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Abstract—This article proposes a cache pattern with multi-
queries and describes the multi-query optimization with 
scheduling, caching and pipelining   

A set of cache patterns is derived from a set of class of multi-
queries that are loaded into the cache. Each cache pattern 
represents a unique equivalence class in the set of patterns. 

The multi-query optimization with scheduling, caching and 
pipelining provides efficient heuristics, for a good queries 
ordering using a single invocation on the entire batch of 
queries. Multi-query optimization chooses the results of sub-
expression that should be admitted to or discarded from cache, 
when it executes queries. 

We introduce the heuristic of pair queries and define the 
equivalence class of multi-queries from cache pattern. We show 
that the union of all equivalence classes of queries from the 
cache patterns is the set of cache patterns.

Index Terms—equivalence class of queries from the cache, 
multiple queries optimization, multi-query caching, set of cache 
patterns, the heuristic of pair queries

I. INTRODUCTION

This article proposes a cache pattern with multi-queries 
and describes the multi-query optimization with scheduling, 
caching and pipelining. The paper is organized as follows: 
 the section Prior work presents some improved 
alternatives of multi-queries optimization  with scheduling 
and caching 
 the section Algebraic Pattern for Multi-Queries 
Caching provides a mathematical description of the query 
caching model. It defines CP-MQ notation as the set of 
patterns derived from a set of class of multi-queries, upon a 
set of relations and it defines the concept relational scheme 
of cache pattern with multi-queries. In this section, we 
demonstrate some properties of equivalence classes defined 
on the set of cache patterns 
 the section Multi-Queries Optimization intends to find 
an optimal permutation of the queries such that the 
computation cost of the set is minimum. The multi-queries 
optimization chooses equivalent query expressions from the 
possible semantic rewritings of the input query. In this 
section, we use a DAG representation of queries, which can 
be applied to System R style optimization, we introduce the
heuristic of pair queries. We define the equivalence class of 
multi-queries from cache pattern and we determine the 
union of all equivalence classes of multi-queries from the set 
of cache patterns. 

II. PRIOR WORK

Database systems frequently have to execute a batch of 
multiple queries, which may contain several common 
subexpressions. Current approaches to multi-query 
optimization (MQO) assume there are three problems: query 

scheduling, caching and pipelining. The scheduling is the 
problem of finding the best order of evaluation of 
expressions and the caching is the problem of deciding when 
to store a shared result in cache, and when to discard it, to 
minimize evaluation cost under cache space constraints [1].

There has been a significant recent work on multi-queries 
optimization. [2] demonstrates the practical applicability of 
multi-query optimization (MQO) based on efficient 
algorithms for implementing a greedy heuristic.

Multiple queries optimization (MQO) has been expressed 
in several contexts in the recent past including transient 
views [3], view maintenance [4], XML query optimization 
[5] and continuous query optimization [6].

According to Sellis [7], MQO provides one solution to 
view selection. The goal of this method is to exploit shared 
data between a set of queries or views and identify 
additional views for transient or permanent materialization, 
that are used to share intermediate results and improve 
performance. Multi-query optimization has been 
successfully applied in view maintenance [4] and in the 
optimization of inter-query execution [8]. However, 
evaluating shared sub-expressions increases the complexity 
of query optimization. Query caching decreases 
optimization cost because each query is evaluated against a 
single prototype. 

Wang et al. [9] propose the SkyQuery workload-driven 
technique for choosing the logical unit of cache replacement 
that is adaptive and self-organizing. This prototype is a 
combination of attributes that is accessed by the same class 
of queries. 

Gupta [10] studied scheduling and caching in MQO, and 
presented results on intractability of the caching problem, 
and approximation algorithms for special cases of the 
caching problem. They provide approximation techniques 
for caching given a fixed schedule, and they only provide 
heuristics for finding good schedules; moreover, their 
heuristics require a large number of MQO invocations to 
decide a good schedule and is seen to add a very large 
overhead even for very small query batches.

Other approaches to multi-query optimization assume 
there is infinite disk space, and very limited memory space. 
Pipelining was the only option considered for avoiding 
expensive disk writes. [11] provides algorithms for the 
problem of pipelining in MQO, but does not consider the 
problems of scheduling and caching. The availability of 
fairly large and inexpensive main memory motivates the 
need to make best use of available main memory by for 
caching shared results, and scheduling queries in a manner 
that facilitates caching.

The problem of caching shared results was also addressed 
by Tan and Lu [12]; they provide heuristics for scheduling 
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in MQO, but they require a pairwise test for deciding a good 
order of queries.

