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LIMIT BEHAVIOR OF MAXIMA IN GEOMETRIC

WORDS REPRESENTING SET PARTITIONS

Michael Fuchs, Mehri Javanian

Dedicated to Helmut Prodinger on the occasion of his 60th birthday.

We consider geometric words ω1 · · ·ωn with letters satisfying the restricted
growth property

ωk ≤ d+max{ω0, . . . , ωk−1},

where ω0 := 0 and d ≥ 1. For d = 1 these words are in 1-to-1 correspondence
with set partitions and for this case, we show that the number of left-to-right
maxima (suitable centered) does not converge to a fixed limit law as n tends to
infinity. This becomes wrong for d ≥ 2, for which we prove that convergence
does occur and the limit law is normal. Moreover, we also consider related
quantities such as the value of the maximal letter and the number of maximal
letters and show again non-convergence to a fixed limit law.

1. INTRODUCTION AND RESULTS

There exists a vast literature on statistical properties of geometric words

ω1 · · ·ωn, which are words whose letters are generated by independent, geometri-
cally distributed random variables, i.e.,

P (ωk = ℓ) = pqℓ−1, (ℓ ≥ 1),

where 0 < p < 1 is the success probability and, for convenience of notation, we set
q := 1− p. For instance, some of the various statistics which have been studied for
such words are:
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• left-to-right maxima (e.g., see Archibald and Knopfmacher [1, 2]; Bai,
Hwang and Liang [4]; Brennan, Knopfmacher, Mansour and Wagner

[8]; Knopfmacher and Prodinger [19]; Oliver and Prodinger [30];
Prodinger [31, 32, 34, 35, 36]);

• maximum value (e.g., see Bruss and O’Cinneide [9]; Eisenberg [10];
Prodinger [36]);

• number of times the maximum occurs (e.g., see Kirschenhofer and Prodi-

nger [18]);

• number of different letters, missing letters and gaps (e.g., see Archibald and
Knopfmacher [3]; Goh and Hitczenko [14]; Louchard and Prodinger

[26]; Louchard, Prodinger and Ward [27]),

• inversions (e.g., see Prodinger [33]);

• ascends and descends (e.g., see Brennan [5]; Brennan and Knopfmacher

[6, 7]; Knopfmacher and Prodinger [20, 21, 22]; Louchard and Prodi-

nger [25]);

• runs (e.g., see Eryilmaz [11]; Grabner, Knopfmacher and Prodinger

[15]; Lee and Tsai [23]; Louchard and Prodinger [24]).

Here, we consider geometric words which satisfy the following (generalized) re-

stricted growth property

(1) ωk ≤ d+max{ω0, . . . , ωk−1}, (1 ≤ k ≤ n)

with ω0 := 0 and d ≥ 1.

For d = 1 such words are in a bijective correspondence with set partitions:
order the blocks of a set partition according to ascending values of the smallest
elements from each block; then, define ωi to be the block which contains the i-
th element. It is easy to see that every such word satisfies (1) with d = 1, and
conversely, every word satisfying (1) with d = 1 corresponds to a set partition. This
and the fact that they are related to approximate counting (see Prodinger [37])
sparked the recent interest in stochastic properties of geometric words satisfying
(1) with d = 1.

We recall some of the results. The first quantity which was studied was the
probability pn that a geometric word satisfies (1) with d = 1, for which exact formu-
las were obtained by Mansour and Shattuk [28] and Oliver and Prodinger

[29]. In addition, the authors of [29] also obtained the following asymptotic result

(2) pn ∼
qQ(p)

log (1/q)Q(1)
nlog1/q p

∑

k

Γ
(

− log1/q p+ χk

)

n−χk ,

where χk =
2kπi

log(1/q)
and

Q(s) =
∏

ℓ≥1

(1− qℓs).
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Moreover, in [37], Prodinger considered the number of left-to-right maxima L
(1)
n

(or equivalently the value of the maximal letter) of a geometric word of length n
given (1) with d = 1 and derived an asymptotic expansion of the mean

E
(

L(1)
n

)

∼ log1/q n+Φ
(1)
1

(

log1/q n
)

,

where Φ
(1)
1 (z) is a one-periodic function. Our first result generalizes this to all

higher moments. In particular, this will imply non-convergence to a fixed limit
distribution.

Theorem 1. We have, for all m ≥ 1,

E
(

L(1)
n − log1/q n

)m
∼ Φ(1)

m

(

log1/q n
)

,

where Φ
(1)
m (z) are one-periodic functions given in (9) below. As a consequence,

L
(1)
n − log1/q n does not converge to a fixed limit law.

