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ABSTRACT
Polarization of MP into classically activated (M1) and al-
ternatively activated (M2a, M2b, and M2c) macro-
phages is critical in mediating an effective immune re-
sponse against invading pathogens. However, several
pathogens use these activation pathways to facilitate
dissemination and pathogenesis. Viruses generally in-
duce an M1-like phenotype during the acute phase of
infection. In addition to promoting the development of
Th1 responses and IFN production, M1 macrophages
often produce cytokines that drive viral replication and
tissue damage. As shown for HIV-1, polarization can
also alter macrophage susceptibility to infection. In vitro
polarization into M1 cells prevents HIV-1 infection, and
M2a polarization inhibits viral replication at a post-inte-
gration level. M2a cells also express high levels of
C-type lectins that can facilitate macrophage-mediated
transmission of HIV-1 to CD4� T cells. Macrophages are
particularly abundant in mucosal membranes and unlike
DCs, do not usually migrate to distal tissues. As a re-
sult, macrophages are likely to contribute to HIV-1
pathogenesis in mucosal rather than lymphatic tissues.
In vivo polarization of MP is likely to span a spectrum of
activation phenotypes that may change the permissivity
to and alter the outcome of HIV-1 and other viral
infections. J. Leukoc. Biol. 87: 599–608; 2010.

INTRODUCTORY REMARKS: POLARIZED
IMMUNE RESPONSES

Recent studies have highlighted the importance of immune
activation in the resolution and promotion of infectious dis-
eases [1–5]. Of particular interest are studies of SIV infection,
suggesting that the main difference between natural (non-
pathogenic) and pathogenic SIV infection is that the latter is
characterized by excessive and prolonged activation of the host

immune system [6, 7]. However, immune activation is also
needed to induce polarization of the immune system along
pro- or anti-inflammatory pathways and to mount an effective
host response against invading pathogens [8]. Immunologi-
cally driven polarization has been studied most extensively in
murine models [9–11] and in the setting of CD4� Th cell re-
sponses [1, 12, 13]. In humans, proinflammatory Th1 cells are
important in mediating resistance to mycobacteria and in pro-
viding protection from Leishmania major infection [14, 15]. On
the downside, Th1 cells are involved in the induction of auto-
immunity. Conversely, helminthic infections typically orient
immune responses toward a Th2 pathway associated with anti-
inflammatory effects, and the maturation of antibodies toward
specific IgA and IgE types that are effective in the clearing of
microbial agents [2, 16].

In addition to T cells, recent evidence (obtained primarily
in the mouse) suggests that MP may also undergo functional
polarization, and such a process may play a role, not only in
the initiation and orchestration of inflammatory responses but
also in the regulation of innate and adaptive immune re-
sponses to viral pathogens [17–19]. This review provides a
brief overview of human macrophage polarization and its im-
pact on the pathogenesis of HIV-1. A clear understanding of
the importance of macrophage polarization may reveal novel
strategies for controlling the replicative and pathogenic poten-
tial of HIV-1.

THE MP SYSTEM

Cells belonging to the MP system include circulating mono-
cytes, tissue macrophages, and DCs and are characterized by a
high level of plasticity, widespread tissue distribution, and an
ability to respond to a wide range of environmental stimuli,
most notably, microbial products and host cytokines [20–22].
These different stimuli interact with cell membrane receptors,
resulting in activation of distinct intracellular signaling path-
ways and downstream gene activation. This, in turn, leads to
changes in functional properties, such as cellular adhesion and
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migration, cytokine/chemokine production, and antigen pro-
cessing [23–26].