In [13], [14] an active query-caching framework for form-
based proxy caching of database backed websites is 
described and significant gains compared to passive query 
caching are reported. Lightweight  Directory Access 
Protocol (LDAP) replication has widely been used for 
improving performance, scalability and availability of 
directory based web applications. An LDAP caching 
solution, which provides significant query hit ratio, while 
caching only a small fraction of the records in the directory 
is thus desirable. There are two distinct problems associated 
with LDAP query caching [15]: 

(i) Determining whether an LDAP query is contained in 
another query (query containment), 

(ii) Using caching algorithms which make efficient 
caching, prefetching, cache replacement decisions to 
maximize the fraction of queries answered from the cache. 
[16] introduce the notion of generalized queries and propose 
a caching algorithms.

In the next section, we define an algebraic pattern for 
multi-queries caching, where each cache pattern represents a 
unique equivalence class in the set of patterns.

III. ALGEBRAIC PATTERN FOR MULTI-QUERIES CACHING

This section provides a mathematical description of the 
query caching model. The method for specifying query 
pattern has as input a set of queries Q and outputs a set of 
patterns P, which serve as the cache pattern. Each query is 
matched exactly one pattern, whereas each pattern is derived 
from a set of related queries.

To define the cache pattern with multi-queries, the 
following shall be considered:
  a set of domains Di = (Di1, Di2, …, Dij, …), Dij – range of 
values, i = 1, … , n, j = 1, … , m, where m,n N*
 a set R of n relations R1, ..., Rn and each relation consists 
of a set of attributes:
R1(c11, c12, …, c1i, …), c1i attribute, c1i   D1, i = 1, … ,n, 
R2(c21, c22, …, c2i, …), c2i attribute, c2i   D2, i = 1, … ,n, ...
Rn(cn1, cn2, …, cni, …), cni attribute, cni   Dn, i = 1, … ,n, 
where max ( |Ri| )i = 1, … ,n  <= m 
  the set Q of all queries in the cache pattern, in which Qi 

 Q is the ith query in the cache pattern 
 Papadomanolakis [17] introduced the concept of a Query 

Access Set (QAS), which is the subset of attributes from a 
single relation in R that are referenced by a query in Q.  For 
query prototypes, Wang et al. [10] redefine Query Access 
Set to be the set of attributes from every relations in R that 
are referenced by a query in Q.

Further we introduce CP-MQ notation and define the 
concept relational scheme of cache pattern with multi-
queries.

Definition 1: A cache pattern with multi-queries, named 
CP-MQ is the set of cache patterns derived from a set of 
class of multi-queries, upon a set of relations and loaded into 
the cache.

Definition 2: The relational scheme of cache pattern with 
multi-queries (CP-MQ) is defined as the set of attributes
from a set R of n relations that are referenced by a multi-
query and are loaded into the cache. So, it is noticing:

CP-MQ (Pk, Qi, Cit) = { Cit attributes loaded into the 

cache pattern Pk P and referenced by Qi Q,  i, j = 1, 
…n,  k >=1 }

Now, we define an equivalence relation on a set of 
queries. Let us consider two queries Qi and Qj on relations 
R1, R2, …, Rn and an implementation of the JOIN operator 
defined as follows:

  Qi = JOIN (Rk, Rl, Rk.ck1 = Rl.cl1 ), k1,l1 = 1, …, n, i>=1
  Let be two queries Qi, Qj Q. Then a subset   Qi x 

Qj is a binary relation between Qi and Qj [18].
Definition 3. A binary relation  on set of queries Q is 

named equivalence relation if:
i. Qi    Qi

ii. Qi   Qj.  Qj.   Qi

iii. Qi    Qj. and Qj.   Qk Qi    Qk, 

       Qi , Qj, Qk Q
Let us consider that the equivalence relation   on the set 

Q of queries loaded into the cache pattern Pk  (k >=1), is 
defined as follows:

Qi   Qj.   CP-MQ (Pk, Qi, Cit) = CP-MQ (Pk, Qj, Cjs), 

that means Qi and Qj access the set of attributes, that are 
loaded into the same cache pattern Pk (k >=1) P. 

Definition 4.  The equivalence class of query Qi  is 
defined as a set:

[Qi ] = { Qj  Q / Qi   Qj. } 

Definition 5. The equivalence class of query from the 
cache pattern Pk (k >=1) is the set: 

[Qi ] = { Qj  Q / CP-MQ (Pk, Qi, Cik) = CP-MQ (Pk, Qj, 
Cjs), Pk  (k >=1) P } 

Observation: Each cache pattern Pk  (k >=1) represents a 
unique equivalence class in the set of patterns P. The set of 
attributes referenced by queries in Pk are loaded into the 
cache as one unit.

