some 
upper bounds.  We should emphasize on major differences 
between our method and other methods using the 
discrepancy principle. Based upon our knowledge, most of 
the presented works are in image restoration field, not SR 
reconstruction, where only one LR frame is employed. 
These methods are based on TV regularization, suffer from 
their nondifferentiability. In this case some numerical 
methods including variable splitting algorithms [24] and 
primal dual model [22] should be employed which require to 
introduce some auxiliary variables [23]. Therefore, they are 
more complex than our algorithm, where BTV 
regularization is used and no variable is introduced in 
minimization problem. In addition, BTV method could 
preserve edges and suppress noise better than TV method 
[25]. Our objectives in this paper are twofold. First, we 
suggest a modified data error term which assigns proper 
weight to each frame based upon the frame error. In this 
strategy, frames with higher accuracies will have more 
contribution in SR reconstruction. Second, as a more 
adaptive solution, unlike the existing optimized methods 
that focus on problems with a fixed  , we propose a 
discrepancy based regularization parameter selection in an 
adaptive way. The remainder of this paper is structured as 
follows: the observation model for image acquisition is 
provided in section II. Section III describes the proposed 
reconstruction model. Experimental results and discussion 

are given out in Section IV. Finally, a conclusion is drawn in 
Section V. 

II. IMAGING OBSERVATION MODEL  

The degradation procedure in an imaging system can 
relate HR and LR frames through a mathematical forward 
model. Assuming the degradation involves downsampling, 
Gaussian blurring, warping and additive noise, the model 
can be expressed linearly as:  

k
L Hk k kX DH F X E                            (2) 

where k
LX  denotes to the multiple LR images that are used 

to generate a single HR image( HX ) and  is the number of 

LR images (k=1,2,…,K). In above forward model warping 
operator( ) encodes the motion information of the –th 

LR frame to 

k

kF k

HX . Blurring effect is realized by applying the 

blurring kernel( ). The warped and blurred images are 

then downsampled by decimation operator . 
kH

D kE is the 

noise term that finally adds to the process. The matr s ice
k
LX , , k k , D H , F HX  and kE  are iz of s es 1MN , 

r2 N 1M  anMN2rMN  , MN , rrMN 2 MNr2M2  , 2r N d 1MN , 

respectively, where r is the integer-valued interpolation 
factor. 

III. PROPOSED MODEL FOR SR RECONSTRUCTION BASED 

ON ADAPTIVE TERMS  

A. Data error term 
Generally, in SR image reconstruction, a sequence of LR 

images is fused to produce a higher resolution image. In 
doing so, accurate motion estimation, precise mapping of 
the LR pixels on to the HR frame, and blurring kernel 
estimation/assumption is essential to the success of any SR 
algorithm. Moreover, noise model, noise level, and 
existence of outliers in the LR frames are as influential 
factors on the final result. Therefore, a robust estimation 
method that is not such sensitive to errors may produce 
more stable results. A pervasive family of estimators is the 
ML estimators. Based upon the ML concept, the estimation 

of  is done through the following minimization 

expression [13]: 
HX̂

 
1

ˆ arg min
H

K
k

H LH k k
X

k

X DH F X


X
 

  
 
        (3) 

where )( k
LHkk XXFDH   is the data error term, measuring 

the "residual" between the observation and the estimation 
models. Defining x as the residual error, mathematically, 

)(x could be an even positive function with a unique 

minimizer at 0x  Derivative of )(x with respect to , 

denoted 
HX

  )(( xX H)x    is called the influence 

function, and can be used to define the bias that a particular 
observation has on the solution [26]. )(x should be chosen 
according to the distribution of the residual errors. 
Considering this, some proper choices for )(x are the , 

, and  norms (
1L

2L pL 10  p ). The error function of  

norm is

1L

xx)( )( signx , and )(x . Due to the constancy 
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and bounded value of influence function (-1 or 1), the  

norm doesn’t distinguish between large errors corresponding 
by outliers or small errors caused by additive noise [27]. For 

 norm,  and therefore 

1L

2L 25.0)( xx  xx )(  that obviously 

increases linearly and without bound with respect to x . This 
linear proportionality to residual errors causes the poor 
performance of  norm in the presence of outliers or large 

errors [16]. As a result,  norm is not sensitive to large 

errors but when the residual errors are relatively small,  

norm has a better performance than the  norm. Moreover,  

 does not have an analytical solution, but norm does. 

