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Abstract—On the basis of the mathematical model, called in
total fluxes in a previous paper, and which is proper for the
analysis of transient operation of the two-phase induction
machine, one obtains the symmetrical steady-state equations,
which are valid for three-phase machines, as well. The obtained
mathematical expressions are much more simple and easier to
use than the consecrated ones, which are generally applied in
scientific literature. Moreover, considerations are to be made
upon the space-time rotational vectors, emphasizing their
importance in understanding the physical phenomena that
characterize induction machines. The use of these space vectors
is further tested out for the study of unsymmetrical supply,
which gives a much faster method in obtaining the
electromagnetic torque expression. Finally, the results are
compared with the ones that come out from the traditional
methods, more exactly, the symmetric component method.

Index Terms—induction machine, representative rotational
phase vector, symmetric components, unsymmetrical condition

[. INTRODUCTION

In support of our approach, defining of the space-time
rotational vectors, which were presented under similar
formulations in scientific literature [1-8], is necessary first.
The superposing effect concerning the quantities of the
electric field determined by the two-phase supply system
and the corresponding magnetic field is also considered as a
prior probability. The supply voltages are applied along the
turns placed in the slots (collinear to Oz axis). If the winding
is placed in the slots according to a sinusoidal law, one
decides that the applied voltage phase vector, u to be
represented as a segment in the xOy plane, orientated
towards positive axis of the winding. The length of this
segment is maximum when the applied voltage is maximum,
too. Ideally, in default of magnetic leakages and drop
voltages corresponding to winding resistance, the magnetic
fields (more precisely, the ftotal fluxes w, which are
preponderantly effective for the real cylindrical machines)
close in a radial pattern inside the xOy plane. It has a
harmonic distribution on the periphery (on the circle that
matches the middle of the air-gap), which means that the
flux density has maximum values in the centrum of the
supplied winding only when the applied voltage reaches the
0 value (according to induced voltage law: u=dy/dt). For our
demonstration, the stator phase vectors of the voltages and
total fluxes will be represented in the xOy plane for different
but consecutive moments according to Leblanc theorem
(any magnetic flux of w, amplitude, which is created by a
winding with cosine distribution and single-phase feeding, is
equivalent with two rotating and equal fluxes with the
amplitude of (1/2)w,, but which rotates in opposite directions
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with coequal speed, forward and backward traveling waves
respectively, [9-14].

II. HYBRID PARAMETERS OF INDUCTION MACHINE, TOTAL
FLUXES

Fig. 1a presents a cross section of an induction machine
with a distributed single-phase stator winding. One starts
with the voltage equation:

d(Li) _Ri+ d(L)i+ d;i) L

u:Ri+d—l//;u:Ri+
dt

dt dt t (1)
dt dt

which, by using the Ohm law for magnetic -circuits

(Wi=R, Y ) becomes:
w

uzi(W,-)ﬁ_v’:i[Rmzjﬁ_w:ﬁwd_v’ o
w a W w

u=vy + d—l// 2)
dt

One defines the hybrid parameter called “niutance”,
which depends on machine geometry and material
characteristics: resistivity-pc,, vacuum permeability-u,, total
cross section of the winding-S¢, , end winding factor-k;,
polar pitch-z, polar pitch cofficient-o; , ideal length-/; and
global air-gap-ok.
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A preliminary analysis of (2) shows that the hybrid
parameter, v, (unit of measurement - s~/ that is the reverse of
the time constant of the winding) has minimum value for
certain geometrical dimensions:

v=min—>kﬁ=l—;zl.6+l.8=/1 4)

Equation (2) shows that a voltage (with harmonic
variation in this case) applied to the terminals of a coil (Fig.
1b) determines a total flux, y, that represents the solution of
the first order differential equation with hybrid parameter, o,
which is considered constant. Eq. (1) is non-linear even if
the parameters R and L have constant values.
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a)
Figure 1. Annotation to hybrid parameters and total fluxes.