CIRCULATING MONOCYTES

Monocytes, the progenitors of most tissue macrophages, repre-
sent 10–30% of all circulating mononuclear leukocytes. Pe-
ripheral blood monocytes originate in the bone marrow from
a common myeloid progenitor [22] and circulate for only 1–2
days before migrating into peripheral tissues and differentiat-
ing into fully mature, resident macrophages, including liver
Kupffer cells and brain microglial cells. During their short cir-
culatory life, monocytes are exposed to cytokines such as
M-CSF, which can alter their phenotypic and functional prop-
erties [27, 28]. As a result, monocytes can be classified into at
least three distinct subsets based on their expression of the
functional cell surface receptors CD14 and CD16 (i.e.,
CD14�CD16–, CD14�CD16�, and CD14dimCD16�) as well as
on their capacity of secreting proinflammatory cytokines [21,
29–32]. It is unclear, however, whether these phenotypically
distinct monocyte subsets represent cells already precommitted
to differentiate into polarized M1 or M2 macrophages or DCs.
In this regard, Martinez et al. [28] have suggested that under
normal conditions blood monocytes are likely predisposed to-
ward an M2 phenotype, mostly devoted to tissue repair, as a
result of their stimulation by relatively high levels of M-CSF
present in the plasma (estimated to range from 187 to 7604
pg/ml [27]). A transcriptome analysis supports this hypothesis,
showing that M2 polarization involves only minimal alterations
of macrophage steady-state mRNA in comparison with M1 po-
larization [28]. It is unclear, however, if tissue-specific signals
are required to maintain the M2 phenotype.

TISSUE MACROPHAGES

At the tissue level, terminally differentiated macrophages are
exposed to and are profoundly affected by tissue-specific im-
mune-modulating cytokines, chemokines, and microbial by-
products [22, 24, 33]. As a result, when compared with circu-
lating monocytes, lung alveolar macrophages express higher
levels of PRRs and scavenger receptors involved in clearing
viruses as well as other microorganisms and environmental
particles [22, 33]. Osteoclasts, on the other hand, acquire de-
terminants fundamental for bone remodeling [22, 34, 35].
Macrophages located at sites of pathogen entry, such as the
intestine, display high phagocytic and antibacterial activities
but produce only low levels of proinflammatory cytokines to
prevent unnecessary overstimulation of the immune system as
a result of constant exposure to commensal and pathogenic
microbes [36–38]. Interestingly, some intestinal macrophages,
such as those present in the lamina propria of the gastrointes-
tinal tract, survive for a few weeks before undergoing pro-
grammed cell death [22]. Such cells are continually replen-
ished by newly recruited blood monocytes that rapidly differ-
entiate into gut macrophages. Other macrophage populations
are characterized by a prolonged half-life, ranging from several
months (lung alveolar macrophages) to decades (microgial

cells). These cells may be renewed, at least in part, by local
proliferation [22, 39, 40]. In contrast, M1 macrophages re-
cruited to sites of acute inflammation typically have short half-
lives and exert potent proinflammatory effects that may cause
tissue damage [22].

Although polarized macrophages contribute to the patho-
genesis of various diseases, little is known about the molecular
mechanisms underlying the acquisition and maintenance of
macrophage programming. In mice, SHIP-1 dampens LPS-in-
duced M1 activation in vitro. Alternatively, in vivo, SHIP
knockout mice display a profound skewing of peritoneal and
alveolar macrophages toward an M2 phenotype [41]. In addi-
tion to SHIP and Lyn/Hck, increased STAT5 activity may play
an important role in M2 programming [42]. Recent studies
show alternative activation may also be regulated by epigenetic
mechanisms [43]. Specifically, in mice, IL-4 induces an up-
regulation of H3K27 demethylase Jmjd3 (in a STAT6-depen-
dent manner), increasing H3K27 methylation at the promoters
of M2 genes (arginase 1, mannose receptor) [43]. Similarly,
Jmjd3 is also induced in macrophage cell lines stimulated with
LPS, suggesting it may play a common role in both pheno-
types [44]. Although not yet investigated in humans, these re-
sults suggest that chromatin remodeling may play an impor-
tant role in polarization responses, as reviewed [45].