In such a situation, a model with a hybrid effect that has the 
advantages of both  and  norm terms can perform 

better than  or  norms. Various ML-estimators such as 

Lorentzian, Huber and Tukeys’ Biweight are proposed in 
[11-13]. All of these estimators have a combinational 
behavior of both  and  norms which uses a threshold to 

define the behavior of error norm adaptively. In other words, 
for values smaller than a threshold the function follows  

norm and for values larger than threshold they perform like 
norm. Therefore, an adaptive threshold selection for these 

M-estimators has a key role in the success of super-
resolution reconstruction. The Half-quadratic estimation is 
one of the adaptive error functions with above mentioned 
properties which is proposed in [27]: 

2L

1L 2L

1L

1L

2L

2L

2L

1L

1L

1L

2L

1L 2L

2 2 2( , )x a a a x a
),a

            (4) 

where  is a positive number. a (x is convex and twice 
continuously differentiable which guarantees a unique 
solution of the optimization problem. The influence function 
of ),ax(  is defined as: 

2 2( , )x a ax a x
a

          (5) 

with a fixed , when x  is relatively small,  2)a,(x 2x  

and the function behaves like  norm. On the other hand, 

when 

2L

x  is large enough,  2),ax( ax a

a

 and the function 

takes the shape of  norm. The selection of  norm or  

norm and the transition between them can be controlled by 
modifying the parameter . In other words, for large values 
of 

1L 1L 2L

x  (large errors),   should be small and conversely, for 
small values of 

a

x  (small errors),  should be large. 
Accordingly, 

a

),( ax 	 is an adaptive robust norm. 
Substituting (4) in (3), after one step manipulation, one can 
result in: 

 2
2 2

1

arg min
H

K
ˆ k

H LH k k k kkX
k

X a a  DH F


X X

ka

a



k

ka


 

 
  (6) 

where  is the threshold parameter for the k -th frame. 

Each of the LR frames can have its own , due to the 

different accuracy of frames in registration step. In other 
words, acts as a frame indicator which is inversely 

proportional to the frame errors. It is clear that, more 
erroneous frames should have less participation in the final 
HR result. A method for choosing  is proposed in [27], 

but it has a relative high computational cost. Herein, we 

introduce a new formulation for , while simplicity, 

provides acceptable results. Considering as the first 

HR estimation,  can be written as: 

a

ka

ka

)0(HX

ka

max mk ka E 
in

2
kEkE               (7) 

where UXXFE k
LHkk

2
)0( 

kE
minkE

kE

ka

DHk

max

 is the k-th frame 

error term.   and are the maximum and minimum 

of all  values, respectively. In this case, by increasing 

,  will decrease and the frame weight in SR 

reconstruction will reduce. In our experiment,  is the 

up-scaled version of a random LR frame by bilinear 
interpolation. 

kE

)0(H

k

X

DH
B. Regularization using BTV function 

Direct inversion of matrix multiplication  in (2), 

is not usually a viable approach due to its large dimensions 
and the ill-posedness of the problem [28]. In this case, 
regularization stabilizes the inverse problem appropriately, 
while providing a reasonable solution to the original 
problem. There are, however, different possibilities for the 
regularization term. One of the referenced functions called 
bilateral total variation (BTV) is proposed in [16] as a 
modification of TV method: 

kF

1
( )

m
yS

P P
m l

H HBTV H
l P m P

R X X X 

 
  l m

ySxS 

m

 (8) 

where  and  shift  by and  pixels in the l
xS HX l x  

and  directions, respectively. The weight y 10   
imposes a spatial decaying effect to regularization terms and 

 defines the size of the regularization kernel. BTV method 
is computationally efficient, and it tends to preserve edges. 
By substituting data error term (6) and regularization term 
(8) in (1), the desired solution  can be obtained 

efficiently using iterative methods like steepest descent (SD) 

algorithm through . In this equation, i 

refer to the iteration number, 

P

HX

H
ii

HXi
HX  1 X

  is the step size in the 

negative direction of the gradient and    is the derivative 
operator.  Accordingly, optimal  can be found, as 

follows:  
HX

   

 

1

1

K
T i ki i

LH H k k k
k

P P
i il m l m
H Hx y x y

l P m

X X DH F A DH F X X

I S S sign X S S X





 

 

Hk k

l m

P



  


  


     



 

     (9) 



where  and  are the transpose of  and , 

respectively and 

l
xS m

y
S l

yS m
yS

 2k
L

2 i
Hkkkk XFDHaaA  k X . 

Regularization parameter   has a vital role in the 
optimization process. In the following, we propose a 
strategy to choose regularization parameter adaptively, in 
each iteration of optimization. 

