
Advances in Electrical and Computer Engineering Volume 10, Number 2, 2010

82

Abstract—This article proposes a cache pattern with multi-
queries and describes the multi-query optimization with
scheduling, caching and pipelining

A set of cache patterns is derived from a set of class of multi-
queries that are loaded into the cache. Each cache pattern
represents a unique equivalence class in the set of patterns.

The multi-query optimization with scheduling, caching and
pipelining provides efficient heuristics, for a good queries
ordering using a single invocation on the entire batch of
queries. Multi-query optimization chooses the results of sub-
expression that should be admitted to or discarded from cache,
when it executes queries.

We introduce the heuristic of pair queries and define the
equivalence class of multi-queries from cache pattern. We show
that the union of all equivalence classes of queries from the
cache patterns is the set of cache patterns.

Index Terms—equivalence class of queries from the cache,
multiple queries optimization, multi-query caching, set of cache
patterns, the heuristic of pair queries

I. INTRODUCTION

This article proposes a cache pattern with multi-queries
and describes the multi-query optimization with scheduling,
caching and pipelining. The paper is organized as follows:
 the section Prior work presents some improved
alternatives of multi-queries optimization with scheduling
and caching
 the section Algebraic Pattern for Multi-Queries
Caching provides a mathematical description of the query
caching model. It defines CP-MQ notation as the set of
patterns derived from a set of class of multi-queries, upon a
set of relations and it defines the concept relational scheme
of cache pattern with multi-queries. In this section, we
demonstrate some properties of equivalence classes defined
on the set of cache patterns
 the section Multi-Queries Optimization intends to find
an optimal permutation of the queries such that the
computation cost of the set is minimum. The multi-queries
optimization chooses equivalent query expressions from the
possible semantic rewritings of the input query. In this
section, we use a DAG representation of queries, which can
be applied to System R style optimization, we introduce the
heuristic of pair queries. We define the equivalence class of
multi-queries from cache pattern and we determine the
union of all equivalence classes of multi-queries from the set
of cache patterns.

II. PRIOR WORK

Database systems frequently have to execute a batch of
multiple queries, which may contain several common
subexpressions. Current approaches to multi-query
optimization (MQO) assume there are three problems: query

scheduling, caching and pipelining. The scheduling is the
problem of finding the best order of evaluation of
expressions and the caching is the problem of deciding when
to store a shared result in cache, and when to discard it, to
minimize evaluation cost under cache space constraints [1].

There has been a significant recent work on multi-queries
optimization. [2] demonstrates the practical applicability of
multi-query optimization (MQO) based on efficient
algorithms for implementing a greedy heuristic.

Multiple queries optimization (MQO) has been expressed
in several contexts in the recent past including transient
views [3], view maintenance [4], XML query optimization
[5] and continuous query optimization [6].

According to Sellis [7], MQO provides one solution to
view selection. The goal of this method is to exploit shared
data between a set of queries or views and identify
additional views for transient or permanent materialization,
that are used to share intermediate results and improve
performance. Multi-query optimization has been
successfully applied in view maintenance [4] and in the
optimization of inter-query execution [8]. However,
evaluating shared sub-expressions increases the complexity
of query optimization. Query caching decreases
optimization cost because each query is evaluated against a
single prototype.

Wang et al. [9] propose the SkyQuery workload-driven
technique for choosing the logical unit of cache replacement
that is adaptive and self-organizing. This prototype is a
combination of attributes that is accessed by the same class
of queries.

Gupta [10] studied scheduling and caching in MQO, and
presented results on intractability of the caching problem,
and approximation algorithms for special cases of the
caching problem. They provide approximation techniques
for caching given a fixed schedule, and they only provide
heuristics for finding good schedules; moreover, their
heuristics require a large number of MQO invocations to
decide a good schedule and is seen to add a very large
overhead even for very small query batches.

Other approaches to multi-query optimization assume
there is infinite disk space, and very limited memory space.
Pipelining was the only option considered for avoiding
expensive disk writes. [11] provides algorithms for the
problem of pipelining in MQO, but does not consider the
problems of scheduling and caching. The availability of
fairly large and inexpensive main memory motivates the
need to make best use of available main memory by for
caching shared results, and scheduling queries in a manner
that facilitates caching.