POLARIZATION OF HUMAN
MACROPHAGES ALONG M1 AND M2
PATHWAYS

Macrophages undergo activation in response to a broad spec-
trum of environmental signals. The type, timing, and concen-
tration of these stimuli determine the range of immune re-
sponses. As a result of exposure to different tissue environ-
ments, macrophage polarization is likely to span a continuum
of functional states. One implication of these features is that
unlike T cell activation, macrophage polarization is transient
and highly reversible [17, 46]. Recent results also suggest that
macrophages, like T cells, may require at least two signals to
become fully and functionally polarized [47]. The first signal,
usually driven by pathogen interactions with PRRs, such as
TLR, cytosolic proteins of the nonobese diabetic-like receptor
family, or C-type lectins, primes the resting macrophage. PRR
activation also increases chemokine production and the re-
cruitment of different immune cells, including NK cells, naı̈ve
T lymphocytes, eosinophils, and basophils, which deliver the
second signal required for M1 (IFN-�) or M2a (IL-4) polariza-
tion, respectively [47]. For example, early IFN-� and PRR acti-
vation induces a first wave of classical macrophage activation
that stimulates IL-12 production, a cytokine crucial for the in-
duction of Th1 responses. The resultant Th1 CD4� T cells
then produce more IFN-�, inducing a long-lasting M1 pheno-
type and an effective CD8� cytotoxic T lymphocyte response
[47]. With the exception of LPS, little is known about the im-
pact of past stimulations on future responses. In the case of
LPS, it is known that previous stimulations can lead to TLR
tolerance [48–50].

By analogy to the Th1/Th2 classification of CD4� helper
lymphocytes, it has been proposed that mononuclear phago-
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cytes can also be polarized along proinflammatory (M1) or
alternatively activated, anti-inflammatory (M2) pathways [18,
19, 51–53]. In healthy tissues, particularly mucosal mem-
branes, M2 activation may represent a default phenotype that
serves to maintain a balanced microenvironment in anatomical
sites under constant microbial assault [17, 28]. For example,
macrophages in the lung, placenta, and gastrointestinal
tract express high levels of C-type lectins [54, 55] and ex-
hibit a decreased capacity to produce proinflammatory cyto-
kines, thereby limiting tissue damage [36, 38]. In contrast,
M1 macrophages express high levels of classical proinflam-
matory cytokines, including IL-1�, IL-12, IL-23, and TNF-�.
Furthermore, they produce effector molecules such as reac-
tive oxygen and nitrogen intermediates, participate in the
induction of polarized Th1 responses, and have been associ-
ated to resistance to intracellular pathogens such as viruses
and to some forms of tumors [19, 52, 53]. M1 cells also ex-
press high levels of MHC class I and class II antigens and
secrete complement factors that facilitate complement-medi-
ated phagocytosis [19].

Different stimuli can lead to the polarization of macro-
phages into M2 cells. To reflect these different forms of activa-
tion, M2 macrophages have been subdivided further into M2a,
M2b, and M2c cells [19]. M2a cells are induced by exposure
of macrophages to IL-4 or IL-13, and M2b macrophages are
induced by immune complexes, TLR stimulation, or by the
IL-1ra. These cells exert immune regulatory functions and
drive Th2 responses. Finally, M2c macrophages are generated
by stimulation with the immunosuppressive cytokine IL-10 and
play a predominant role in suppressing immune responses and
in promoting tissue remodeling [19]. M2 macrophages are,
therefore, more heterogeneous than M1 cells and depending
on their state of activation, participate in a number of diverse
activities aimed at suppressing inflammation, enhancing
phagocytosis, promoting tissue repair and eliminating of para-
sites [18, 19, 47].

Although activation is critical for the induction of an effec-
tive immune response, inappropriate and sustained activation/
polarization of macrophages can lead to tissue damage, im-
mune dysfunction, and disease pathology. For example, M1
responses, important in mediating resistance against acute vi-
ral and mycobacterial infections, may also contribute to the
induction of autoimmune diseases such as rheumatoid arthritis
and multiple sclerosis [56–59]. Alternatively, M2 polarization,
important in controlling helminthic infections, has been
linked to the development and persistence of asthma and al-
lergic diseases [60, 61]. Interestingly, TAM, including tyrosine
kinase with Ig-like and EGF-like domains 2 (Tie2)-derived mac-
rophages [62, 63], closely resembles M2 macrophages when
analyzed for function and transcriptome expression [64, 65].
M2 macrophages produce anti-inflammatory and immunosup-
pressive cytokines such as IL-10 and TGF-� that promote tu-
mor growth and progression [64, 65]. Several lines of evidence
suggest that pharmacological skewing of TAM from an M2 to-
ward an M1 phenotype may help preserve anti-tumor activity,
as reviewed in ref. [64]. One study reported that the combina-
tion of CpG plus anti-IL-10R antibody induces a switch in tu-
mor-infiltrating macrophages from an M2 to an M1 pheno-

type, triggering innate responses that lead to a rapid decrease
in tumor size [66, 67].