When the stator coil as is close to a rotor coil ar (Fig. 1c),
there are mutual effective fluxes, y, =L i, -cosé,, and

srlar
v, =L, -cos@, respectively. (To simplify the approach
one considers that the two coils have coequal numbers of
turns, L =L _; otherwise, a reducing to stator process,
similar to the transformer study, is required). The total
fluxes of the windings can be defined with
Wy =Ly +L,i,cosOpsy, =L i, +L,i cosf, orunder

sriar rr lar sroas

matrix form:
[l//] = [L] [l] where :

_ Vas . _ Lss Lsr cos gR T ias (5)
[')[/] - |:l//ar :|’ [L] - {LSV COSHR er }’ [l] - |:iar:|

By multiplying to the left with inverse matrix of
inductances

[L]—l _ l|: er - Lsr COs QR i|’
A|—L,, cosOp Ly 6)

where: A =L L, —IL* cos® 0
one obtains the currents dependent on total fluxes:

(L] l=l' 2] [] or:[]=[L] ']

. L, L, cosbp

lys = A l/las A l/larv (7)
i = _M + LSS

ar A l//as A '//ar

The voltage equations, similar to (1), for the two circuits,
are:

- dyy
”av:Rslm dar
dy R

or:u, =—>—— +— 3 cos by,

as (A/er)l//as dt (A/Lw)l//ar R (8)
Uy = Rydy, +%3

R dy

or:u, =———"——y,  cosl, + —1— ar

ar (A/Lsr)l//as R (A/LSS)V/W dt

One obtained a system of two second order differential
equations with variable coefficients depending on 6.
Obviously, the cosine of the angle between the positions of
the two windings is present since, for a general case, the
windings stand or are in a relative rotating movement.

This reasoning can be applied, as well, for other coils that
are magnetically coupled with as, as a consequence of
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superimposing effect principle and considering the linear
averages first.

III. THE REPRESENTATIVE PHASE VECTORS OF THE IDEAL
INDUCTION MACHINE

The case of ideal machine with no leakage fluxes zero
value winding resistances is taken into discussion. The
symbolic notations used for this approach are presented in
Appendix A.

If one considers a cross section of a symmetrical two-
phase machine (and more precisely a path along mid-stator
cylinder) and the winding axes have the orientation as-Ox
and bs-Oy respectively, then the phase vectors of the
voltages and total fluxes, for different moments, have the
positions indicated in Fig. 2 (where a two-phase
symmetrical condition is assumed, U, =U,,).

Fig. 2 presents the voltage and total flux phase vectors
corresponding to forward and backward order for three
different moments: @t=0- Figures 2al) and a3),
ot = /4 - Figures 2bl) and b3), and wt=7x/2- Figures
2cl) and c3). In contrast with the "classical" representation
manner, where the cross and dot signs which are placed
inside a turn, show the orientation of the flowing current, in
our case, the symbols define the polarity of applied voltage
across turns (to avoid any confusion, it has to be mentioned
that the purely inductive circuits have a phase time alteration
of 7/2 between current and applied voltage).

During the considered interval (a quarter period) the
applied voltage on as phase starts from maximum value and
decreases to zero value (see Figures 2 al, bland cl) while
the voltage corresponding to bs phase starts from zero value
and increases to maximum value (Figures 2 a2, b2 and c2).
The resultant values of voltage and total flux phase vectors
come from a geometrical summation of the forward
components corresponding to the two phases of the
machine. These components are coequal and collinear. On
the contrary, the backward components are coequal but in
opposite directions for every moment and consequently the
sum is always zero. For example, the resultant phase vector
of total stator flux has a constant absolute value and the
rotation angle is of 772 rad. (during a quarter period, the
apex of the resultant phase vector covers a quarter of the
circle inside the plane xOy). This is a coincidence that
allows a reciprocal conversion of the temporal and spatial
angles and the phase vectors (obtained by means of
analytical representation) from the complex space (+1, +j)
can be assimilated to phase vectors in xOy plane, which will
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be denoted representative vectors.
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Figure 2. Representative rotational phase vectors of two-phase induction machine.Along Ox axis, the total flux is created by as winding with a cosine time

variation and an initial phase of —77 / 2 . The same assumption is made for bs phase, but acting on Oy axis with an initial phase of — 77 .