C. Adaptive method for regularization parameter selection 
One of the main operational problems in (1) (as well as in 

(9)) is how to choose the regularization parameter  . There 
are different posteriori strategies for choosing   in the 
literature. In this regard, we will use the Morozov’s 
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discrepancy principle which has been studied less in SR 
reconstruction. One can assume that the discrepancy 
between the observed and the estimated frames is defined 
as: 

   1 1

1

K
i k

L k k H
k

e X DH F 



    iX         (10) 

According to this principle, a good solution of the image 
restoration problem based on a single frame should lie in 

22
2

mnDHFXX HL   [29], where 2  is the variance of the 

image super-re lution problem, where 
K is the number of LR frames, we can express: 

 

noise. In the case of so

21 2ie Kmn
2

              (11) 

where  
2

2

1 ie  is a positive and decreasing convex function 

of  . I s that if the noise power is known, (11) 

pro ides a bound on discrepancy  1ie . So in particular, 

parameter 1i  in the  1i -th itera ould be chosen by 

requiring 

t mean

v

tion c

 2  B

mula

2
 Kmn y substituting 1iX  from (9) in 

(10) the fo  can be written: 

  1
K

i k i    

2

1ei 

llowing for

H

1 2
1

L k k H
k

e X DH F X G


 G    (12) 

where  and are the derivatives of data error term and 1G 2G

rm

 

regularization te , respectively: 

      





















1k

k
L

i
Hkk

2k
LHkkkkkk1 XXFDHX  (13) 






  

K
i2T XFDHaaFDHG

    









  

 


P

Pl

P

Pm

i
H

m
y

l
x

i
H

m
y

l
x

ml
2 XSSXsignSSIG         (14) 

By separating the terms involving parameter   from the 
ot

B
hers in (12), we will have: 

 1ie A                               (15) 

where: 

  1
1

K
k i
L k k H

k

A X DH F X G


    (16) 

       (17) 

Since

 2
1

K

k k
k

B DH F G


  

        112

2

1   iTii eee , by substituting (15) in this 

ieq , after some manipulatuation on, one can express: 

  21 2( )i T T T Te A A A B B A B B      
2

    (18) 

Finally by equating (18) to 2Kmn ,  can be calculated 
in each iteration. As can be seen, this calculation requires 
solving a nonlinear equation in order to obtain the value of 
the regularization parameter . We use the Gauss-Newton 
algorithm to find  iterativel . The resulting algorithm for 
SR reconstruction s summarized in Fig.1.  

y
i

IV. EXPERIMENTAL RESULTS 

To proposed SR 
al

evaluate the performance of the 
gorithm, simulation experiments are carried out in 

MATLAB R2009a environment on a laptop computer with 
Intel core i5 processor running at 2.53 GHz clock with an 
8GB internal RAM memory. 

 
Figure 1. Flow chart of proposed SR algorithm. 

he experiments consist of two parts. In the first part 
(S

 images in this part are acquired from a single-
fr

ts 
inal Remote Sensing images of 

si

  
T
ubsection A), the experiments come to test the 

performance of proposed algorithm on some synthetic 
images.  

The LR
ame HR image by a degradation procedure which is 

described in the same section. In the second part (Subsection 
B), we turn to real images in order to test the effectiveness 
of the SR model. In both subsections, the performance of 
data error term is investigated first. To this end, at first, 
regularization term (BTV) is kept constant and λ is selected 
manually to have a fair comparison with other two methods. 
By fixing the regularization term, we justify the 
effectiveness of our proposed data error term, by comparing 
it with the 1L norm [16] “denoted as 1L +BTV” and 2L norm 

[30] “deno d as 2L +BTV”. Furthermore, the results of 

proposed method with manual selection of regularization 
parameter and Half-quadratic method [30] are presented. In 
the next experiment, adaptive selection of λ using the 
proposed method is compared with GCV [17] and L-Curve 
[18] methods which are applied for automatic selection of 
regularizing parameter. 

A. Synthetical experimen

te

In this section, two orig
zes 360360 pixels are chosen which are depicted in Fig. 

2(b) and Fig. 3(b). Four LR Remote Sensing images are 
generated by shifting Fig. 2(b) and Fig. 3(b) horizontally 
and vertically, blurring them with a zero-mean 55 
Gaussian kernel with standard deviation of 1, and 
downsampling them by factor of 2. Figs. 2(a) and 3(a) show 
one of the resulted LR frames (of size 180180) in each 
Remote sensing images. It should be noted that the SR 
model parameters such as motion vectors ( kF ), blurring 

kernels ( kH ), and additive noise ( kE ) are u known and n
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needed to e estimated. In the expe iments, an efficient 
phased based image matching method [31] is employed for 
motion estimation. After this step,  kH  is assumed to be a 