In vitro, MDM are the most commonly used tool to investi-
gate macrophage phenotype and function, particularly in hu-
mans. MDM can be induced to differentiate into M1 cells
through exposure to proinflammatory stimuli, such as GM-CSF
or IFN-�, alone or in combination with TNF-� or LPS, a com-
ponent of the cell wall of Gram-negative bacteria [19]. In
vitro-derived M2-MDM secrete anti-inflammatory molecules,
including IL-1ra, IL-10, and TGF-�, thereby inhibiting respira-
tory bursts and the production of IL-1� and IL-8 [68]. Further-
more, M2-MDM express high levels of the scavenger and
MRC1, SR-A, hemoglobin scavenger receptor (CD163) Dec-
tin-1, and DC-SIGN [18, 47] (Table 1).

As only meager information is currently available for M2b
and M2c cells under different pathological conditions, we will
focus on the role of M1 and M2a (IL-4/IL-13-induced) macro-
phage polarization in HIV and associated coinfections.

MACROPHAGE POLARIZATION AND
HIV-1 INFECTION

A large number of studies have investigated the effects of indi-
vidual cytokines and bacterial products on macrophage suscep-
tibility to HIV-1 and other viruses and on the capacity of these
cells to support productive or latent infection, as reviewed in
refs. [69–71]. These studies have used different model systems
and cell lines [72], as well as different viral strains and infec-
tion protocols. A consistent finding emanating from these in-
vestigations is that the ultimate outcome of host-viral interac-
tions depends frequently on the timing of infection relative to
the timing of the stimulus (before, simultaneously, or after)
and on the stage of macrophage differentiation (precursor
cells, as exemplified by cell lines, monocytes vs. macrophages).
To date, only a few studies have examined thoroughly the con-
sequences of M1 versus M2 polarization on viral infections [17,
73–75].

Although important in driving immune responses, increased
secretion of inflammatory cytokines as a consequence of viral
infection can result in severe tissue damage. Alveolar macro-
phages, for example, produce large amounts of inflammatory
cytokines during infection with respiratory viruses such as hu-
man metapneumovirus and respiratory syncytial virus [76, 77].
Cytokines produced by macrophages infected with influenza A
virus mediate the typical constitutional and inflammatory ef-
fects observed with this disease [78]. Rhinovirus infections in-
crease the level of TNF-� and IL-8 secretion by lung alveolar
macrophages [79, 80]. Interestingly, macrophages exposed
previously to rhinoviruses show a reduced capacity to mount
an antibacterial response, suggesting that these viruses may
facilitate secondary infections indirectly [81]. An analytical
analysis of viral infection of MP is beyond the scope of the
present paper. However, excellent reviews about the subjects
are readily available [82–84].

Cells of the MP lineage are the targets of several retroviruses
belonging to the lentiviral subfamily and depending on their
state of differentiation and activation, can serve as reservoirs of
latent or productive infection. Most lentiviruses, with the ex-
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ception of HIV-1, infect cells of MP lineage preferentially or
exclusively. However, the level of viral replication and the out-
come of these infections are related intimately to the host im-

mune response and the type of infection. During HIV-1 infec-
tion, circulating monocytes and tissue macrophages contribute
to the initial seeding and establishment of viral reservoirs [85–
87] playing a pivotal role in the infection of certain organs,
such as the brain, as reviewed in refs. [88–90]. Although hu-
man macrophages can support high levels of HIV-1 replica-
tion, particularly in late-stage HIV disease, i.e., AIDS, when
CD4 cells are depleted severely and in the context of opportu-
nistic infections [91], they also serve as reservoirs of latent or
poorly replicative infection [92–94]. It should be underscored
that HIV-1 latency and the persistence of viral reservoirs (even-
tually harboring antiretroviral-resistant viruses) are the major
obstacles nowadays preventing the eradication of this infection
[93, 95]. MP and memory CD4� T cells latently infected with
HIV-1 are not recognized efficiently by the host immune sys-
tem and can persist for prolonged periods in the face of the
administration of antiretroviral therapy [96, 97].