Further we present some properties of equivalence classes 
of queries loaded into the cache.

Proposition 1.  Let be a cache pattern (P, Q), where P is a 

set of cache patterns, P  ,  Q is a set of queries loaded 

into the cache and let   be an equivalence class on P. Then 

the equivalence classes on P have the properties:

i). Qi  [Qi ],   Qi  Q set of queries loaded into 
the cache. 

In particular, [Qi ] 
ii). [Qi ] = [Qj ]   Qi   Qj, where Qi and Qj are 

related queries
iii). [Qi ] and [Qj ] are equivalence classes  [Qi ] = 

[Qj ] or [Qi ]   [Qj ] = 
Proof: 

i). Qi    Qi  Qi  [Qi ],   Qi Q 

ii). Let us demonstrate "": let us suppose that 
[Qi ] = [Qj ]

We have Qi  [Qi ] then Qi  [Qj ]  Qi   Qj

Let us prove "": let us suppose that Qi   Qj  and Qi 

and Qj are related queries

We must demonstrate that [Qi]  [Qj] [1]

Let x be, x  [Qi ] then x  Qi , but   is transitive then 
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x  Qj  x  Qj   [Qi ]   [Qj ]   

Let us demonstrate that [Qj ]  [Qi ] [2]

Let x be, x  [Qj ] then x  Qj , but   is transitive then 

x  Qi  x  Qi   [Qj ]   [Qi ]   

[1] and [2] [Qi ] = [Qj ]

Let us assume that [Qi ]   [Qj ]   ( ) x  [Qi ] 

  [Qj ]   x  Qi  and x  Qj 

but   is symmetric  Qi   x  Qi  Qj   ( from 

ii)  [Qi ] = [Qj ].

IV. MULTI-QUERIES OPTIMIZATION

Database systems are often required to execute a batch of 
queries, which may contain several common sub-
expressions. 

Problem: Consider two queries: Q1 : )SR(  T and 

Q2 : U)SR(  . If we evaluate the two queries 

separately, then we must recompute SR  . If we 

materialize the result of SR  , although we do not have 
to recompute the result, we have to compute the additional 
cost of writing and reading the result of the shared 
expression. Thus, results would be shared only if the cost of 
recomputation is higher than the cost of materialization and 

reading. If we pipeline the results of SR   to both the 

queries, we do not have to recompute the result of SR 
and we also save the costs of materializing and reading the 
common expression. But, if all the operators are pipelined, 
then the schedule may not be realizable.

The problem of scheduling, caching and pipelining in 
multi-query optimization has two main aspects:

 choosing the results of sub-expression that should 
be admitted to or discarded from cache, as it 
executes queries and

 choosing a good order of queries.

V. EQUIVALENT QUERY EXPRESSIONS

The cost of multi-queries optimization depends on the 
number of expressions equivalent for a given expression. 
For the general case, with an arbitrary set operators, for 
query order transformation, the number of equivalent 
rewritings of a query expression is exponential in the size of 
original query expression [1], [6]. The Volcano optimization 
algorithm generates all possible semantic transformations of 
the input query. 

The Logical Query DAG (LQDAG) is the space of all 
possible equivalent relational algebra expressions. Diwan et 
al. [1] consider that a given expression can have infinitely 
many equivalent expressions generated by transformation 
rules. To avoid this problem they assume that given a query 
of size n, a query transformation rule can introduce at most a 
constant number of new operators or constant values and
transformation rules will only generate expressions bounded 
in size by a polynomial p(n). This ensures that only a limited 
number of expressions can be generated.

For a query, the equivalent transformations are executed, 
the physical operators are chosen, and the indexes are built. 
For example, for the JOIN operator ( ), the 
transformations of the query are:

R   S = S   R
( R   S )   T = R   (S   T )

The transitivity can be represented using trees as follows 
(figure 1):

Figure 1. Tree representation of the transitivity.

If the join operation contains a projection (π), and x is a 
subset of attributes of R, y is a subset of attributes from the 
relation S and z is the intersection of the attributes from R 
and from S that are used by the p predicate, then the 
transformations of the JOIN can be: 

)]([ SR
pxy

  = )]}S()R([{ yzxzpxy  

The Logical Query DAG space can be represented as in 
figure 2:

Figure 2. Logical Query DAG space.

