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ABSTRACT

Chemokines are a group of small, structurally related
molecules that regulate the trafficking of various types
of leukocytes through interactions with a subset of
7-transmembrane G-protein-coupled receptors. As key
chemoattractants of inflammatory leukocytes, chemo-
kines have been marked as potential targets for neu-
tralization in autoimmune diseases. Cancer cells also
express chemokines, where they function as survival/
growth factors and/or angiogenic factors that promote
tumor development and angiogenesis. Accordingly,
these functions make them attractive targets for ther-
apy of these diseases. Recently, we reported that one
of these chemokines CXCL12 (SDF-1«a) functions as an
anti-inflammatory chemokine during autoimmune in-
flammatory responses and explored the mechanistic
basis of this function. As a pleiotropic chemokine,
CXCL12 participates in the regulation of tissue ho-
meostasis, immune surveillance, autoimmunity, and
cancer. This chemokine is constitutively expressed in
the BM and various tissues, which enables it to regu-
late the trafficking and localization of immature and ma-
turing leukocytes, including BM stem cells, neutrophils,
T cells, and monocytic cells. We have shown recently
that CXCL12 increases immunological tolerance in au-
toimmune diseases by polarizing Tregs and by doing
so, restrains the progression of these diseases. This
finding suggests a possible use of stabilized rCXCL12
as a potential drug for therapy of these diseases and
targeted neutralization of CXCL12 for therapy of cancer
diseases. The current review explores the different bio-
logical properties of CXCL12 and discusses the implica-
tions of CXCL12-based therapies for autoimmunity and
cancer diseases. J. Leukoc. Biol. 88: 463-473; 2010.

Abbreviations: BM=bone marrow, EAE=experimental autoimmune en-
cephalomyelitis, ELR=Glu-Leu-Arg, Foxp3=forkhead box p3, HEV=high
endothelial venule, MS=mulltiple sclerosis, RA=rheumatoid arthritis,
SDF-1a=stromal cell-derived factor 1a, TIDM=type | diabetes mellitus,
Thnp=nonpolarized CD4™* T cell(s), Tr-1=regulatory T cell |, Treg=
regulatory T cell
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Introduction

Chemokines are a group of small (8-14 kDa), structurally re-
lated molecules that regulate the trafficking of various types of
leukocytes through interactions with a subset of 7-transmem-
brane G-protein-coupled receptors [1-3]. Chemokines play
fundamental roles in the development, homeostasis, and func-
tion of the immune system [1-3]. Although chemokines are
produced primarily by immune cells, they are also produced
by nonimmune cells and affect their biological function(s).
For example, vascular endothelial cells produce chemokines
that are involved in angiogenesis [1-3].

Based on the arrangement of the conserved cysteine resi-
dues, the chemokines are divided into four subgroups: C, CC,
CXC, and CX3C [1-3]. The two major subgroups are the CXC
and CC subgroups, in which the two cysteines are separated by
a single amino acid (CXC) or are adjacent to each other
(CC). The CXC chemokines are subdivided further into ELR
and non-ELR types, according to the presence or absence of a
ELR tripeptide sequence adjacent to the CXC motif [1-3].

Much attention has been paid to the key role of chemokines
in inflammatory processes [4-10] and especially, inflammatory
autoimmune diseases, such as MS and its experimental models
[6, 8, 11-22], TIDM [23, 24] and RA [25-27], amongst oth-
ers. As key chemoattractants of inflammatory leukocytes, che-
mokines have been marked as potential targets for neutraliza-
tion in autoimmune diseases [6, 8, 11-22, 24-27]. Some of the
results of these studies have been applied to human patients,
thus far with limited success.

EAE is a T cell-mediated autoimmune disease of the CNS,
and animals in which EAE is induced are used as an experi-
mental model for MS. One of the chemokines that is likely to
participate in the regulation of EAE is CXCL12 (SDF-la). This
is a pleiotropic chemokine that participates in the regulation
of tissue homeostasis, immune surveillance, inflammatory re-
sponses, and cancer development. Under noninflammatory
conditions, CXCL12 attracts leukocytes to the CNS as a part of
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the immune surveillance of tissues, thereby functioning as a
“proinflammatory” chemokine. In a recent study, we showed
that when leukocytes rapidly enter a site of inflammation in
the CNS during ongoing EAE, this chemokine shifts its poten-
tial proinflammatory function to become an anti-inflammatory
chemokine [28]. This change skews the polarization of CD4™"
antigen-specific effector T cells (also known as Thl and Th17
cells), which normally promote inflammation, so that they be-
come antigen-specific Tregs that produce a key anti-inflamma-
tory cytokine, IL-10 [28], and restrain the development and
progression of the disease. In light of these findings, the
present article reviews the multiple faces of CXCL12 (SDF-1a)
in the regulation of immunity during health and disease and
their therapeutic implications for cancer and autoimmunity.