At the functional level, monocytes as well as lung alveolar
macrophages isolated from HIV-infected individuals have all
shown reduced phagocytic activity [98, 99] in association with
decreased phagosome-lysosome fusion and decreased intracel-
lular killing of opportunistic pathogens [100, 101]. Monocytes
isolated from patients with AIDS also have defective migratory
responses [102, 103], a phenotype that has been linked to a
down-regulation of receptors for chemotactic ligands (i.e., C5a
and bacterial tripeptides, such as fMLP) [104, 105]. These
functional defects, in turn, result in the inefficient control of
opportunistic pathogens and further enhancement of activa-
tion and disease pathogenesis. Chronic HIV-1-associated im-
mune activation also leads to altered secretion of pro- and
anti-inflammatory cytokines and chemokines and ultimately, to
dysregulation of the host immune system and the killing of
bystander CD4� T cells. In addition, HIV-infected macro-
phages have been implicated in the elimination of effector
CD8� T cells through interactions between TNF bound to the
surface of macrophages and TNFRII expressed on CD8� T
cells [106].

The transmission and pathogenesis of HIV-1 are linked inti-
mately to the activation status of the immune system [107–
109]. Prolonged immune activation during chronic infection
provides an environment that drives viral replication and dis-
ease progression, even in the face of combination antiretrovi-
ral therapy [3]. Indeed, the state of immune activation is a
stronger predictor of disease progression in patients with ad-
vanced HIV-1 disease than the levels of plasma viremia [107].

Recent evidence suggests that increased translocation of bac-
teria and bacterial byproducts from the gastrointestinal tract, a
consequence of HIV-1-induced damage to the gut during
acute infection, may drive systemic immune activation and pro-
gression to AIDS [110–112]. Given that cells of the MP lin-
eage are the primary targets of LPS-induced activation and
that they are key regulators of inflammatory and anti-inflam-
matory responses, it is important to understand the relation-
ships among immune activation, macrophage polarization, and
HIV-1 disease. In this regard, the factors driving macrophage
polarization in HIV-1 pathogenesis are complex. Macrophages
respond not only to HIV-1 but also to a spectrum of opportu-
nistic coinfections and can be activated sequentially (or simul-

TABLE 1. Differentially Expressed Markers of Human
Macrophage Polarization

M1 M2a

Receptors

CCR7 DC-SIGN
IL-1R1 DCIR
IL-2ra MRC1
IL-15ra CD36
IL-7R DECTIN 1
CD80 DCL-1
CD86 SR-A
MHC class II CD163
TLR2 CXCR1
TLR4 CXCR2

Chemokines

CXCL8 CCL13
CXCL9 CCL14
CXCL10 CCL17
CXCL11 CCL18
CXCL16 CCL20
CCL2 CCL22
CCL3 CCL23
CCL4 CCL24
CCL5

Cytokines

TNF-� IL-10
IL12 IL-1ra
TRAIL
IL-6

Other factors

Homeobox expressed
in ES cells 1

Growth
arrest-specific 7

IFN regulatory factor 1
(IRF1)

Early growth
response 2

Activation transcription
factor 3

v-MAF

IRF7 [28] Cathepsin C
Indoleamine-pyrrole

2,3 dioxygenase
Hexosaminidase

Proteasome activator
subunit 2

Lipase A cholesterol
esterase

Hydroxysteroid (11-�)
dehydrogenase

Adenosine kinase

2�–5�-oligodenylate
synthase-like

Ceramide kinase

Proteasome subunit �
type 9

Heparan sulfate
3-O-sulfotransferase

Proteasome subunit �
type 2

Leukotriene A4
hydrolase

DCIR, DC immunoreceptor; DCL-1, DC ligand 1; ES, embryonic
stem; v-MAF, viral macrophage-activating factor.
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taneously) by different bacterial, fungal, and viral products.
The timing and order of these synergistic or competing stimu-
lations will determine the dominant polarization profile.