Wsr = l//asxi + ‘//bsy ]

_ i )]
Y= \}Ias\/zcos(wst - %)z + ‘I’asx/acos(a)st —% - %jj;

This vector can be expressed in a different way (polar
coordinates) as W =¥ Z£6,. The absolute value of this

vector is Wz =Jwl, +¢//§Sy = ‘PHS\/E -constant, and the

argument 6, =wt—x/2, which is time dependent. The

angular speed comes from  phase  derivative
Q. =db,/dt =w, and is equal to applied voltage pulsation.
Notable is the fact that the projections of the representative
vector along Ox and Oy axes have coequal length with
instantaneous values of the total fluxes created by the as and
bs windings. This is a strong reason in adopting the concept
of representative space-time vector of the stator flux. It must
be also mentioned that the representative vector of the stator
flux shows the radial direction of the cross section plane at
any moment, where the density of stator magnetic flux lines
(with radial air-gap flux density) is maximum.

A different way to define the representative space-time
vector of the stator flux is based on one-to-one

correspondence between xOy plane (Z ,; versors) and
complex space (+1,4/). The following statement is allowed:
the j versor can be obtained by rotating in the same plane

the versor i with /2 which is equivalent to "multiplication
by ;" in "simplified complex" approach. One can define:

(10)

The angle ¢ = /2 has the signification of a spatial angle
among the machine windings. Taking into consideration the
forward and backward components presented above, one
obtains:

ESR = l//asx; + l//bsy} < XSR = 2as + ejﬁibs; o=rml2

36

gSR :gax +j$bs :ijasd +ijasi +jijbxd +jijbxi
‘PSR =

B (1
:\{;zx\/i[ej((qrﬂﬂ) +e—j(qr—zr/2) +je"(“""7”/27”/2) +je—j(qt—ﬂ) —

=g |2l

which prove in an analytical way that there is a summation
of the forward components and a subtraction of backward
components which nullifies them.

Observation: The direction of rotation of the
representative vector can be reversed if the polarity of the
supply voltage for one winding is reversed as well. For
example, if the reversed phase is b-y, then ¥, is reversed
and the representative vector becomes:

g SR zga.v +j(_gbs):gnsd +ga.vi _jgh.vd _jgh.vi
¥y = (12)
___as ej(w,lfiz/l) + efj(w,tfzz/2) _ jej(w,lfiz/lfiz/l) _ jefj(w\lfzr)]

YL

-y \/E efj((ujt—fz/Z)

In this case, the forward components annihilate each other
and the backward components add up.

In conclusion, for the symmetrically fed two-phase
induction machine, the representative vector of the resultant
stator flux has the length coequal to the amplitude of total
flux  generated by one phase (as or  bs),

Yor :UaS\/E /@, (its apex covers a circle), the rotation

speed is constant and equal to pulsation of applied voltage
w,, and the direction of rotation is conditioned by the initial
phase angle of the two applied voltages. In anticipation, it
has to be revealed that the representative vector is given by
the summation of two opposite rotating vectors, a forward
component and a backward one.
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III. THE REPRESENTATIVE PHASE VECTORS FOR
UNSYMMETRICAL TWO-PHASE CONDITION

The study takes into discussion the unsymmetrical supply
when U, #U,,. An analytical approach is possible if the
expressions presented in Appendix B are used.