The problem of caching shared results was also addressed
by Tan and Lu [12]; they provide heuristics for scheduling

Cache Pattern with Multi-Queries
Nicoleta Liviana TUDOR

The Petroleum-Gas University of Ploiesti
B-dul Bucuresti, nr. 39 , RO-100680, Ploiesti

ltudor@upg-ploiesti.ro

1582-7445 © 2010 AECE

Digital Object Identifier 10.4316/AECE.2010.02014

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:44:44 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 10, Number 2, 2010

 83

in MQO, but they require a pairwise test for deciding a good
order of queries.

In [13], [14] an active query-caching framework for form-
based proxy caching of database backed websites is
described and significant gains compared to passive query
caching are reported. Lightweight Directory Access
Protocol (LDAP) replication has widely been used for
improving performance, scalability and availability of
directory based web applications. An LDAP caching
solution, which provides significant query hit ratio, while
caching only a small fraction of the records in the directory
is thus desirable. There are two distinct problems associated
with LDAP query caching [15]:

(i) Determining whether an LDAP query is contained in
another query (query containment),

(ii) Using caching algorithms which make efficient
caching, prefetching, cache replacement decisions to
maximize the fraction of queries answered from the cache.
[16] introduce the notion of generalized queries and propose
a caching algorithms.

In the next section, we define an algebraic pattern for
multi-queries caching, where each cache pattern represents a
unique equivalence class in the set of patterns.

III. ALGEBRAIC PATTERN FOR MULTI-QUERIES CACHING

This section provides a mathematical description of the
query caching model. The method for specifying query
pattern has as input a set of queries Q and outputs a set of
patterns P, which serve as the cache pattern. Each query is
matched exactly one pattern, whereas each pattern is derived
from a set of related queries.

To define the cache pattern with multi-queries, the
following shall be considered:
 a set of domains Di = (Di1, Di2, …, Dij, …), Dij – range of
values, i = 1, … , n, j = 1, … , m, where m,n N*
 a set R of n relations R1, ..., Rn and each relation consists
of a set of attributes:
R1(c11, c12, …, c1i, …), c1i attribute, c1i  D1, i = 1, … ,n,
R2(c21, c22, …, c2i, …), c2i attribute, c2i  D2, i = 1, … ,n, ...
Rn(cn1, cn2, …, cni, …), cni attribute, cni  Dn, i = 1, … ,n,
where max (|Ri|)i = 1, … ,n <= m
 the set Q of all queries in the cache pattern, in which Qi

 Q is the ith query in the cache pattern
 Papadomanolakis [17] introduced the concept of a Query

Access Set (QAS), which is the subset of attributes from a
single relation in R that are referenced by a query in Q. For
query prototypes, Wang et al. [10] redefine Query Access
Set to be the set of attributes from every relations in R that
are referenced by a query in Q.

Further we introduce CP-MQ notation and define the
concept relational scheme of cache pattern with multi-
queries.

Definition 1: A cache pattern with multi-queries, named
CP-MQ is the set of cache patterns derived from a set of
class of multi-queries, upon a set of relations and loaded into
the cache.

Definition 2: The relational scheme of cache pattern with
multi-queries (CP-MQ) is defined as the set of attributes
from a set R of n relations that are referenced by a multi-
query and are loaded into the cache. So, it is noticing:

CP-MQ (Pk, Qi, Cit) = { Cit attributes loaded into the

cache pattern Pk P and referenced by Qi Q, i, j = 1,
…n, k >=1 }

Now, we define an equivalence relation on a set of
queries. Let us consider two queries Qi and Qj on relations
R1, R2, …, Rn and an implementation of the JOIN operator
defined as follows:

 Qi = JOIN (Rk, Rl, Rk.ck1 = Rl.cl1), k1,l1 = 1, …, n, i>=1
 Let be two queries Qi, Qj Q. Then a subset   Qi x

Qj is a binary relation between Qi and Qj [18].
Definition 3. A binary relation  on set of queries Q is

named equivalence relation if:
i. Qi  Qi

ii. Qi  Qj.  Qj.  Qi

iii. Qi  Qj. and Qj.  Qk Qi  Qk,

  Qi , Qj, Qk Q
Let us consider that the equivalence relation  on the set

Q of queries loaded into the cache pattern Pk (k >=1), is
defined as follows:

Qi  Qj.  CP-MQ (Pk, Qi, Cit) = CP-MQ (Pk, Qj, Cjs),

that means Qi and Qj access the set of attributes, that are
loaded into the same cache pattern Pk (k >=1) P.