In vitro, HIV-1 drives macrophages toward an M1-like phe-
notype [73, 113]. However, unlike LPS, HIV-1-related polariza-
tion does not involve a TLR-dependent pathway and does not
result in the production of TNF, IL-1�, or IL-6. Instead, HIV-1-
primed MDM become hyper-responsive to TLR agonists such
as LPS, polyinosinic:polycytidylic acid, and CL097 (TLR7/8
agonist), resulting in a three- to fivefold increase in cytokine
production compared with TLR agonists alone [73]. Viral rep-
lication in MDM also correlates with increased production
of M1 chemokines, such as CCL3, CCL4 — up-regulated di-
rectly by the viral gene Nef [114]—and CCL5 and a down-
regulation of the M2 determinants, such as the scavenger
receptor CD163, the mannose receptor CD206, IL-10, and
CCL18 [113]. Furthermore, a transcriptional profiling study
suggests that these HIV-1-associated alterations may involve
the transient expression of genes that regulate the cell cy-
cle, calcium fluxes, apoptosis, and mitogen-activated kinase-
dependent pathways [73] (Table 2).

The capacity of macrophages to support HIV-1 infection is
dependent on the local tissue environment. Alveolar and vagi-
nal macrophages are susceptible to HIV-1, whereas intestinal
macrophages are typically resistant [85, 115]. Intestinal resis-
tance is the result of high levels of IL-10 and TGF-�. These
cytokines down-regulate the expression of coreceptors re-
quired for HIV-1 entry (namely, CCR5 and CXCR4), as well as
innate response receptors and costimulatory molecules [115–
117]. In vitro, we observed that short-term (18 h) exposure of
human MDM to M1 (IFN-� plus TNF-�) or M2a (IL-4) cyto-
kines prior to infection with HIV-1 resulted in a decreased ca-
pacity to support productive HIV-1 infection in comparison
with unpolarized MDM [17]. These restrictions occurred at

different levels of the viral life cycle (i.e., at an early, preinte-
gration step in the case of M1-MDM and at a post-transcrip-
tional/post-translational step in M2a-MDM). M1 restriction was
associated with a more profound down-regulation of CD4 and
a greater suppression of HIV-1 replication compared with M2-
MDM. M1 polarization also resulted increased secretion of
CCR5-binding chemokines (CCL3, CCL4, and CCL5) and a
significant decrease in the synthesis of HIV-1 DNA [17]. M2a
polarization, on the other hand, was associated with a more
prolonged, although less profound suppression of infection. In
contrast to M1 polarization, there was no detectable impair-
ment of HIV-1 DNA synthesis in M2a cells [17]. Other studies
have reported that APOBEC-3G mRNA levels are increased in
MDM stimulated with IFN-� and to a lesser extent, IFN-�
[118] (Table 2 and Fig. 1).

It is still unclear whether macrophage polarization is revers-
ible and whether individual tissue macrophages can switch
from an M1 to an M2 activation state as a consequence or a
cause of disease progression or whether such a switch requires
the differentiation and polarization of newly recruited blood
monocytes [20, 46]. We have reported recently that M1- and
M2a-MDM reverted to a prepolarization phenotype 3–7 days
after removal of the inductive stimulus, although some mole-
cules such as CXCL10 (M1) and CCL22 (M2a) remained ele-
vated after 7 days of culture in the absence of the polarizing
cytokines [17]. We also described a contra-modulatory effect
of polarization on the secretion of cytokines and chemokines
associated with the opposite phenotype—a process that typi-
cally peaked 3 days after the initial stimulation. For most phe-
notypic determinants, reversion to a prepolarization state was
associated with a renewed capacity to support productive
HIV-1 infection. M1 cells were able to support HIV-1 replica-
tion 3 days after removal of the polarizing cytokines. In con-
trast, M2a cells recovered their ability to produce virus at con-

Table 2. Factors Related to HIV-1 Infection Differentially Expressed in Polarized Human MDM