VI. OPTIMAL ORDER OF MULTI-QUERIES

In this section, we intend to provide efficient heuristics 
for scheduling, caching and pipelining in multi-queries 
optimization, for a good query ordering using a single 
invocation on the entire batch of queries. We use a DAG 
representation of queries, which can be applied to System R 
style optimization.

Find an optimal permutation of the queries such that the 
computation cost of the set is minimum means that every 
two adjacent queries in the permutation have a common 
relation. Diwan et al. [1] show that this problem is 
equivalent to finding a dominating trail of a graph and this is 
equivalent to finding a Hamiltonian path in a cubic 
subgraph. They proposed heuristics for query scheduling, 
which provides a good query ordering. As an heuristic, the 
problem of scheduling is considered as the problem of 
finding the maximum weight Hamiltonian path in the 
QuerySet Graph, as a graph with nodes as queries belonging 
to the set of queries and node Qi connected to node Qj with 
an edge of weight Benefit(Qi, Qj). Benefit( Qi, Qj ) is the 
benefit gained by executing both the queries as a batch using 
a cache space restricted to C and it is defined as:

 Benefit(Qi,Qj) = cost(Qi) + cost(Qj) - MQO cost(Qi,Qj), 
where C is the cache size. This heuristic requires calculation 
of the benefit for each combination, and results in many 
calls MQO, and is thus expensive and impractical. It is 
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known that query scheduling and caching problem is 
NPcomplete. 

The Volcano representation of query plans, outlined in 
[19] and [2], uses all possible semantic rewritings of the 
input query. The Logical Query DAG (LQDAG) is an 
AND-OR DAG, representing the space of all possible 
equivalent relational algebra expressions. The Physical 
Query DAG (PQDAG) is used to specify the various 
algorithms available to evaluate a relational algebra 
expression and also the physical properties that are satisfied.

Multi-query optimizers generate query execution plans 
with common subexpressions used more than once, and thus 
nodes in the plan may have more than one parent. The Plan
DAG is a DAG structured query plan.

Flum, Frick, Grohe define the DAG graph [20]:
Definition 6. The DAG graph is a directed graph with

vertex set QI and an edge from v to w if w occurs in f(v), 
where:

I = ( QI, fI, rootI, QI
1, ..., QI

k ), QI is the (finite) set of 
vertices,  

fI : QI  ( QI )k is a function whose graph is acyclic and 
has vertices of in-degree 0, rootI is the vertex of in-degree 0, 
and QI

1, ..., Q
I
k are subsets of QI

For a query Qi of size n, it knows the number of distinct 
plans DAG is exponential in n. Feasibility of pipelining of 
arbitrary subset of edges can be tested in polynomial time by 
searching for C-cycles [12]. Finding the optimal scheduling 
and caching strategy for a fixed set of pipelined edges in a 
fixed plan DAG is reduced to a minimum cost path problem.

Let us consider a set of cache patterns P and a set R of n 
relations R = { R1, ..., Rn}, n N*. Let be Pk (k >=1) P a 
cache pattern defined as follows:

 a query Qi Q, on relations Ri, Rj, Qi loaded into the 
cache from pattern Pk (k >=1) P

 a cache size C
 an implementation of the JOIN operator defined as 

follows:  
Qi = JOIN (Ri, Rj, Ri.cik = Rj.cjp ), R = { R1, ..., Rn }, n 

N*, i, j, ik, jp = 1, …, n and each Qi is defined as a pair ( 
evaluated query, query in cache ) and the total size of the 
query results in cache is less than the cache size C.

Let be a graph G = ( Q, U ),  where Q  and 

U =  { u = [Qi, Qt] /  Qi, Qt Q, Qi = JOIN (Ri, Rj, Ri.cik = 
Rj.cjp ), i, t, ik, jp = 1, …, n}

Further we introduce the heuristic of pair queries and 
define the equivalence class of multi-queries from cache 
pattern.

Definition 7. We will note h ( Qi, Qj) the heuristic of pair 
queries ( Qi, Qj), where Qi, Qj Q, the maximum degree of 
vertices within the path of pipelined edges from Qi to Qj:
h ( Qi, Qj) = 

))(( Qreedegmax kp

j

ik

, where Qk   the path of 

pipelined edges from Qi to Qj and degreep (Qk) is the degree 
of node Qk, if we only take into account the adjacent 
pipelined edges.