Definition 4. The equivalence class of query Qi is
defined as a set:

[Qi] = { Qj Q / Qi  Qj. }

Definition 5. The equivalence class of query from the
cache pattern Pk (k >=1) is the set:

[Qi] = { Qj Q / CP-MQ (Pk, Qi, Cik) = CP-MQ (Pk, Qj,
Cjs), Pk (k >=1) P }

Observation: Each cache pattern Pk (k >=1) represents a
unique equivalence class in the set of patterns P. The set of
attributes referenced by queries in Pk are loaded into the
cache as one unit.

Further we present some properties of equivalence classes
of queries loaded into the cache.

Proposition 1. Let be a cache pattern (P, Q), where P is a

set of cache patterns, P  , Q is a set of queries loaded

into the cache and let  be an equivalence class on P. Then

the equivalence classes on P have the properties:

i). Qi  [Qi],  Qi  Q set of queries loaded into
the cache.

In particular, [Qi] 
ii). [Qi] = [Qj]  Qi  Qj, where Qi and Qj are

related queries
iii). [Qi] and [Qj] are equivalence classes  [Qi] =

[Qj] or [Qi]  [Qj] = 
Proof:

i). Qi  Qi  Qi  [Qi],  Qi Q

ii). Let us demonstrate "": let us suppose that
[Qi] = [Qj]

We have Qi  [Qi] then Qi  [Qj]  Qi  Qj

Let us prove "": let us suppose that Qi  Qj and Qi

and Qj are related queries

We must demonstrate that [Qi]  [Qj] [1]

Let x be, x  [Qi] then x  Qi , but  is transitive then

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:44:44 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 10, Number 2, 2010

84

x  Qj  x  Qj  [Qi]  [Qj]

Let us demonstrate that [Qj]  [Qi] [2]

Let x be, x  [Qj] then x  Qj , but  is transitive then

x  Qi  x  Qi  [Qj]  [Qi]

[1] and [2] [Qi] = [Qj]

Let us assume that [Qi]  [Qj]   () x  [Qi]

 [Qj]  x  Qi and x  Qj

but  is symmetric  Qi  x  Qi  Qj  (from

ii) [Qi] = [Qj].

IV. MULTI-QUERIES OPTIMIZATION

Database systems are often required to execute a batch of
queries, which may contain several common sub-
expressions.

Problem: Consider two queries: Q1 :)SR( T and

Q2 : U)SR( . If we evaluate the two queries

separately, then we must recompute SR  . If we

materialize the result of SR  , although we do not have
to recompute the result, we have to compute the additional
cost of writing and reading the result of the shared
expression. Thus, results would be shared only if the cost of
recomputation is higher than the cost of materialization and

reading. If we pipeline the results of SR  to both the

queries, we do not have to recompute the result of SR 
and we also save the costs of materializing and reading the
common expression. But, if all the operators are pipelined,
then the schedule may not be realizable.

The problem of scheduling, caching and pipelining in
multi-query optimization has two main aspects:

 choosing the results of sub-expression that should
be admitted to or discarded from cache, as it
executes queries and

 choosing a good order of queries.

V. EQUIVALENT QUERY EXPRESSIONS

The cost of multi-queries optimization depends on the
number of expressions equivalent for a given expression.
For the general case, with an arbitrary set operators, for
query order transformation, the number of equivalent
rewritings of a query expression is exponential in the size of
original query expression [1], [6]. The Volcano optimization
algorithm generates all possible semantic transformations of
the input query.

The Logical Query DAG (LQDAG) is the space of all
possible equivalent relational algebra expressions. Diwan et
al. [1] consider that a given expression can have infinitely
many equivalent expressions generated by transformation
rules. To avoid this problem they assume that given a query
of size n, a query transformation rule can introduce at most a
constant number of new operators or constant values and
transformation rules will only generate expressions bounded
in size by a polynomial p(n). This ensures that only a limited
number of expressions can be generated.

For a query, the equivalent transformations are executed,
the physical operators are chosen, and the indexes are built.
For example, for the JOIN operator (), the
transformations of the query are:

R  S = S  R
(R  S)  T = R  (S  T)

The transitivity can be represented using trees as follows
(figure 1):

Figure 1. Tree representation of the transitivity.