Using the above reasoning, one can define the space-time
stator phase vector:

Wk = Ygsed Wy ] Wg =W W, 56 =7/2 (13)

Taking into consideration the forward and backward
components above designated, one obtains:
is‘R = ga& + jib& =
=W+ Yo+ T+ T + S =

v

_ as [ej(m\/f/r/2)

V2

+ E [ej(mjtf/r/l) + ea/'(ms/+/r/2):|+
2

NG

. % [eim"t n ei,'((u\z—zr)] -
Yo

2

efj(m\.tfzr/Z)]_’_

(14)

[Asing — j(1+ Acose)]e’™ +

+ ‘j% [- Asing+ j(1—Acose)|e 7™ =¥ 4, + ¥

Thus, it is analytically proved that, in contrast to
symmetrical condition that keeps nothing but one
component (forward or backward), the unsymmetrical
condition has two flux components: a forward one, more
significant in amplitude and a weaker backward component
(this fact is generally valid for the studied quantities). The
two components can be expressed as follows:

_ Jog+a,) .
Wira = Ae >

ql‘Pa.v .
\/5 s
g, =V1+ A +2Acose;

1+ Acose

A=

(15)
«, = arctan -
—Asing
¥ . =Be /@),
quPas :
\/E B
g, =N1+ 1 —2Acos¢;

1-Acose

B=

a; =180" — arctan——
sin g

The next step is a rotation of the space-time phase vector
inside  the complex space with the angle
—a=—(a;+a,)/2. This operation is equivalent with a

multiplication by ¢ /(@ *)/2 It results:

= Ae + Be

Woge (16)
The trigonometric form is:
\PsRe/W\R 'e’/ﬂ —
a7

=(4+ B)cos[ot — (o, — )/ 2] +
+ j(4-B)sin[ot — (o, -, )/ 2]
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Dissociation of the real (x subscript) and imaginary (y
subscript) parts leads to the equation system:

Yo cosa+W, sina =

=(4+ B)cos[a)jt —(a, —a, )/2] =¥,

(18)
~ Wy sina+¥, cosa=
=(4- B)sin[a)st +(a, -a, )/2] =Y¥,,
which, by eliminating the parameter ¢, gives:
2 2
B) e, Pir (19)

(4+BP (4-B}

In conclusion, the apex coordinates of the representative
flux vector which are related to the new axes (XOY) and
rotated by the angle o =(a; + ad)/ 2 towards the initial
system (xQy) are accomplishing the characteristic equations
of an ellipse (E) with A+B and 4-B as semi-axes.

The apex of the forward vectors covers a circle (Cy), while
the backward components cover the circle (C;). Both vectors
have coequal angular speeds, @, , but to opposite directions.

Fig. 3 presents the representative phase vectors of the total
fluxes corresponding to three consecutive moments:
wt=0,- the apex in A; wt=n/4,- the apex in B;
ot =m/2,-the apex in C.

Figure 3. Representative phase vector for the unsymmetrical condition of
the induction machine.

As an example, using the values
A=0.75 &e=xn/6; ¥, =6,then:

ESR =
= 4‘2[ej(a).‘tfzz/2) T ei/’(@f*ﬂ/z)]_‘_
+2.8|:e/'(w;t—;r/2) +e—j(wvt+;r/2)]+

+ 1.6[e A e'-’(“’*"”)]

(20)

Separation of the forward and backward terms gives:
¥ g =(1.6— /7)™ +(-1.6+ jlA)e " =

21
=7.2¢/00 ) 2 1 07 g = 300 e

The amplitude of total flux during a period covers the
range (9.3 - 5.1) Wb. It is obvious that the instantaneous
angular speed of the resultant flux is a variable quantity
despite the assumption that asserts the mean value remains
constant and coequal with the synchronism one. Practically,
during a period, the torque has twice both maximum and
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minimum values. This may cause intolerable vibrations and
noise or possible mechanical faults. These variable torques
determine non-uniform rotor speed, increased frictions,
higher temperature irradiated non-uniformly in the machine
components, trepidations, premature ageing of the bearings,
a global decrease of the output power and lifetime.