The interest in this result lies in the fact that for geometric words without
(1) it is known that the number of left-to-right maxima (suitable centered and
normalized), in fact, does converge to a limit law which is normal; see for example
[4]. Thus, if we denote the number of left-to-right maxima of a geometric word of

length n given (1) with general d ≥ 1 by L
(d)
n , a natural question is whether there

is a phase change from non-convergence to a fixed limit law to convergence to a
normal limit law as d grows to infinity and if yes, where does the phase change
occur? Both questions are answered by our next result for whose formulation we
need the following polynomial

P (z) = 1− p

d
∑

ℓ=1

qℓ−1zℓ.

Moreover, we use ρ to denote its (unique) positive real root.

Theorem 2. The sequence of random variables L
(d)
n , suitable centered and nor-

malized, satisfies a central limit theorem:

L
(d)
n + log1/q n/(ρP

′(ρ))
√

log1/q n

d
−→ N(0, σ2

d),

where

σ2
d :=

1

ρP ′(ρ)
+

P ′′(ρ)

ρP ′(ρ)3
+

1

ρ2P ′(ρ)2
.

Moreover, σ2
d > 0 if and only if d ≥ 2.

Note that the above result also holds for d = 1, but does not give a meaningful
result in this case.
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As mentioned above, L
(1)
n can also be interpreted as the value of the maximal

letter (or also the number of blocks of the corresponding set partition). This,
however, becomes wrong for d ≥ 2, where the value of the maximal letter and the
number of left-to-right maxima is different. Thus, we investigate next the value of
the maximal letter of a geometric word of length n given (1) with d ≥ 2 which we

denote by M
(d)
n . Here, we do not have a phase change from non-convergence to

convergence to a fixed limit law and, in fact, Theorem 1 can be generalized to all
d ≥ 1 (for the mean this was already proved by Fuchs and Prodinger in [13]).

Theorem 3. We have, for all m ≥ 1,

E
(

M (d)
n − log1/q n

)m
∼ Φ(d)

m

(

log1/q n
)

,

where Φ
(d)
m (z) are one-periodic functions given in (11) below. As a consequence,

M
(d)
n − log1/q n does not converge to a fixed limit law.

Finally, we will consider the number Nn of times the maximal letter occurs in
a geometric word of length n, where for the sake of the simplicity, we only consider
the case d = 1 (this corresponds to the size of the last block in the corresponding set
partition, where the blocks are ordered as above). Again, all the moments exhibit
periodic fluctuations preventing convergence to a fixed limit law.

Theorem 4. We have, for all m ≥ 1,

E(Nm
n ) ∼ Ψm

(

log1/q n
)

,

where Ψm(z) are one-periodic functions given in (13) below. As a consequence, Nn

does not converge to a fixed limit law.

We conclude the introduction with a short sketch of the paper. In the next
section, we consider left-to-right maxima and prove Theorem 1 and Theorem 2.
The method of proof will be a refinement of the method from [13], which will
be recalled in the next section as well. The same approach can be also used to
establish Theorem 3, whose proof will be presented in Section 3. Finally, the proof
of Theorem 4 is similar, too, and will be briefly sketched in Section 4.

2. LEFT-TO-RIGHT MAXIMA

In this section, we are going to consider the number of left-to-right maxima
and prove Theorem 1 and Theorem 2. For the proof, we will refine the method
from [13], which relied on the Mellin transform and the theory of analytic depois-
sonization. The former is a classical tool in analytic combinatorics and the reader is
referred to the superb survey by Flajolet, Gourdon and Dumas [12] for back-
ground. For the latter, see the survey of Jacquet and Szpankowski [17] (and
also Hwang, Fuchs and Zacharovas [16] from which the language used below
is borrowed).
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First, we use pn,k to denote the probability that a geometric word of length

n satisfying (1) has exactly k left-to-right maxima. Moreover, we set pn =
∑

k≥0

pn,k,

which is the probability that a geometric word of length n satisfies (1). Note that
for d = 1, the asymptotics of this probability was given in the introduction. By

definition of L
(d)
n , we have

P (L(d)
n = k) =

pn,k

pn
.