If the join operation contains a projection (π), and x is a
subset of attributes of R, y is a subset of attributes from the
relation S and z is the intersection of the attributes from R
and from S that are used by the p predicate, then the
transformations of the JOIN can be:

)]([SR
pxy

 =)]}S()R([{ yzxzpxy  

The Logical Query DAG space can be represented as in
figure 2:

Figure 2. Logical Query DAG space.

VI. OPTIMAL ORDER OF MULTI-QUERIES

In this section, we intend to provide efficient heuristics
for scheduling, caching and pipelining in multi-queries
optimization, for a good query ordering using a single
invocation on the entire batch of queries. We use a DAG
representation of queries, which can be applied to System R
style optimization.

Find an optimal permutation of the queries such that the
computation cost of the set is minimum means that every
two adjacent queries in the permutation have a common
relation. Diwan et al. [1] show that this problem is
equivalent to finding a dominating trail of a graph and this is
equivalent to finding a Hamiltonian path in a cubic
subgraph. They proposed heuristics for query scheduling,
which provides a good query ordering. As an heuristic, the
problem of scheduling is considered as the problem of
finding the maximum weight Hamiltonian path in the
QuerySet Graph, as a graph with nodes as queries belonging
to the set of queries and node Qi connected to node Qj with
an edge of weight Benefit(Qi, Qj). Benefit(Qi, Qj) is the
benefit gained by executing both the queries as a batch using
a cache space restricted to C and it is defined as:

 Benefit(Qi,Qj) = cost(Qi) + cost(Qj) - MQO cost(Qi,Qj),
where C is the cache size. This heuristic requires calculation
of the benefit for each combination, and results in many
calls MQO, and is thus expensive and impractical. It is

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:44:44 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 10, Number 2, 2010

 85

known that query scheduling and caching problem is
NPcomplete.

The Volcano representation of query plans, outlined in
[19] and [2], uses all possible semantic rewritings of the
input query. The Logical Query DAG (LQDAG) is an
AND-OR DAG, representing the space of all possible
equivalent relational algebra expressions. The Physical
Query DAG (PQDAG) is used to specify the various
algorithms available to evaluate a relational algebra
expression and also the physical properties that are satisfied.

Multi-query optimizers generate query execution plans
with common subexpressions used more than once, and thus
nodes in the plan may have more than one parent. The Plan
DAG is a DAG structured query plan.

Flum, Frick, Grohe define the DAG graph [20]:
Definition 6. The DAG graph is a directed graph with

vertex set QI and an edge from v to w if w occurs in f(v),
where:

I = (QI, fI, rootI, QI
1, ..., QI

k), QI is the (finite) set of
vertices,

fI : QI  (QI)k is a function whose graph is acyclic and
has vertices of in-degree 0, rootI is the vertex of in-degree 0,
and QI

1, ..., Q
I
k are subsets of QI

For a query Qi of size n, it knows the number of distinct
plans DAG is exponential in n. Feasibility of pipelining of
arbitrary subset of edges can be tested in polynomial time by
searching for C-cycles [12]. Finding the optimal scheduling
and caching strategy for a fixed set of pipelined edges in a
fixed plan DAG is reduced to a minimum cost path problem.

Let us consider a set of cache patterns P and a set R of n
relations R = { R1, ..., Rn}, n N*. Let be Pk (k >=1) P a
cache pattern defined as follows:

 a query Qi Q, on relations Ri, Rj, Qi loaded into the
cache from pattern Pk (k >=1) P

 a cache size C
 an implementation of the JOIN operator defined as

follows:
Qi = JOIN (Ri, Rj, Ri.cik = Rj.cjp), R = { R1, ..., Rn }, n

N*, i, j, ik, jp = 1, …, n and each Qi is defined as a pair (
evaluated query, query in cache) and the total size of the
query results in cache is less than the cache size C.

Let be a graph G = (Q, U), where Q  and

U = { u = [Qi, Qt] / Qi, Qt Q, Qi = JOIN (Ri, Rj, Ri.cik =
Rj.cjp), i, t, ik, jp = 1, …, n}

Further we introduce the heuristic of pair queries and
define the equivalence class of multi-queries from cache
pattern.