IV. ANALYSIS OF UNSYMMETRICAL CONDITION USING
REPRESENTATIVE SPACE-TIME PHASE VECTORS

A proper analysis can be achieved as follows: one starts
with the equations of two-phase unsymmetrical induction
machine written in the simplified complex manner, under
matrix form, [15-20]

Uy | [V tios 0 0 Vs Y s
Ul | 0 varjo, vy 0 ||y,
0 0 — Vi Vg + joy -y Yo
0 Vi 0 o Vg +J0O | |V,
(22)

Assuming the superposing effect principle for voltages
and total fluxes, one can formulate the connective
expression between complex quantities and corresponsive
space-time phase vectors as follows:

QSR :Qas + jgbs;l/—/sR = l/—/as + jzbs;ZrR = Zdr + jZQr (23)
In matrix equation (29), one multiplies the 2™ and 3™

rows by j, which has as consequence the modification of the
terms, including wp:

U, L [0 0 0 Vs L
JU,, 0 Vv, + Jjo Vs 0 J Y s
o || o v, v, +je,  —jo, ||,

0 -V, 0 —jo, v,tjo ||V,
(24)

The system equation (24) leads to other two equations:

one for the representative space-time phase vector of the
stator total flux and the other for the similar rotor phase
vector. The analysis implies two steps.
a) One considers a first machine, denoted with F.M., which
includes nothing but rotational representative phase vectors
that circulate forward (denoted with d subscript). The
following notations are used:

ﬂrs =Vis +]ws;ﬁsr =V T J0;

Viu@s =V Vg = ViV Oy — Wp = SO,

s

The first equation comes from summation of the first two
rows and the second equation is the sum of the third and
forth rows. The matrix form of the matrix is:

v N Vi | |¥
(FM.) [—SR“’} = =" hs || =skd (25)
0 Vi Ny —Jor] [V,e
The right member determinant is a complex quantity:
i 2
A= w, [(Vtt — S, )+ J(Vsr +SV, )], A = 26)

= a)q2 [(v,zs + a)f)sz + 28V Ve + vszr + vé]

The representative space-time phase vectors of the fluxes
are:
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— Qst *

U *
=2 (Vsr +jS6()S)é ;Zer - A2 Vhré ;

Yira = A2

@7

The electromagnetic torque developed by the forward
machine is:

__Pr ( : . )_
Med - L Re ]ZstZer -
oo
(28)
PV 2 S
= Usra
oLy, "2 1@+ 25wy vy, +vE 402

Observation: A reversal of the supply phase order (or any
polarity phase inversion) with preservation of rotor rotation
direction determines the reversal of the rotation direction of
the representative phase vector of applied voltages and
fluxes. This fact implies the reversal of the sign of the
pulsation, o, - —@, . In (32), there act the new parameters

%

N =v,—jo;N. =v, — jo,. The machine operates as
brake and the new equations give the torque expression
easily.

b) From the viewpoint of the backward components, the
machine acts as a brake (B.M.), according to equations:

|:QsRi:| — Ejs Vs % |:K5Ri:| (29)
0 Vi E:r —jog Y i

where — o, —wy = —(2 - s)a)s .

The left member determinant is:

él = a)s[(vtt _(2_S)a)s)+j(vsr +(2_S)Vrs)]; (30)

A =] [A(z —sf +2B(2-5)+ C]

where: 4= vfs + a)Sz;B =V Vi C = vszr + vz
The representative space-time phase vectors of the fluxes
are:

Lo : U
L :??[Vsr —j(2 —s)a)s]él W= Y sRi

2
A]

*

Vhrél

(€2))

The electromagnetic torque developed by the "backward
machine" is:

M, = _TZRe(jZ.vRiZjRi): (32)

_DPVi 2 2-s
oL, ™ A2-s)+2Bs+C

The resultant torque, obtained by means of superposing
effect law, is:

M, =M, +M,=

_ PV s U.szd _ (2 - )U:Ri
@,L,, | As* +2Bs+C  A(2-s) +2B(2-s)+C

(33)

The components of the representative phase vector of the
voltages can be deduced similarly:

UTR:Qa.v-i_jQ =

ey bs

:Qasd +Qasi + j(ghsd +—/1Sf):
:(l+&d)(lasd +(l_&i)gasi =

=(1+ Acose + jAsing)U,, +
+(l—/lcosg+jlsing)gm,- =

— Uas [Edei&/ei(!)\l + Eieif,e*.f“)r’ ]: U +U

\/E ~ sRd —sRi

(34)
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where:
E,=V1+ 2 +2Acos¢;
E, =1+ A —2Acose;