THE ALTERNATIVE ROLE OF
CHEMOKINES IN TISSUE HOMEOSTASIS,
IMMUNE SURVEILLANCE,
AUTOIMMUNITY, AND CANCER

Chemokines direct cellular movement and relocalization, both
of which are essential for many fundamental physiologic pro-
cesses, which include embryonic development, neovasculariza-
tion and angiogenesis, immunologic responses, wound heal-
ing, and organ repair. In embryonic life, together with other
chemoattractive growth factors, CXCL12 directs the prolifera-
tion and differentiation of immature progenitor cells [29] by
activation of the adhesion machinery, cytoskeleton rearrange-
ment, the control of cell cycle, and the secretion of proteolytic
enzymes [29]. In adults, chemokines have three major func-
tions: They control tissue homeostasis; they direct the develop-
ment of inflammatory responses, including inflammatory auto-
immune diseases; and they function as growth/survival fac-
tors and as chemoattractants for cancer cells to support
metastasis. For tissue homeostasis, chemokines are involved
closely in the regulation of cell migration, particularly leu-
kocytes, from the BM to blood and tissues, to ensure a dy-
namic balance of cell number and type in these organs un-
der diverse conditions. For example, the interaction be-
tween the CC chemokine receptor, CCR2, which is
expressed predominantly on BM-derived monocytes, and its
ligands, particularly CCL2, is essential for directing the
rapid recruitment of CCR2" cells from the BM to a site of
inflammation, where they are required to promote inflam-
matory processes [30]. Thus, CCR2-deficient mice are
highly resistant to the induction of inflammatory autoimmu-
nity [20]. Another example for the role of CXCLI12 in tissue
homeostasis is its constitutive expression in the BM and
other tissues, which include the skin and heart, epithelial
cells in human bile ducts, and brain endothelium [29]. This
constitutive expression is responsible for regulating the traf-
ficking and localization of immature and maturing leuko-
cytes to these tissues. During steady-state conditions, these
cells egress continuously from the BM reservoir to the circu-
lation to replenish the blood with new cells throughout the
lifespan of the individual [31]. In addition to its role in reg-
ulating BM stem cell homeostasis, CXCL12 is involved di-
rectly in neutrophil homeostasis under normal and stress
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conditions. The number of circulating neutrophils is tightly
regulated to ensure adequate protection of the host against
microbial pathogens and concomitantly minimizing damage
to noninflamed tissues. Neutrophil homeostasis in the blood is
achieved by balancing neutrophil production, neutrophil re-
lease from the BM, and neutrophil clearance from the circula-
tion. Accumulating evidence suggests that signaling by
CXCLI12, through its major receptor CXCR4, plays an impor-
tant role in maintaining this homeostasis [32]. Very recently,
Eash et al. [33] generated mice with a myeloid lineage-re-
stricted deletion of CXCR4 to define the underlying mecha-
nisms of CXCR4 signaling in neutrophil homeostasis. Similar
to its effects on other leukocytes, particularly monocytes and T
cells, CXCLI12 directs the migration of neutrophils to organs,
particularly immune-privileged organs, as part of the immune
surveillance of the body. Based on observations that have been
made in experimental models of autoimmune disease, whose
results have been extended to humans, it is believed that the
interaction between antigen-specific effector T cells and their
target autoimmune antigen in T cell-mediated inflammatory
autoimmune disease following tolerance breakdown begins
with the activation of HEVs. Their activation then facilitates
the extravasation of large numbers of lymphocytes and mono-
cytes from the blood to the tissues to initiate the autoimmune
process [34]. Inflammatory chemokines possess three key com-
plementary features in this process: They attract various types
of leukocytes, particularly lymphocytes, monocytes, and neutro-
phils to the inflammatory site; they activate adhesion mole-
cules on HEV and leukocytes to allow rapid influx of cells to
the autoimmune site [35-40]; and they polarize CD4™" T cells
directly to become effector proinflammatory cells [26, 41].
Thus, not only inflammatory chemokines but also the key ad-
hesion receptors that they activate, namely the a4S1-integrin,
VLA-4, have become a major target in the therapy of MS and
other autoimmune diseases [42—-44].