Definition 7. We will note h (Qi, Qj) the heuristic of pair
queries (Qi, Qj), where Qi, Qj Q, the maximum degree of
vertices within the path of pipelined edges from Qi to Qj:
h (Qi, Qj) =

))((Qreedegmax kp

j

ik

, where Qk  the path of

pipelined edges from Qi to Qj and degreep (Qk) is the degree
of node Qk, if we only take into account the adjacent
pipelined edges.

For example, the figure 3 shows a query graph which
contains a fixed set of pipelined edges, in a fixed plan DAG
where solid edges are pipelined and dotted edges are
materialized.

h (Qi, Qj) = max {degree (Qi), degree (Qk), degree (Qj)} =

max { 1, 4, 1 } = 4

h (Qp, Qd) = max{degree (Qp), degree (Qd) } = max{ 1, 2}
= 2

Figure 3. The query graph for a plan DAG.

Let us consider that the equivalence relation  on the P,
with a set Q of queries loaded into the cache pattern Pk (k >=1)

P as a batch, is defined as follows:

Qi  Qj.  { () Qk Q / h (Qk, Qi) = h (Qk, Qj), k >=1}

Observation. The equivalence class of query Qi is defined
as a set:

[Qi] = { Qj Q / h (Qj, Qi) = constant, where i, j >=1 }

In the above example, Qi, Qj, Qk, Qr, Qc form one
equivalence class say E1 while Qp, Qd, Qe forms the other
equivalence class say E2. If we replace the pipelined edges

with equivalence classes under the relation  , we obtain the
schedule graph of queries. The figure 4 shows the schedule
graph with equivalence classes.

Figure 4. The compressed graph with equivalence.

The Scheduling, Caching and Pipelining problem is
reduced to a minimum cost path problem, and the
compressed graph contains vertices that are Done or Cached
where Done is a subset of equivalence classes described
above and Cached is a subset of nodes in the original
uncompressed plan DAG, which are in the subDAGs rooted
at the Done nodes.

Diwan et al. [1] partition the vertices in the DAG into
equivalence classes, such that any two vertices are in the
same equivalence class if they are connected by a path of
pipelined edges. Let us define  this equivalence relation.

Further we show that the union of all equivalence classes
of queries from the cache patterns is the set of cache patterns
P.

Proposition 2 Let be a cache pattern (P, Q), where P is a

set of cache patterns, P  , Q is a set of queries loaded

into the cache and let  ,  ,  be equivalence relations on

P. Then union of all equivalence classes of queries from the
cache patterns is the set of cache patterns P.

Proof:

 Qi  Q, Qi is a query loaded into the cache, Qi  P, Qi

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:44:44 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 10, Number 2, 2010

86

 Q is the ith query in the cache pattern P

 Qi  Qi  Qi  [Qi] = { Qj Q / CP-MQ (Pk, Qi,

Cik) = CP-MQ (Pk, Qj, Cjs), where Pk (k >=1) P } [1]

 Qj  Q, Qj is a query loaded into the cache, Qj  P, Qj

 Q is the jth query in the cache pattern P

Qj  Qj  Qj  [Qj] = { Qp Q / h (Qj, Qp) = constant,
where p, j >=1 } [2]

Q = { Qi  Q / Qi is a query loaded into the cache,

Qi  P } [3]

[1], [2] and [3] Union of all equivalence classes is P
Example: An example of multi-queries optimization is as

follows. Let us consider that the query is of type sort-merge-
join. We can split the execution of the query into operations
which are the equivalence classes that can be cached, and
can be reused later.

Let R and S be two relations with the corresponding
relational schemas R(c1, c2, …, cn), S(c'1, c'2, …, c'n) and the
equi - join of the relations R and S loaded into the cache
from the set of cache patterns P:

JOIN (R, S; R.ci = S.c'j), where i є {1,…, n}, j є {1,…,
m}, ci ≡ c'j, where p(R) is a predicate with attributes from R
and q(s) is a predicate with attributes from S. The query uses

the projection (π) on the ci attribute of the relation R, the

JOIN operator () and the selection (). The execution
plan of the sort-merge-join is presented in figure 5:

Figure 5. Sort – Join.

Then we can say that sort-merge-join algorithm could be
split into two operations, one for selection and sorting the
data and one which performs the merge join. This allows the
partitions in the equivalence classes to become units that can
be cached, and can be reused.

VII. CONCLUSIONS

This article presents an approach of the multi-queries
optimization with scheduling, caching and pipelining, based
on the algebraic pattern. Each cache pattern represents a
unique equivalence class in the set of patterns. One query is
matched exactly one pattern, whereas each pattern is derived
from a set of related queries.