¢, = arctg Asing

¢ 1+ Acose’
Asing

& =arctg———
1-Acose

Hence, the resultant torque
M,, =M, +M,=

_ pv, U2 {s(l-i—/f +2/100sg) (2—5)(1+/12 —2/1coss)

20,L, | As’+2Bs+C  A(2-s) +2B(2-s5)+C

(35)
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No doubt, there is a confirmation of these results, which
are similar to ones that are obtained by means of other
methods, such as "symmetrical components method" [21-
26].

Graphic inference of the amplitude of the two voltage
components is presented in Fig. 4. The graphic construction
is made for a specific case, and more precisely at r=0. After
the calculus of the length of the two voltage components
(forward and backward) and their difference of phase
corresponding to =0, one determines the track of the apices
representing a circle. Each component length represents the
circle radius, which runs to opposite directions with coequal
speeds, w,.

Figure 4. Graphic inference of the representative space-time phase vector component
a) Two-phase unsymmetrical voltage system, b) Forward rotational phase vector, ¢c) Backward rotational phase vector.

The following methodology is used (Fig. 4): the voltage
U, is considered as phase reference, Fig. 4a. One plots the
phase vector O4, its value being half voltage amplitude, u,;,

that is |0A| =U, / V2. Similarly, one plots the phase vector
OB with |OB| =U,, / \/5 , but with a difference of phase of

e-n/2 (which is negative in this case). Further, the phase
vector OB is rotated towards positive direction with /2
resulting OB'. The vectors O4 cu OB’ are geometrically
summated, thus resulting OC= Ugpy, that is the
representative forward rotational phase vector. Then, the
vector OB" is obtained as the symmetric segment against
vertical axis. The sum of OB" with OA4 gives OD= Ug,, that
is the representative backward rotational phase vector. The
representative forward rotational phase vector covers the
circle (Cy) towards positive trigonometric direction (Fig. 4b)
and the representative backward rotational phase vector
covers the circle (C;) towards negative trigonometric
direction (Fig. 4c). Obviously, the apex of the representative
rotational phase vector covers an ellipse. This graphical
construction is justified by the following reasoning. The
cosine theorem applied in OAC triangle gives

0= (U, /N2 N1+ 22 +24cose and for OAD triangle
|OD| = (Uas /\/EN1+ 2* —2Acose . These are the lengths of

the forward and backward phase vectors.

V. CONCLUSION

The representative space-time rotational phase vectors of
total fluxes represent a useful tool for understanding the
phenomena that take place inside the induction machine
(with stator-inductor, rotor-armature). They give a physical
signification close to the image of the traveling waves. The
equations have a reduced number of variables. Practically,
there are only voltages (that characterize the electric field)
and total fluxes (characterizing the magnetic field). The
presence of current is no longer necessary.

The equations containing nothing but fluxes lead to simple
analytical expressions for total fluxes of the stator and rotor.
It is easy to handle these equations both for the analysis of
symmetrical and unsymmetrical conditions.

For symmetrical conditions, the apex of the representative
stator and rotor phase vectors (for flux) covers a circle and
the rotation speeds are constant. For unsymmetrical
conditions, the apices cover ellipses and the instantaneous
speeds during a revolution vary between two limits. The
analysis can be accomplished by using two representative
phase vectors: a forward and a backward one, respectively.
They have coequal but opposite directions.