55 Gaussian kernel with standard d iation equal to 1. We 
used the method described in [32] to estimate the additive 
noise variance. The values of fixed parameters in SR model 
are as follows: 5.0

 b r

ev

  and 2P . For a fair evaluation of 
performance, the eters er existing algorithms are 
chosen in several trials to produce most appealing results.  
To facilitate a better comparison, a region is cropped and 
shown at the bottom-right of each image. Fig. 2(c) and Fig. 
3(c) show the result of using 2L +BTV algorithm. From this 

result, it is clear that 2L  norm suffers from obvious noise 

and artifacts. Observa n from Fig. 2(d) and Fig. 3(d) 
suggest that the use of 1L +BTV term, in spite of suppressing 

the noise and artifacts, reduces the image quality 
significantly. This might be because 2L

 param of oth

 

ti

7

o

]

 norm differentiates 

between large errors and small errors, d assigns a distinct 
weight to each one. Whereas 1L  assigns identical weights to 

all errors and this mode creates it more undesirable 
compared to 2L  norm.  As shown in Fig. 2(e) and Fig. 3(e), 

unlike 2L +BTV and 1L +BTV cases, the Half-quadratic 

method oposed in [2  has a better visual results but it 
lacks sharp edges and fine details.  

 an

 pr

 
Figure 2.  sequence. (a) One of Reconstruction results of Remote Sensing1  
LR-Images, (b) original HR-Image, (c) result of L2+BTV, (d) result of 
L1+BTV, (e) result of Half-quadratic method, and (f) result of proposed 
method with manual selection of λ. 

 
Figure 3. Reconstruction results of Remote Sensing2 sequence. (a) One of 
LR-Images, (b) original HR-Image, (c) result of L2+BTV, (d) result o

pr

FOR FIGURE 2 AND FIGURE 3 
Image Method PSNR(dB) SSIM 

f 
L1+BTV, (e)result of Half-quadratic method, and (f) result of proposed 
method with manual selection of λ. 

Fig. 2(f) and Fig. 3(f) show the reconstruction result of 
oposed method under the manual selection of 

regularization term. This may, in part, be caused by adaptive 
data error term which assigns smaller weights ka  to the LR 

frames that are corrupted by more errors. 
In this subsection, we have judged the quality of 

reconstructed image quantitatively by well-known peak 
signal-to-noise ratio (PSNR) and structural similarity 
(SSIM) [33-34] indices. It should be mentioned that in this 
part, regularization parameter is selected manually for better 
comparison of data error terms.  

 
TABLE I. PSNR AND SSIM VALUES 

L2+BTV 26.1952  0.5478 
L1+BTV 21.6908  0.577 

GCV 22.4791  0.6115 
L-curve 24.4821  0.6881 

Half atic 
Prop ual 

Remote 
Sensing1 

Pr

_quadr 25.3732  0.7146 
osed_man 26.5292  0.7304 

oposed_adaptive 26.9464  0.7671 
L2+BTV 23.0101  0.6008 
L1+BTV 21.3949  0.6150 

GCV 21.5683  0.6002 
L-curve 21.6696  0.6227 

Half atic 
Prop ual 
Pr

_quadr 22.2084  0.6463 
osed_man 23.1147  0.6811 

Remote 
Sensing2 

oposed_adaptive 23.4606  0.7047 
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Figure 4. Reconstruction results of Remote Sensing1 and Remote Sensing2 
sequences. (a) result of GCV, (b) result of L-curve, and (c) result o

ported in Table I. 
Ev

all of them are used for automatic 
se

is

e
 iterations and 

SS

f 
proposed method with adaptive selection of λ. 

However, the results of the proposed method by 
automatically selecting λ are also re

idently, from Table I, we can see that our proposed 
method outperforms other methods and achieves the highest 
PSNR and SSIM results. 

Fig. 4 compares GCV and L-curve algorithms with 
proposed method, which 

lection of λ. As can be seen, GCV method adds a 
considerable noise to the resulted image. Noise of L-curve is 
less than the noise added by GCV but still quality of the 
image is poor. Finally, based on proposed method in Fig. 4, 
noise is eliminated considerably, however edges are sharper. 