The role of chemokines in tumor biology is complex. It ap-
pears that many tumor cells produce a large variety of chemo-
kines and their receptors [45-47]. The actions of chemokines
in tumor biology can be divided into direct autocrine effects,
in which tumor cells produce a given chemokine and its target
receptor, and indirect effects, such as recruitment of tumor-
associated macrophages, to support tumor development and
angiogenesis [45, 48-51]. On their autocrine effects, chemo-
kines function as growth/survival factors for cancer cells, as
proangiogenic factors, and as chemoattractants for cancer cells
to support metastasis. At least three major chemokines,
CXCL8, CXCL12, and CCL2, all of which are produced by var-
ious solid tumors, such as malignant melanoma, liver and pan-
creatic tumors, colon carcinoma, breast cancer, and prostate
cancer, function as autocrine growth factors [45—-47]. It has
been proposed that CXC chemokines with the ELR tripeptide
sequence immediately adjacent to the amino-terminal of the
CXC motif (ELR* CXC chemokines), such as CXCLS, are an-
giogenic and that ELR™ CXC chemokines, such as CXCL10,
are angiostatic [1-3]. Other data have shown that the ELR™
CXC chemokine, CXCL12, can act as a direct chemoattractant
for endothelial cells in vitro and as an angiogenic factor in
vivo [62-54]. CXCL12 is also thought to play a key role in at-
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tracting tumor cells to their target organs to facilitate the for-
mation of metastasis, such as the attraction of prostate cancer
cells to the bones [55, 56]. On the indirect effects of chemo-
kines, chemokines, such as CCL2, are thought to be highly
important for attracting CCR2" monocytic cells that assist tu-
mor development, rather than destroying tumors, by produc-
ing angiogenic factors at the tumor site and producing cyto-
kines, particularly IL-10, that suppresses anti-tumor immunity
[45, 48, 49, 51, 57-62].

THE MAJOR PARADOX OF CHEMOKINES
AS TARGETS FOR THERAPY OF
INFLAMMATORY AUTOIMMUNE
DISEASES

The underlying idea of antichemokine therapies for inflamma-
tory autoimmune disease is that targeted neutralization of che-
mokines would restrain the autoimmune response by inhibit-
ing the influx of inflammatory leukocytes to a site of autoim-
mune-induced inflammation. Reviewing the results of the
many studies that have used this strategy reveals a major para-
dox. Although most of the 50 known chemokines can direct
the migration of the same leukocytes, targeted neutralization
of only one chemokine, such as CCL2, CCL3, CCL5, or
CXCL10, is sufficient to suppress the entire inflammatory pro-
cess [8, 20, 21, 41, 63-67]. Therefore, the question that begs
an answer is why other chemokines that also attract the same
type of leukocyte to the autoimmune site do not compensate
for the absence of this single chemokine. In addition, it is not
clear why neutralization of as few as eight to 10 of the 50 dif-
ferent chemokines can effectively suppress the attacks in auto-
immune inflammatory diseases [8, 20, 21, 41, 63—-67]. Hence,
what are the attributes of this limited number of chemokines
that make them so important in the regulation of inflamma-
tory processes?

A partial explanation for this paradox could be that these
chemokines have other biological actions that are associated
with these autoimmune inflammatory diseases, as well as being
chemoattractants. For example, it has been shown recently
that CCRb ligands are essential for the induction of costimula-
tory signals via stiumulation of the CCRb receptor on target
effector CD4" T cells and that these signals are essential to
promote IL-2-dependent activation of these cells [68-70]. This
may explain why targeted neutralization of CCR5 ligands is so
effective in suppressing different autoimmune diseases, such as
EAE [65, 71, 72], RA [25, 73], and T1DM, in different strains
of mice [24].

EFFECTOR CD4" T CELL SUBSETS

In 1986, Robert Coffman and Timothy Mosmann were the first
to describe the division of CD4" T cells into functional subsets
based on cytokine production, which they termed Th1 and
Th2 cells [74, 75]. Subsequently, other types of effector T cell
and Treg subsets were identified. It has also been shown that
during their activation, Thnp undergo epigenetic changes
when differentiating into different subtypes. These epigenetic
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changes are dependent on the cytokine milieu that is present
within the microenvironment, in which they are undergoing
clonal expansion [76, 77]. For example, in the presence of
high levels of IL-12 and IL-18 and low levels of IL-4, Thnp will
be polarized preferentially into IFN-y"'8"IL-4'**-producing Th1
cells that also produce substantial levels of IL-2, TNF-«;, and
other proinflammatory cytokines [78—-81]. On the other hand,
a milieu that is enriched with IL-4 and has low levels of IL-12
and IL-18 will drive the polarization of Thnp to become IL-4-
producing Th2 cells [82, 83]. Although Th1 cells promote the
inflammatory process, Th2 cells are associated with helping B
cells switch their isotype and change their biological function
[82, 83]. Thus, from the practical perspective, these observa-
tions suggest that anti-IL-12 and/or anti-IL-18 therapies may
be beneficial in inflammatory autoimmunity. Indeed, the ad-
ministration of neutralizing antibodies to IL-12 or IL-18 could
suppress several experimentally induced autoimmune diseases
effectively by shifting the Th1/Th2 cell balance in favor of
Th2 cells [81, 84-87]. The drawback of this therapeutic strat-
egy is the danger of substituting a Thl-driven inflammatory
process with a Th2-directed allergic response [88].