The crucial observation (already made in [13]) is that pn,k satisfies the following
recurrence

(3) pn+1,k =

d
∑

ℓ=1

pqℓ−1
n
∑

j=0

(

n
j

)

(

1− qℓ
)n−j

qℓjpj,k−1, (n ≥ 0, k ≥ 1)

with initial conditions pn,0 = [[n = 0]] and p0,k = [[k = 0]], where [[·]] is the Iverson
bracket. This recurrence is easily explained: we first condition on the first letter ℓ,
which by definition satisfies 1 ≤ ℓ ≤ d (the probability for this is pqℓ−1, which is
the factor after the first sum); next, we condition on the event that the remaining

n letters contain exactly n− j letters which are ≤ ℓ. There are
(

n
j

)

choices of these

letters and the probability that they are all ≤ ℓ is (1− qℓ)n−j . Moreover, the final
j letters are all larger than ℓ (the probability for this is qℓj) and they form again
a geometric word satisfying (1) and having one less left-to-right maxima (so, their
probability is given by pj,k−1).

Our goal is to use this recurrence in order to find an asymptotic expansion

of
∑

k≥0

pn,ke
kt. To this end, we use poissonization

L̃(z, t) := e−z
∑

n≥0

∑

k≥0

pn,ke
kt z

n

n!

which means that we replace n by a Poisson random variable of parameter z. Due
to concentration of the Poisson distribution, we expect

(4) L̃(n, t) ∼
∑

k≥0

pn,ke
kt

which is called the Poisson heuristic and will be justified below with the theory of
analytic depoissonization. The advantage of poissonization is that (3) becomes

L̃(z, t) +
∂

∂z
L̃(z, t) = pet

d
∑

ℓ=1

qℓ−1L̃(qℓz, t)

and this differential-functional equation can be asymptotically solved.

For this, we apply the Mellin transform to the differential-functional equation,
where the Mellin transform of a function f̃(x) is defined as

M [f̃(x);ω] =

∫ ∞

0

f̃(x)xω−1dx.



318 Michael Fuchs, Mehri Javanian

By properties of the Mellin transform, the equation becomes

M [L̃(z, t);ω]− (ω − 1)M [L̃(z, t);ω − 1] = (1 − Pt(q
−ω))M [L̃(z, t);ω],

where

Pt(z) = 1− pet
d

∑

ℓ=1

qℓ−1zℓ.

(Note that P0(z) equals P (z) from the introduction.) Next, it is advantageous to
consider the normalization M̄ [L̃(z, t);ω] = M [L̃(z, t);ω]/Γ(ω). This yields

M̄ [L̃(z, t);ω] =
M̄ [L̃(z, t);ω − 1]

Pt(q−ω)
.

This recurrence has the general solution

M̄ [L̃(z, t);ω] =
c(t)

Pt(q−ω)Ωt(q−ω)
,

where
Ωt(s) =

∏

ℓ≥1

Pt(q
ℓs)

and c(t) is a suitable function, which can be obtained by the observation that
L̃(0, t) = 1 and applying the direct mapping theorem from [12] (Theorem 3 on
page 16) yielding

lim
ω→0

M̄ [L̃(z, t);ω] =
M [L̃(z, t);ω]

Γ(ω)
=

1/ω + · · ·

1/ω + · · ·
= 1.

Using this gives that
c(t) = Pt(1)Ωt(1)

and hence

(5) M [L̃(z, t);ω] = Γ(ω)
Pt(1)Ωt(1)

Pt(q−ω)Ωt(q−ω)
.

The reason for using Mellin transform is that there is an inverse formula

L̃(z, t) =
1

2πi

∫

↑

M [L̃(z, t);ω]z−ωdω,

where the integral is along a suitable chosen vertical line in the complex plane
(here, Re(ω) = ǫ with ǫ > 0 suitable small such that the line Re(ω) = ǫ is entirely
contained in the domain of M [L̃(z, t)]). In order to get now an asymptotic expan-
sion of L̃(z, t) as z → ∞, we move the line of integration to the right and collect
residues. Thus, we have to study the singularity structure of M [L̃(z, t)]. For this
purpose, we first recall a lemma from [13] about the (unique) positive root ρ of
P (z).
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Lemma 1. The root ρ of P (z) is a simple root and ρ > 1. Moreover, ρ is the only

root of P (z) with |z| ≤ ρ.

By this lemma and the analyticity of Pt(z) in z and t (recall that P0(z) =
P (z)), we obtain that for |t| ≤ ǫ with ǫ > 0 sufficiently small, Pt(z) has also a
root ρt with the same properties as ρ in the above lemma (with the only difference
that the root might be now complex). Thus, we see from (5), that the singularities
of M [L̃(z, t)] which are closest to the imaginary axis are simple poles at ω =
log1/q ρt + χk with residues

Res
(

M [L̃(z, t);ω];ω = log1/q ρt + χk

)

=
Pt(1)Ωt(1)

log (1/q) ρtP ′
t (ρt)Ωt(ρt)

Γ
(

log1/q ρt + χk

)

.