M1 M2a

mRNA Protein mRNA Protein Role in HIV-1 pathogenesis

Cytokines, chemokines
IL-12 aaa N.D. a N.D. s HIV-1 replication
IL-10 n.a. a n.a. – s HIV-1 replication
TNF-� aaaa n.a. aa n.a. a HIV-1 replication
IL-6 aaaa a aa – a HIV-1 replication
IL-8 n.a. a n.a. – a HIV-1 replication
CCL2 n.a. a n.a. s a HIV-1 replication; s virion release
CCL3 n.a. aa a CCR5 ligand; s HIV-1 replication
CCL4 n.a. a n.a. – CCR5 ligand; s HIV-1 replication
CCL5 aaaa aa aa N.D. CCR5 ligand; s HIV-1 replication
CXCL10 aaaa aaa aa – a HIV-1 replication
CCL22 n.a. – n.a. a s HIV-1 replication

Membrane receptors
CD4 n.a. s n.a. s Primary HIV entry receptor
CCRS n.a. – n.a. – HIV entry coreceptor
DC-SIGN aa s aaaa a HIV attachment and transfer rececptor

s, 0 to 25-Fold decrease; –, no change; a, 0 to 25-fold increase; aa, 25 to 200-fold increase; aaa, 200 to 500-fold increase; aaaa,
�500-fold increase; N.D., not detectable; n.a., not available.
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trol levels 7 days after polarization [17]. These findings are in
agreement with a recent study reporting that macrophages re-
tain the capacity to switch from one activation state to another
based on the expression of CD163 and CD206 and the secre-
tion of CCL3 and CCL18 [20]. Collectively, these findings sug-
gest that functional polarization may be an important regula-
tor of susceptibility to HIV-1 infection and efficiency of viral
replication in human macrophages. The transient and revers-
ible nature of polarization may represent a mechanism
through which infected tissue macrophages, typically resistant
to viral-induced cytopathic effects [91, 119, 120], can cycle be-
tween a state of inefficient versus productive viral expression.
An improved understanding of these events may lead to new
insights for suppressing virus replication or alternatively, for
unleashing HIV-1 production in latently and poorly, produc-
tively infected cells, rendering them more visible to immune
recognition in the perspective of viral eradication [121–123].

An important determinant discriminating between M1 and
M2 polarization is the hemoglobin scavenger receptor, CD163.
This receptor is expressed at high levels on M2 and at low lev-
els on M1 cells [17] and has proven particularly useful for the
identification and characterization of perivascular macro-
phages in the brain tissue of humans, monkeys, and mice
[124]. Several studies have reported significant accumulations
of CD163 within the perivascular cuff and nodular lesions of
the CNS of humans and nonhuman primates with HIV-1 and
SIV encephalitis [124, 125], suggesting that alternatively acti-
vated M2 macrophages may contribute to the pathology and

immune dysfunction observed in these disorders [126]. An-
other recent study observed an increased accumulation of
CD163� macrophages in uninflamed hearts from SIV-infected
animals compared with hearts from SIV-infected animals with
myocarditis or uninfected controls [127]. Furthermore, in this
study, CD163 expression was correlated positively with the
number of SIV-infected cells, suggesting that the CD163 popu-
lation of macrophages was associated with decreased inflamma-
tory infiltration and an increased myocardial viral burden
[127].

A subset of proinflammatory monocytes expressing high lev-
els of CD16 (the FcR�III) is markedly up-regulated in HIV-1�

patients, especially in patients with advanced disease [128,
129]. In vitro and in vivo CD14�CD16� monocytes are more
susceptible to HIV-1 infection than CD16-negative cells [130,
131], and they are an important source of the proinflamma-
tory cytokine TNF-� [132]. Furthermore, CD14�CD16� MDM
are more efficient at activating resting T cells, and in vitro
conjugates formed between CD14�CD16� MDM and T cells
are major sites of virus production [133, 134]. CD16�CD163�

monocytes, a potential precursor of alternatively activated pop-
ulations, have also been described as expanded during HIV-1
infection [135]. Unlike CD16�CD163– cells, the frequency of
CD16�CD163� monocytes is positively correlated with HIV-1
viremia and negatively with peripheral CD4� T cell counts (in
patients with CD4, �450 cells/�l), reinforcing the hypothesis
that a switch to Th2 immune responses and toward an M2-like
phenotype is associated with disease progression [135].