For unsymmetrical conditions, it is possible to have a
significant saturation of the magnetic circuit corresponding
to major axis position. In this approach, this fact can be
pointed out more easily, in comparison with classic
formulations, where the presence of currents is mandatory.
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APPENDIX A

Symbolic notations for ideal induction machine

Uy =UyN2 cosot <> U, =U N2(e/ +e77/%)/2=U, , +U

U : U .
Uy =2 e; g, =2 e o,

LJS‘l’

¥ (o
W = Uas 2 cosl @ t—_ Hgas __—as \/Elie‘/(a)st 7[/2)+e ](wt 71'/2)] imd +\Pm1
@, 2 2
\Pas \ogt—m/2 ] /2 j . Uas
Easd = \/5761(0) ==12) =" o, —asd ’—asz = \/_ (or/2) ;Qasi’\yas :7

A

up, =Up N2 cos(wyt —/2) > U, = Uzbs ﬁ[ef(“’*"*”/z) + e’f(‘”i’*”/z)]z Upes +Upis

U, U
Upa = -j U sUpsi = By

~asd> ~asi>
as as

Vs :%\/Ecos(wst_ﬂ')e)gbs bS \/_[ e ” a)t ”):I gbm +£b5i;

on

¥ ; -
gbsd :_\E ")f)s e.]wjt; 2bsz - \/_ bx et ‘Ilbs Ubs'

S

APPENDIX B

Symbolic notations for unsymmetrical two-phase condition

—asi >

1
Ups = Uasx/ECOS wst <_>Qas :EUas\/E(ejmct t+e e Z) Uasd +U

U :ﬁ%ejwst; Qasi :\/E%e*ja)st;

~asd

U, WY (ot—
‘//as = P, ZCOS([() I—Ej Hias = 5 \/E[e](a]xt ”/2) +e- (a]t ”/2)] \Pasd +lPaSl
s
N oo U ¥ 10

Uy, = AUasx/Ecos(a)st—ﬂ/2+s):Ub1\/Ecos(a)st—7z/2)+ szx/zcosa)st ©

U i t— U, _
OUpg +Up +Uppg + Uy = ﬁ[ Hoi=n12) 4 g-ilot ;;/z)]+ = [ ol 1e jwl

where: U, =AU coss; Uy, = AU sin¢g . A different form to express the above equtions is

Up, = /IUan/Ecos(a)st —7/2+8)e —{l/%’s [ej(“"“[)ej(g_”/z) + e_j(“"“’)e_j(‘g_”u)]z

(B-2)
:’wz [W JE(—j)+e eI ]_—1,1 Ui ViAiUpas Ag =€, 4,=2e77°
Vs =%ﬁcos(a)st—7z+€)<—>ibs ‘\I/I% [ @yt-x) +e_j(”5t_”)]+
’ (B-3)
L 2b2 ¥ [ jlo,t-712) +e—.i(w.v’_”/2)]= Wi + ¥ + ¥pog + i3 ¥y =%'\sz ==

V2 o T e o, 2}
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APPENDIX C

Particular cases

- Machine with symmetrical supply system -
A=Le=0,E; =2,E, =06, =&, =0,
2pv, U s
M, =My = ol 2 (C-1)
oL, As“+2Bs+C

- Machine with single-phase supply system (broken b-y
phase) - 1=0;6=0,E; =L E, =l¢; =¢&; =0;
M = Med +Mei =

v, U’ s 2-s €2)
_ p hr as ( )

" 20,L, | A’ +2Bs+C  A(2-s +2B(2-s)+C

Obviously, for s=/ (start-up) one obtain M,,..=0. At same
the time, it is noticeable that the dependence M., .=f(s) is a
symmetric curve around start-up point, M,,..(1-x)=-
MEI‘QZ(] +'x)

- Machine with both windings connected to the same voltage
(null difference of phase between the two applied voltages),

A=Le=n/2E, =E; :ﬁ;ad =¢; =x/4. As a matter of
fact, this is a complete single phase or 1/1 machine. The
torque expression is:

M, =M, +M,=

erez

PvuUa s (2-5)
oL, |As*+2Bs+C A(2-s) +2B2-s)+C

} (C-3)

There is a duplication of the torque for a certain slip. This is
a solid argument for the solution that uses for the single-
phase motors only 2/3 slots and consequently the developed
torque decrease to 8:9 value. As expected, for s=/ then
M., =0.
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