Applying now the residue theorem yields, as z → ∞,

L̃(z, t) ∼ −
Pt(1)Ωt(1)

log (1/q) ρtP ′
t (ρt)Ωt(ρt)

z− log1/q ρt

∑

k

Γ
(

log1/q ρt + χk

)

z−χk ,

where this asymptotic holds uniformly in |t| ≤ ǫ with ǫ sufficiently small (the
uniformity can be seen directly or more generally comes from the fact that the
denominator of (5) is analytic in both ω and t).

Now, what is left is to justify the Poisson heuristic (4). Here, we use the
notion of JS-admissibility from [17] (the name comes from [16]) which ensures
that we can depoissonize. The following lemma is crucial.

Lemma 2. Let f̃(z, t) and g̃(z, t) be entire functions in z for |t| ≤ ǫ (ǫ > 0 is

constant). Assume that

f̃(z, t) +
∂

∂z
f̃(z, t) = pet

d
∑

ℓ=1

qℓ−1f̃(qℓz, t) + g̃(z, t).

Then,

g̃(z, t) is uniformly JS-admissible ⇐⇒ f̃(z, t) is uniformly JS-admissible,

where uniform means here with respect to |t| ≤ ǫ.

Proof. Follows with the same method of proof as Proposition 6 in [16] (only minor
modifications are needed). �

From this result and depoissonization, we obtain that

(6)
∑

k≥0

pn,ke
kt ∼ −

Pt(1)Ωt(1)

log (1/q) ρtP ′
t (ρt)Ωt(ρt)

n− log1/q ρt

∑

k

Γ
(

log1/q ρt + χk

)

n−χk

uniformly in |t| ≤ ǫ with ǫ > 0 sufficiently small. Dividing this by pn (whose
asymptotics was derived in [13], or alternatively, is also obtained from the above
asymptotics by setting t = 0), we obtain the following result.
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Proposition 1. We have,

(7) E
(

eL
(d)
n t

)

∼
Pt(1)Ωt(1)ρP

′(ρ)Ω0(ρ)

qdΩ0(1)ρtP ′
t (ρt)Ωt(ρt)

n− log1/q(ρt/ρ)

∑

k

Γ
(

log1/q ρt + χk

)

n−χk

∑

k

Γ
(

log1/q ρ+ χk

)

n−χk

uniformly in |t| ≤ ǫ with ǫ > 0 sufficiently small.

Now, we can use this result to prove Theorem 1 and Theorem 2.

Proof of Theorem 1: Left-to-Right Maxima for d = 1. Since d = 1, (7)
(slightly rearranged) becomes

(8) E
(

e(L
(1)
n −log1/q n)t) ∼

(

1− pet
)

Q(pet)

qQ(p)
·

∑

k

Γ
(

− log1/q p− t/L+ χk

)

n−χk

∑

k

Γ
(

− log1/q p+ χk

)

n−χk

which holds uniformly in |t| ≤ ǫ with ǫ > 0 sufficiently small. From this, we obtain

the asymptotics of all moments of L
(1)
n −log1/q n by differentiation both sides (which

is legitimate because of the uniformity of the above expansions). This gives for the
m-th moment

E
(

L(1)
n − log1/q n

)m
∼ Φ(1)

m

(

log1/q n
)

,

where

(9) Φ(1)
m (x) =

dm

dtm

(

1− pet
)

Q(pet)

qQ(p)
·

∑

k

Γ
(

− log1/q p− t/L+ χk

)

e−2kπix

∑

k

Γ
(

− log1/q p+ χk

)

e−2kπix

∣

∣

∣

∣

∣

t=0

.

For instance, for m = 1, this periodic function becomes

Φ
(1)
1 (x) = −αp −

1

L

∑

k

Γ′
(

− log1/q p+ χk

)

e−2kπix

∑

k

Γ
(

− log1/q p+ χk

)

e−2kπix

with

αp =
∑

ℓ≥0

pqℓ

1− pqℓ
.

This coincides with the result in [37].

As for the non-convergence part, first observe that {log1/q n} is dense in [0, 1].
(Here, {x} denotes the fractional part of x.) Thus, we can always find subsequences
which converge to two different values in [0, 1]. Therefore, in order to show that

L
(1)
n − log1/q n does not converge weakly to a fixed limit law, we only have to show
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that for two suitable subsequences, we have that (8) converges to two different

functions. This problem, however, reduces to showing that Φ
(1)
1 (x) takes on at

least two different values. So, assume on the contrary, that Φ
(1)
1 (x) is constant.