For example, the figure 3 shows a query graph which 
contains a fixed set of pipelined edges, in a fixed plan DAG 
where solid edges are pipelined and dotted edges are 
materialized.

h (Qi, Qj) = max {degree (Qi),  degree (Qk),  degree (Qj )} = 

max { 1, 4, 1 } = 4

h ( Qp, Qd) = max{degree (Qp ),  degree (Qd ) } = max{ 1, 2} 
= 2

Figure 3. The query graph for a plan DAG.

Let us consider that the equivalence relation   on the P, 
with a set Q of queries loaded into the cache pattern  Pk (k >=1) 

P as a batch, is defined as follows:

Qi   Qj.  { ( ) Qk Q /  h ( Qk, Qi) = h ( Qk, Qj), k >=1}

Observation. The equivalence class of query Qi  is defined 
as a set:

[Qi ] = { Qj  Q / h ( Qj, Qi) = constant, where i, j >=1 }

In the above example, Qi, Qj, Qk, Qr, Qc form one 
equivalence class say E1 while Qp, Qd, Qe forms the other 
equivalence class say E2. If we replace the pipelined edges 

with equivalence classes under the relation  , we obtain the 
schedule graph of queries. The figure 4 shows the schedule 
graph with equivalence classes.

Figure 4. The compressed graph with equivalence.

The Scheduling, Caching and Pipelining problem is 
reduced to a minimum cost path problem, and the 
compressed graph contains vertices that are Done or Cached
where Done is a subset of equivalence classes described 
above and Cached is a subset of nodes in the original 
uncompressed plan DAG, which are in the subDAGs rooted 
at the Done nodes. 

Diwan et al. [1] partition the vertices in the DAG into 
equivalence classes, such that any two vertices are in the 
same equivalence class if they are connected by a path of 
pipelined edges. Let us define   this equivalence relation.

Further we show that the union of all equivalence classes 
of queries from the cache patterns is the set of cache patterns 
P.

Proposition 2  Let be a cache pattern (P, Q), where P is a 

set of cache patterns, P  ,  Q is a set of queries loaded 

into the cache and let  ,  ,   be equivalence relations on 

P. Then union of all equivalence classes of queries from the 
cache patterns is the set of cache patterns P.

Proof: 

  Qi  Q, Qi  is a query loaded into the cache, Qi   P, Qi 
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 Q is the ith query in the cache pattern P

      Qi    Qi  Qi  [Qi ] = { Qj  Q / CP-MQ (Pk, Qi, 

Cik) = CP-MQ (Pk, Qj, Cjs), where Pk  (k >=1) P } [1]

  Qj  Q, Qj is a query loaded into the cache, Qj   P, Qj 

 Q is the jth query in the cache pattern P

Qj    Qj  Qj  [Qj ] = { Qp  Q / h ( Qj, Qp) = constant, 
where p, j >=1 }  [2]

Q = { Qi   Q / Qi is a query loaded into the cache, 

Qi   P }  [3]

[1], [2] and [3] Union of all equivalence classes is P
Example: An example of multi-queries optimization is as 

follows. Let us consider that the query is of type sort-merge-
join. We can split the execution of the query into operations 
which are the equivalence classes that can be cached, and 
can be reused later.

Let R and S be two relations with the corresponding 
relational schemas R(c1, c2, …, cn), S(c'1, c'2, …, c'n) and the 
equi - join of the relations R and S loaded into the cache 
from the set of cache patterns P:

JOIN (R, S; R.ci = S.c'j), where i є {1,…, n}, j є {1,…, 
m}, ci ≡ c'j, where p(R) is a predicate with attributes from R 
and q(s) is a predicate with attributes from S. The query uses 

the projection (π) on the ci attribute of the relation R, the 

JOIN operator ( ) and the selection (). The execution 
plan of the sort-merge-join is presented in figure 5:

Figure 5. Sort – Join.

Then we can say that sort-merge-join algorithm could be 
split into two operations, one for selection and sorting the 
data and one which performs the merge join. This allows the 
partitions in the equivalence classes to become units that can 
be cached, and can be reused.

VII. CONCLUSIONS

This article presents an approach of the multi-queries 
optimization with scheduling, caching and pipelining, based 
on the algebraic pattern. Each cache pattern represents a 
unique equivalence class in the set of patterns. One query is 
matched exactly one pattern, whereas each pattern is derived 
from a set of related queries.

We demonstrated some properties of the equivalence
classes defined on the set of cache patterns. We proposed a 
heuristics of pair queries for query scheduling and caching, 
that provides a good multi-queries ordering and we defined 
some equivalence classes of multi-queries from a set of 
cache patterns. We demonstrated that the union of all 
equivalence classes of queries from the cache patterns is the 
set of cache patterns.
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