Mucosal macrophages are located at the interface with the
external environment, where they serve as one of the first lines
of defense against microorganisms that have breached the epi-
thelial barrier [37, 38, 115]. Yet, several viruses are able to
gain entry and exploit these cells for purposes of virus trans-
mission and dissemination, often by exploiting C-type lectins
[136–139]. In this regard, M2-MDM express high levels of sev-
eral C-type lectins, including DC-SIGN [18, 47]. Studies in our
laboratory have demonstrated that DC-SIGN is strongly up-
regulated on the surface of M2a-MDM and that these DC-
SIGN-expressing MDM can transfer CXCR4-dependent HIV-
1IIIB efficiently (not efficiently replicating in polarized and un-
polarized MDM) to IL-2 PBMC (E. Cassol et al., submitted;
Fig. 1). Our findings are consistent with an independent study,
demonstrating that an IL-4-enriched environment is associated
with increased capture, integration, production, and transfer
of CCR5-dependent HIV-1 by MDM [140]. Collectively, these
observations suggest that similar to DC [141–143], DC-SIGN�

M2a macrophages may play a pivotal role in HIV-1 transmis-
sion. However, in contrast to DC-SIGN� DC that bind and
transport HIV-1 to lymphatic tissues for presentation to T cells
[55], resident tissue macrophages are nonmigratory cells that
are likely to play an important role in the pathogenesis of mu-
cosal infection and in sexual transmission.

IMPACT OF MICROBIAL COINFECTIONS
ON MACROPHAGE POLARIZATION

In Africa and other areas of the developing world, Mtb [144,
145] and parasitic infections [146, 147] contribute to the mod-

M2a M1

APOBEC-3G

CCL3
CCL4
CCL5 

TNFs, IFNs
LPS

IL-4,
IL-13

CD4

CCR5

DC-SIGN

CCR5

CD4

DC-SIGN

Figure 1. Impact of human MDM polarization on HIV-1 infection and
replication. M1- and M2a-polarized MDM have shown decreased levels
of CCR5-dependent HIV-1 replication in comparison with unpolarized
cells [17]. However, this ultimate effect is likely a result of differential
and multifactorial effects triggered by cell polarization, including up-
regulation of CCR5-binding chemokines, APOBEC-3G, and profound
down-regulation of CD4 in M1- but not M2-MDM [17]. A divergent
regulation of DC-SIGN in M1- versus M2-MDM might differentially
contribute to spreading of bound HIV-1 to T lymphocytes and other
target cells.
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ulation of macrophage activation in persons coinfected with
HIV-1. As with most microbes, acute Mtb infection drives these
cells toward an M1 phenotype [148, 149]. Experimentally,
macrophages activated by Mtb secrete high levels of TNF-�,
IL-6, IL-12, IL-1�, CCL2, CCL5, and CXCL18 [148]. In the
absence of effective therapy, prolonged secretion of these mol-
ecules in vivo can result in a cytokine storm similar to that ob-
served in patients with systemic inflammatory response syn-
drome (sepsis) and multiple organ failure [150]. As observed
in other bacterial infections such as chronic brucellosis,
chronic Mtb infection is associated with a switch from an M1
toward and M2 phenotype [148]. These alternatively activated
macrophages are a major source of IL-10 and can promote
Mtb recrudescence without activating and inducing anti-Mtb T
cell immunity [151–153]. In contrast to Mtb and HIV-1, hel-
minths are extremely efficient at triggering M2 activation in
tissue macrophages [154–156]. In patients coinfected with
HIV-1, a helminth-induced switch toward an M2 response can
accelerate disease progression [157, 158]. Paradoxically, M2
responses, which are required for wound healing and worm
expulsion, also increase HIV-1 replication [159–161]. Unex-
pectedly, treatment of intestinal helminths in African popula-
tions is not associated with a reduction in HIV-1 viremia (i.e.,
the number of copies of HIV RNA measured in 1 ml plasma,
with a single virion containing two copies of genomic RNA on
average) [162].

CONCLUSIONS

The concept of immune cell polarization, including the polar-
ization of tissue macrophages, provides a valuable but some-
what simplistic framework for unraveling the complexity of
host-viral interactions. Continued investigation of this complex
network of inter-related interactions may lead to new insights
for controlling HIV-1, as well as other microbial diseases, caus-
ing a great burden on human health in the underdeveloped
and industrialized world.
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