This would imply that

∑

k

Γ′
(

− log1/q p+ χk

)

e−2kπix = c
∑

k

Γ
(

− log1/q p+ χk

)

e−2kπix.

These two Fourier series are equal if and only if all the coefficients coincide. This
is, however, impossible due to different speed of decay along vertical lines of Γ(x)
and Γ′(x).

Proof of Theorem 2: Left-to-Right Maxima for d ≥ 2. We again use (7).
First, note that from the implicit function theorem, we have that ρt is an analytic
function in t for small t with Maclaurin series expansion, as t → 0,

ρt = ρ+
t

P ′(ρ)
−

(

1

P ′(ρ)
+

P ′′(ρ)

P ′(ρ)3

)

t2

2
+O(t3).

Thus, as t → 0,

− log1/q (ρt/ρ) =
µdt

L
+

σ2
dt

2

2L
+O(t3),

where µd := −1/(ρP ′(ρ)). Now, we set t = u/
√

log1/q n with u fixed. Plugging

this into the expansions above and this expansion in turn into (7) yields after some
computation

E

(

exp
(

L(d)
n u/

√

log1/q n
)

)

∼ exp

(

µdu
√

log1/q n+
σ2
dt

2

2

)

.

Hence,

(10) E

(

exp
(

(

L(d)
n − µd log1/q n

)

u/
√

log1/q n
))

∼ eσ
2
dt

2/2

from which the claimed central limit theorem follows.

What is left is to show that σ2
d > 0 for all d ≥ 2 (note that σ2

1 = 0). Since
we have an explicit expression of σ2

d, one might try to show this from this explicit
expression. However, we have not been able to do so and leave such a direct proof
as an open problem to the reader.

We will use instead a more subtle and (unfortunately) indirect argument.

The idea of our proof is to show that Var(L
(d)
n ) ≥ c logn for positive c > 0 and all

n large enough. From this, our claim clearly follows since

Var(L(d)
n ) ∼ E

(

L(d)
n − µd log1/q n

)2
∼ σ2

d log1/q n

which follows by differentiating (10) which is legitimate since (10) holds uniformly
in u with |u| ≤ ǫ with ǫ > 0 suitable small.
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In order to show the above lower bound for the variance, we will directly work
with recurrences and use some ideas of Schachinger from [38]. We first set

Sn(t) :=
∑

k≥0

pn,ke
kt.

Then, from the recurrence for pn,k, we obtain that

Sn+1(t) =
d

∑

ℓ=1

pqℓ−1
n
∑

j=0

(

n
j

)

(

1− qℓ
)n−j

qℓjetSj(t), (n ≥ 0)

with initial condition S0(t) = 1. Next, we shift the mean

Tn(t) :=
∑

k≥0

pn,ke
(k−µd log∗1/q n−Ξ1(log∗

1/q n))t = e−µd(log∗

1/q n)t−Ξ1(log∗

1/q n)tSn(t),

where log∗1/q n is the usual log for n ≥ 1 and 0 for n = 0, and Ξ1

(

log1/q n
)

, with

Ξ1(x) a one-periodic function, is the second term in the asymptotic expansion of

the mean of L
(d)
n , which can be obtained by differentiation of (7) and setting t = 0,

i.e,

Ξ1(x) :=
d

dt

Pt(1)Ωt(1)ρP
′(ρ)Ω(ρ)

qdΩ(1)ρtP ′
t (ρt)Ωt(ρt)

·

∑

k

Γ
(

log1/q ρt + χk

)

e−2kπix

∑

k

Γ
(

log1/q ρ+ χk

)

e−2kπix

∣

∣

∣

∣

∣

t=0

.

Note that Tn(t) satisfies the recurrence

Tn+1(t) =
d

∑

ℓ=1

pqℓ−1
n
∑

j=0

(

n
j

)

(

1− qℓ
)n−j

qℓje∆n,jtTj(t), (n ≥ 0)

with initial condition T0(t) = e−Ξ1(0)t and

∆n,j := 1− µd log
∗
1/q(n+ 1)− Ξ1

(

log∗1/q(n+ 1)
)

+ µd log
∗
1/q j + Ξ1(log

∗
1/q j).

Differentiating this recurrence twice with respect to t and setting t = 0 gives for

νn :=
∑

k≥0

pn,k
(

k − µd log
∗
1/q n− Ξ1(log

∗
1/q n)

)2

the following recurrence

νn+1 =
d

∑

ℓ=1

pqℓ−1
n
∑

j=0

(

n
j

)

(

1− qℓ
)n−j

qℓjνj + ρn
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with

ρn := 2

d
∑

ℓ=1

pqℓ−1
n
∑

j=0

(

n
j

)

(

1− qℓ
)n−j

qℓj∆n,jmj

+ pn

d
∑

ℓ=1

pqℓ−1
n
∑

j=0

(

n
j

)

(

1− qℓ
)n−j

qℓj∆2
n,j ,

where
mn :=

∑

k≥0

pn,k
(

k − µd log
∗
1/q n− Ξ1(log

∗
1/q n)

)

.