We demonstrated some properties of the equivalence
classes defined on the set of cache patterns. We proposed a
heuristics of pair queries for query scheduling and caching,
that provides a good multi-queries ordering and we defined
some equivalence classes of multi-queries from a set of
cache patterns. We demonstrated that the union of all
equivalence classes of queries from the cache patterns is the
set of cache patterns.

REFERENCES
[1] A.A. Diwan, S. Sudarshan, D. Thomas, "Scheduling and Caching in

Multi-Query Optimization", International Conference on Management
of Data COMAD, Delhi, India, 2006.

[2] P. Roy, MultiQuery Optimization and Applications, PhD thesis, IIT
Bombay, 2000.

[3] S. N. Subramanian, S. Venkataraman, Cost based optimization of
decision support queries using transient views, In ACM SIGMOD
Intl. Conf. Management of Data, Seattle, WA, 1998.

[4] H. Mistry, P. Roy, S. Sudarshan, K. Ramamritham, "Materialized
view selection and maintenance using multi-query optimization", In
ACM SIGMOD Intl. Conf. Management of Data, 2001.

[5] J. Shanmugasundaram, G. He, K. Tufte, C. Zhang, D. De-Witt, J.
Naughton, "Relational databases for querying XML documents:
Limitations and opportunities", In Intl. Conf. Very Large Databases,
1999.

[6] J. Chen, D. J. DeWitt, J. F. Naughton, "Design and evaluation of
alternative selection placement strategies in optimizing continuous
queries", IEEE Intl. Conf. Data Engineering, 2002.

[7] Sellis, T.K.: Multiple-Query Optimization, ACM Trans. Database
Syst. 13(1), pp. 23–52, 1988.

[8] Roy, P., Seshadri, S., Sudarshan, S., Bhobe, S., "Efficient and
Extensible Algorithms forMulti Query Optimization", In: SIGMOD,.
2000.

[9] X.Wang, T. Malik, R. Burns, S. Papadomanolakis, A. Ailamaki, "A
Workload-Driven Unit of Cache Replacement for Mid-Tier Database
Caching",.SIGMOD, 2002.

[10] A. Gupta, S. Sudarshan, S. Viswanathan. "Query scheduling in
multiquery optimization", In IDEAS, pp 11– 19, 2001.

[11] N. N. Dalvi, S. K. Sanghai, P. Roy, and S. S. "Pipelining in
multiquery optimization", ACM Symp. Principles of Database
Systems, 2001.

[12] K.-L. Tan, H. Lu, "Workload scheduling for multiple query
processing", Information Processing Letters, 555, pp. 251–257, 1995.

[13] Q.Luo, J. F. Naughton, R. Krishnamurthy, P. Cao, Y. Li, "Active
Query Caching for Database Web Servers", ACM SIGMOD
Workshop on the Web and Databases, WebDB, 2000.

[14] Q. Luo, J. F Naughton, "Form-Based Proxy Caching for Database-
Backed Web Sites", VLDB Conference, Rome 2001.

[15] Sophie Cluet, Olga Kapitskaia, Divesh Srivastava, "Using LDAP
Directory Caches", Proc. ACM Principles of Database Systems,1999.

[16] Olga Kapitskaia, Raymond T Ng, Divesh Srivastava, "Evolution and
revolutions in LDAP directory caches", Proceedings of the
International Conference on Extending Database Technology
(EDBT), pp. 202-216, 2000.

[17] Papadomanolakis, S., Ailamaki, A., "AutoPart: Automating Schema
Design for Large Scientific Databases Using Data Partitioning", In:
SSDBM, 2004.

[18] Nastasescu C., Nita C., Vraciu C., Bazele algebrei, vol I, Editura
Academiei Romaniei, Bucuresti, 1986.

[19] G. Graefe, W. J. McKenna, "Extensibility and Search Efficiency in
the Volcano Optimizer Generator", In IEEE Intl. Conf. Data
Engineering, 1993.

[20] J. Flum, M. Frick, M. Grohe, "Query Evaluation via Tree-
Decompositions", Proc. of the 8th International Conference on
Database Theory (ICDT'01), volume 1973 of Lecture Notes in
Computer Science, pp 22–38, UK, 2001, Springer.

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:44:44 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