For better quantitative comparison of data error terms, the 
effect of varying regularization parameter λ on SSIM values 

 plotted for different methods in Remote sensing1 and 
Remote sensing2 images. As can be seen in Figs. 5(a) and 
5(b), the proposed method has allocated a higher numerical 
result (SSIM) for all values of  λ. Half-quadratic method 
also shows an appropriate behavior, but it ranks second in 
terms of performance. In general, 1L +BTV and 2L +BTV 

methods are ranked 3rd and 4th, respectively.  
Fig. 6 shows performance of the m ntioned methods for 

automatic selection of λ based on number of
IM value. Less iterations for achieving a higher SSIM in 

proposed method is a key point which indicates simplicity 
and better performance of this algorithm.  
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Figure 5. SSIM versus regularization parameter λ, (a) result for Remo
Sensing1, (b) result for Remote Sensing2. 

te 
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Figure 6. Performance of different regularization parameter selection 
methods in terms of iteration number and SSIM value. 

ing an identical 
SSIM, the number of iterations in proposed method is 1/3 of 
G

nts 
or a better comparison, proposed method is also applied 

. This sequence consists of 30 
im

 
For example, it can be seen that for obtain

CV method. 
 

B. Real-world experime
F

to the real sequence “text”
ages (of size 5749 pixels). Considering zoom factor of 

4, after SR reconstruction resolution of images reach to 
228196 pixels. The motion vectors ( kF ), blurring kernels 

( kH ), and additive noise ( kE ) in SR model are unknown 
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which are estimated in the same way of the previous section. 
 the real-world experim t, since no ground truth HR 

image is available, the reconstruction results can be assessed 
by

In en

 a no-reference image quality measure. Metric-Q and 
cumulative probability of blur detection (CPBD) are two 
image quality measures proposed in [35] and [36], 
respectively. Metric-Q employs the singular value 
decomposition of the local image gradients to evaluate the 
sharpness and contrast of reconstructed image. According to 
the Metric-Q, the higher the value is, the better the 
sharpness and the contrast will be. CPBD measure mainly 
assesses the image sharpness. CPBD ranges in [0-1] and the 
higher the value is, the better the sharpness will be.  

 

 
Figure 7. Reconstruction results of real sequence text. (a) result o
L2+BTV, (b) result of L1+BTV, (c) result of Half-quadratic method,
result of GCV, (e) result of L-curve, (f) result of proposed method with 

f 
 (d) 

manual selection of λ, and (g) result of proposed method with adaptive 
selection of λ. 

 

TABLE II. CPBD AND METRIC_Q VALUES FOR FIGURE 7 
Image Method CPBD Metric_Q 

L2+BTV 0.4517 18.5375 
L1+BTV 0.4351 19.5519 

84 

Ha ic 
Prop ual 
Proposed_adaptive 

GCV 0.4493 19.09
L-curve 0.4548 19.8322 

lf_quadrat 0.4273 19.6978 
osed_man 0.4554 19.9216 

text 

0.4695 20.0893 
 
As can be see  resul +BTV  an 

output with bo oise an b its 
no -robust behavior against large err Although in Fig. 
7(

. 

 is proposed to address 
data error term selection and regularization parameter 
estimation in n. At first, in the 
da

 G. Kang, “Super-resolution image 
view,” IEEE Signal Process. Mag., 

vol. 20, no. 3, pp. 21–3 1109/MSP.2003.1203207 
[2] M. N. Bareja, C. K. M d iterative back projection 

n in Fig. 7 (a), t of  L2  norm is

osted effect of n  which 

v

c e due to 
n ors. 

ob),  1L +BTV has a successful noise rem al, but the image 

is oversmoothed and the details are destroyed. Result 
obtained from Half-quadratic method Fig. 7 (c) is still 
blurred Due to Fig. 7 (d), applying GCV method for 
automatic selection of λ creates considerable artifacts and 
noise. Fig. 7 (e) is obtained from L-curve which gives better 
results than GCV method. 

Finally, In Figs. 7 (f) and (g) which are obtained from 
proposed method with manual and automatic λ, respectively, 
identifying characters in images is better than other 
methods. The Metric-Q and CPBD values for each approach 
are reported in Table II which validate our proposed method 
gives the highest quantitative measurement values. 
However, one can compare these methods in terms of time 
constraints in real-time applications. 

V. CONCLUSION 

In this study, an adaptive algorithm

an image SR reconstructio
ta error counterpart, we have employed a simple but 

efficient weighting factor which incorporates less erroneous 
LR frames in the SR reconstruction. Then, based on BTV 
regularization, we have formulated the problem as finding 
the regularization parameter which satisfies the Morozov’s 
discrepancy principle. Selecting the frames with lower error 
in data error term, efficient method for choosing the λ 
(direct solving without using auxiliary variables), higher 
algorithm speed in λ selection (fewer number of iterations 
than other automatic selection methods of λ) are among the 
achievements of this study. We have applied several 
experiments on some synthesized and real LR frames. Both 
visual and quantitative evaluation results show that the 
proposed algorithm can provide more appealing results than 
the other compared methods. 
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