We need now a series of lemmas.

Lemma 3. As n → ∞, we have that mn = o(n− log1/q ρ).

Proof. Note that

mn = pn
(

E(L(d)
n )− µd log

∗
1/q n− Ξ1(log

∗
1/q n)

)

= o(pn),

where the last equality follows since µd log
∗
1/q +Ξ1(log

∗
1/q n) are the first two terms

in the asymptotic expansion of E(L
(d)
n ). The proof is now finished by plugging into

this the asymptotics of pn, which is obtained by setting t = 0 in (6). �

Lemma 4. Let 1 ≤ ℓ ≤ d. Then, uniformly in j with |j − qℓn| ≤ n2/3,

∆n,j ∼ 1− ℓµd.

Proof. Plugging j = qℓn + O(n2/3) into the definition of ∆j,n and using Taylor
series expansion yields the claimed result. �

Lemma 5. For n large enough, we have that ρn ≥ cn− log1/q ρ for a suitable c > 0.

Proof. We first consider the second sum in the definition of ρn, which we break
into two parts

d
∑

ℓ=1

pqℓ−1
∑

|j−qℓ|≤n2/3

(

n
j

)

(

1− qℓ
)n−j

qℓj∆2
n,j

+

d
∑

ℓ=1

pqℓ−1
∑

|j−qℓ|>n2/3

(

n
j

)

(

1− qℓ
)n−j

qℓj∆2
n,j .

The second part is easily shown to be exponentially small by Chernoff’s bound.
Moreover, for the first part, we can use Lemma 4 which shows that this part is
bounded from below by a positive constant for d ≥ 2 (note that this becomes
wrong for d = 1 since ℓ = 1 and µ1 = 1). Thus, we get

pn

d
∑

ℓ=1

pqℓ−1
n
∑

j=0

(

n
j

)

(

1− qℓ
)n−j

qℓj∆2
n,j ≥ c0pn ≥ c1n

− log1/q ρ
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with c0 ≥ c1 > 0. Now, by a similar argument applied to the first sum in the
definition of ρn with Lemma 4 replaced by Lemma 3, we obtain that

2

d
∑

ℓ=1

pqℓ−1
n
∑

j=0

(

n
j

)

(

1− qℓ
)n−j

qℓj∆n,jmj = o(n− log1/q ρ).

Putting these two estimates together gives the claimed result. �

The proof of the positiveness of σ2
d for d ≥ 2 is now completed with the

following proposition which was essentially proved by Schachinger in [38].

Proposition 2. Let (bn)n≥1 be a given sequence and assume that an is defined by

an+1 =
d

∑

ℓ=1

qpℓ−1
n
∑

j=0

(

n
j

)

(

1− qℓ
)n−j

qℓjaj + bn, (n ≥ n0)

with arbitrary initial conditions. If bn ≥ cn− log1/q ρ for n large enough with a

suitable c > 0, then an ≥ c0n
− log1/q ρ logn for n large enough with a suitable

c0 > 0.

Proof. This follows with the same method of proof as used for Lemma 1, part (c)
in [38]. �

Due to Lemma 5, we can apply the above proposition to νn and obtain that

νn ≥ c0n
− log1/q ρ logn

for n large enough with a suitable c0 > 0. But since

νn
pn

= E
(

L(d)
n − µd log

∗
1/q n− Ξ1(log

∗
1/q n)

)2
∼ Var(L(d)

n ),

the above bound for νn and the asymptotics of pn imply that Var(L
(d)
n ) ≥ c logn

for n large enough with a suitable c > 0. From this, it follows that σ2
d > 0 for all

d ≥ 2 as claimed.

3. MAXIMAL LETTER

Here, we are going to prove Theorem 3. The method will be similar to the
one used in the previous section. Thus, we will only sketch it.

Recurrence. First, denote by qn,k the probability that a geometric word satisfies
(1) with general d and the maximal letter equals to k (note that for d = 1, we have
that pn,k = qn,k). Then, as in the last section

qn+1,k =
d

∑

ℓ=1

pqℓ−1
n
∑

j=0

(

n
j

)

(

1− qℓ
)n−j

qℓjqj,k−ℓ, (n ≥ 0, k ≥ 1)
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with initial conditions qn,0 = [[n = 0]] and q0,k = [[k = 0]]. Note that the only
different to the recurrence in the previous section for pn,k is that the last term has
second index k− ℓ instead of k− 1. This is easily explained: after the first letter is
fixed to be ℓ, the remaining letters which are larger than ℓ again form a geometric
word satisfying (1) but with maximal letter being k − ℓ.