A third subtype subtype of CD4" effector cell is the recently
discovered IL-17-producing Th17 cell [89-93]. These cells are
polarized initially by IL-6 and TGF-B and thereafter, by IL-21
in an autocrinic way via the STAT3 pathway. This initial step-
wise polarization increases their susceptibility to IL-23, which
augments their rapid polarization [89-93]. IL-23-deficient
mice are EAE-resistant, and therapies that neutralize this cyto-
kine suppress EAE and other T cell-mediated autoimmune dis-
eases [93-100]. It is also believed that Th1l and Th17 cells con-
tribute independently to CD4 "-directed inflammatory re-
sponses that include T cell-mediated autoimmunity by
different mechanisms [99, 100].

Are there other subtypes of effector CD4" T cells yet to be
identified? The basic concept, which was proposed by Mos-
mann and colleagues, is that the Thnp could be divided into
two exclusive types of effector cells, namely the IFN-y"#"[L-
4'°% Th1 cells and the IL-4"SIFN-y'°* Th2 cells, and that the
lineage characteristics of each subtype are stable for as long as
20 years. Hence, the discovery of other types of effector T
cells, such as Th17 cells [89-93], and the recent observations
that challenge the dogma that these subsets are stable [101-
103], which is discussed later in this review, have unwittingly
opened a Pandora's box of complexity and controversy. As for
other effector T cell subtypes, two new subtypes have been discov-
ered recently: one subtype that produces IL-22 (Th22 cell) pre-
dominantly and a second subtype that produces IL-9 (Th9 cells)
[104, 105]. Future investigations may well lead to the discovery of
other new effector T cell subtypes.

TREG SUBSETS

Despite major functional differences among Th1, Th17, and
Th2 cells, all are considered to be effector T cells that can
promote inflammatory responses (Thl and Th17 cells) or B
cell-directed immunity (Th2 cells). What regulates their activi-
ties? As mentioned already, the CD4" T cell subsets that con-
trol the function of effector T cells are known as Tregs, and
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these subsets can be divided into two major categories: those
that express Foxp3 (Foxp3") and are known as natural Tregs
[106, 107] and the antigen-specific Tregs, which are Foxp3~
and suppress the function of effector T cells by producing sup-
pressor cytokines, such as TGF-8 [108, 109], IL-10 [110], and
possibly IL-35 [111]. Foxp3™ Tregs were discovered by Shimon
Sakaguchi [106], who showed that their depletion leads to the
spontaneous development of various autoimmune diseases,
which could be reversed by adoptive transfer of natural Tregs
from naive donors. The relevance of these findings has been
extended to humans. Similar to the T cell subsets in rodents,
the human T cell subsets also include a significant portion of
CD4"CD25"Foxp3™ T cells that functions as suppressor Tregs.
Interestingly, human subjects who carry a functional mutation
in the FOXp3 gene spontaneously develop a severe autoim-
mune disorder that is called the immune dysregulation, poly-
endocrinopathy, enteropathy, X-linked syndrome [112] and
resembles the syndrome that develops when mice are depleted
of CD4"CD25 "Foxp3™ T cells [113]. For Foxp3™ Tregs, two
major subtypes have been identified thus far. Almost 20 years
ago, Howard Weiner and his group [108, 109] identified a
novel type of antigen-specific Tregs that produces large
amounts of the suppressor cytokine/growth factor TGF-8 and
small amounts of other cytokines and subsequently, named
them Th3 cells. Weiner and his group [108, 109] showed that
these Th3 cells seem to direct immunological tolerance within
the gut, and their function could be induced by oral toler-
ance. In 1977, Groux et al. [110] identified another type of
antigen-specific Tregs that produces mostly IL-10 and desig-
nated them as Tr-1 cells. It is believed that these Tr-1 cells are
essential in the maintenance of active tolerance and in particu-
lar, for restraining the harmful activity of autoimmune T cells
[114].