Moment-generating Function. As in Section 2, we first consider

M̃(z, t) := e−z
∑

n≥0

∑

k≥0

qn,ke
kt z

n

n!
.

Then, we have

M̃(z, t) +
∂

∂z
M̃(z, t) =

d
∑

ℓ=1

pqℓ−1eℓtM̃(qℓz, t).

Now, by using the Mellin transform and solving the resulting equation in a similar
way as in Section 2, we obtain that

M [M̃(z, t);ω] = Γ(ω)
P (et)Ω0(e

t)

P (etq−ω)Ω0(etq−ω)
.

Note that the singularities closest to the imaginary axis are simple poles at ω =
log1/q ρ− t/ log (1/q) + χk with residues

Res
(

M [M̃(z, t);ω];ω = log1/q ρ− t/ log (1/q) + χk

)

=
P (et)Ω0(e

t)

log (1/q) ρP ′(ρ)Ω0(ρ)
Γ
(

log1/q ρ− t/ log (1/q) + χk

)

.

Thus, by inverse the Mellin transform and depoissonization,

∑

k≥0

qn,ke
kt ∼ −

P (et)Ω0(e
t)

log (1/q) ρP ′(ρ)Ω0(ρ)
n− log1/q ρ+t/ log(1/q)

×
∑

k

Γ
(

log1/q ρ− t/ log (1/q) + χk

)

n−χk

uniformly in |t| ≤ ǫ with ǫ > 0 sufficiently small. Rearranging and dividing by pn
gives the following result.

Proposition 3. We have,

E
(

e(M
(d)
n −log1/q n)t) ∼

P (et)Ω0(e
t)

qdΩ0(1)
·

∑

k

Γ
(

log1/q ρ− t/ log (1/q) + χk

)

n−χk

∑

k

Γ
(

log1/q ρ+ χk

)

n−χk

uniformly in |t| ≤ ǫ with ǫ > 0 sufficiently small.
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Moments and Non-convergence to a fixed Limit Law. First, note that
differentiating the expression in Proposition 3 once and setting t = 0 yields the
main result from [13]. Differentiating m times and setting t = 0 yields Theorem 3
with the periodic functions

(11) Φ(d)
m (x) =

dm

dtm
P (et)Ω0(e

t)

qdΩ0(1)
·

∑

k

Γ
(

log1/q ρ− t/ log (1/q) + χk

)

e−2kπix

∑

k

Γ
(

log1/q ρ+ χk

)

e−2kπix

∣

∣

∣

∣

∣

t=0

.

Moreover, the claim about non-convergence to a fixed limit law is proved as in
Section 2.

4. NUMBER OF MAXIMAL LETTERS

Here, we will prove Theorem 4. The method is again as in Section 2. Thus,
we will only highlight differences.

Recurrence. Denote by rn,k the probability that a geometric word of length n
satisfies (1) with d = 1 and has exactly k occurrences of the maximal letter. Then,

rn+1 = p

n
∑

j=1

(

n
j

)

pn−jqjrj,k + pn+1[[n+ 1 = k]], (n ≥ 0, k ≥ 1)

with initial condition r0,k = 0 for all k ≥ 1. The explanation for this recurrence is
similar as for the one from Section 2: after fixing the first letter (which now can
only be 1 since d = 1), either all letters are one, in which case the probability is
pn+1 if k = n+1 (this is the second term), or there is at least one letter larger than
one, in which case the problem can be reduced to considering only the subword
with letters all larger than one (this is the first term).

Moment-generating Function. Set

Ñ(z, t) := e−z
∑

n≥0

∑

k≥1

rn,ke
kt z

n

n!
.

Then, we have

Ñ(z, t) +
∂

∂z
Ñ(z, t) = pÑ(qz, t) + pete(pe

t−1)z.

The next step is to apply the Mellin transform which gives

M [Ñ(z, t);ω]−(ω−1)M [Ñ(z, t);ω−1] = pq−ω
M [Ñ(z, t);ω]+pet(1−pet)−ωΓ(ω).

Define M̄ [Ñ(z, t);ω] = M [Ñ(z, t);ω]/Γ(ω). Then, we find

M̄ [Ñ(z, t);ω] =
M̄ [Ñ(z, t);ω − 1]

1− pq−ω
+

pet(1− pet)−ω

1− pq−ω
.
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This recurrence is slightly different from the ones encountered before. However, it
has again a general solution

M̄ [Ñ(z, t);ω] =
pet

(1− pq−ω)Q(pq−ω)

∑

ℓ≥0

(1− pet)−ω+ℓQ(pq−ω+ℓ)

+
c(t)

(1− pq−ω)Q(pq−ω)
.

In order to find c(t) observe that Ñ(0, t) = 0. Thus, by the direct mapping theorem
from [12], we have that limω→0 M̄ [Ñ(z, t);ω] = 0. This in turn yields that

c(t) = −pet
∑

ℓ≥0

(1− pet)ℓQ(pqℓ).

Plugging this into the expression above gives that

M [Ñ(z, t);ω] =
Γ(ω)pet

(1− pq−ω)Q(pq−ω)

×
∑

ℓ≥0

(

(1− pet)−ω+ℓQ(pq−ω+ℓ)− (1− pet)ℓQ(pqℓ)
)

.

The remaining argument runs now along similar lines as in Section 2. More pre-
cisely, after applying the inverse Mellin transform and depoissonization, we obtain
that

∑

k≥1

rn,ke
kt ∼

petnlog1/q p

log (1/q)Q(1)

∑

k

∑

ℓ≥0

(

(1− pet)log1/q p−χk+ℓQ(qℓ)

− (1− pet)ℓQ(pqℓ)
)

Γ
(

− log1/q p+ χk

)

n−χk

uniformly in |t| ≤ ǫ with ǫ > 0 suitable small. Finally, dividing by pn gives the
following result.

Proposition 4. We have,

E(eNnt) ∼
pet

qQ(p)
×

∑

k

∑

ℓ≥0

(

(1− pet)log1/q p−χk+ℓQ(qℓ)− (1− pet)ℓQ(pqℓ)
)

Γ
(

− log1/q p+ χk

)

n−χk

∑

k

Γ
(

− log1/q p+ χk

)

n−χk

uniformly in |t| ≤ ǫ with ǫ > 0 suitable small.

Moments and Non-convergence to a fixed Limit Law. First, note that
plugging in t = 0 into the result from Proposition 4 must give 1. This gives the
following curious identity, for which we will give a direct proof in the appendix.
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Corollary 1. We have,

(12)
∑

ℓ≥0

(

qℓ

p
Q(qℓ)− qℓQ(pqℓ)

)

=
q

p
Q(p).

Next, observe that the claimed expansions of the moments of Theorem 4
follows from Proposition 4 and differentiation. In particular this yields for the
periodic function Ψm(x),

dm

dtm
pet

qQ(p)
×(13)

∑

k

∑

ℓ≥0

(

(1− pet)log1/q p−χk+ℓQ(qℓ)− (1− pet)ℓQ(pqℓ)
)

Γ
(

− log1/q p+ χk

)

e−2kπix

∑

k

Γ
(

− log1/q p+ χk

)

e−2kπix

∣

∣

∣

∣

∣

t=0

.

For instance, for m = 1, this gives

1−
p log1/q p

q2Q(p)
−

βp

qQ(p)
+

p

q2Q(p)
·

∑

k

χkΓ
(

− log1/q p+ χk

)

n−χk

∑

k

Γ
(

− log1/q p+ χk

)

n−χk

,

where

βp = p2
∑

ℓ≥0

(

ℓqℓ−1

p
Q(qℓ)− ℓqℓ−1Q(pqℓ)

)

.

The non-convergence to a fixed limit law follows from this as in Section 2.
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APPENDIX: A DIRECT PROOF OF (12).

We use the following famous identity of Euler:

(14)
∑

j≥0

(−1)jq(
j
2)

(1− q) · · · (1− qj)
zj =

∏

ℓ≥0

(1− qℓz).

This identity implies that

Q(s) =
∑

j≥0

(−1)jq(
j+1
2 )

(1− q) · · · (1− qj)
sj .
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Now, observe that

1

p

∑

ℓ≥0

qℓQ(qℓ) =
1

p

∑

j≥0

(−1)jq(
j+1
2 )

(1− q) · · · (1− qj)

∑

ℓ≥0

q(j+1)ℓ

= −
1

p

∑

j≥0

(−1)j+1q(
j+1
2 )

(1− q) · · · (1− qj)(1− qj+1)
=

1

p
,

where in the last step, we again used (14). Similarly, one shows that

∑

ℓ≥0

qℓQ(pqℓ) =
1− qQ(p)

p
.

Putting everything together gives the claimed result.
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