FLEXIBILITY IN THE POLARIZATION OF
CD4" T CELL SUBSETS

The traditional, consensual opinion about the mechanism of T
cell polarization into subsets assumed that epigenetic changes
lead to a well-defined characteristic of each CD4" T cell subset
with relative inflexibility [115]. For example, during their anti-
gen-specific T cell activation, Thnp are polarized into Thl
cells in the presence of high levels of IL-12 and low levels of
IL-4 [78]. Under these conditions, IL-12 activates a specific
signal transduction cascade that leads to the synthesis of a T-
box transcription factor, which controls the expression of the
hallmark Th1 cytokine, IFN-y [116]. According to the tradi-
tional dogma, these polarized CD4" T cells would continue
producing their typical cytokine profile as long as they con-
tinue to proliferate in response to their target antigen. For
example, proliferating effector Thl cells would continue pro-
ducing high levels of IFN-y and TNF-a and low levels of IL-4
as long as they are activated. Thereafter, these cells undergo
apoptosis or become long-term memory cells [117]. Once be-
coming long-term memory cells, they arrest their typical cyto-
kine production and enter a resting phase. Upon reactivation,
it is believed that upon reactivation, they “remember” their
basic cytokine profile that they obtained during their initial
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polarization and continue producing this cytokine profile.
Other examples are: Th2 cell polarization, which is directed
initially by IL-4-induced signaling via the STAT6 and STAT5
transcription factors [118] and then by the GATA-3 transcrip-
tion factor [119], and Th17 cells, which are polarized initially
by IL-6 and TGF-8 and thereafter, in an autocrinic way by
IL-21 via the STAT3 pathway and the major nuclear orphan
receptor RORyt [120], and the resultant polarization increases
their susceptibility to further polarization by I1-23 [89-93].

For Foxp3™ Tregs, the key transcription factor that charac-
terizes the CD4"CD25" Tregs is Foxp3, which is essential for
their normal development and function [106, 121-123]. The
dominant cytokine that drives the polarization of Foxp3™ to
Foxp3" CD4" T cells is TGF-B [124, 125]. Less is known
about the signal transduction events by which Foxp3™ IL-10-
producing Tr-1 cells are polarized in the presence of IL-10
and IL-2 [110]. A recent study showed that this polarization is
directed in human Tregs through a STATb5-responsive intronic
enhancer in the IL-10 locus [126].

The results of several recent studies have now provided evi-
dence that challenges the traditional dogma, which suggests
that CD4" T cells undergo epigenetic changes during T cell
polarization and display limited flexibility. In 2007, Anderson
et al. [101] showed that IFN-y-producing Thl cells could be
repolarized into IL-10-producing Tr-1 cells in chronic, cutane-
ous leishmaniasis (see also a recent review by O'Garra and
Vieira [103]). A more recent example is the role of another
cytokine, IL-27, in the polarization of CD4" T cells. Together
with IL-12, IL-27 can polarize Thl cells [127-129], and then
together with IL-6, it can transform polarized Thl cells, Th2
cells, and even Th17 cells into IL-10-producing Tr-1 cells
[130]. These effects are dependent on the transcription fac-
tors STAT1 and STATS3. The polarization of CD4" T cells into
Th1 cells by IL-12 and IL-27 is dependent on STAT1 and
STAT3, whereas the transformation of polarized Thl cells by
IL-6 and IL-27 is dependent on STAT3 [130-132]. Interest-
ingly, no cytokines that are capable of reversing polarized Tr-1
cells into effector Th1l or Th17 cells have been found so far.
We have shown recently that flexibility in skewing Th1 to Tr-1
could also be induced by CXCL12 via stimulation of the
CXCR4 receptor on Thl cells [28].

THE ROLE OF CHEMOKINES IN
DIRECTING CD4* T CELL POLARIZATION
AND FUNCTION

The role of chemokines in directing the biological function of
CD4" T cells can be viewed from two perspectives: the differ-
ential effect of chemokines on the biological functions of po-
larized T cells and the ability of chemokines to polarize CD4"
T cells directly into selective subsets. Of the two roles, more is
known about the role of chemokines on directing the biologi-
cal properties of polarized T cells. In 1997, Sallusto and co-
workers [133] showed that Th2 cells preferentially express the
chemokine receptor, CCR3. In the following year, the same
group extended this study to show that Th1 cells also express
CXCRS3, and Th2 cells preferentially express the chemokine
receptors, CCR3 and CCR4 [134]. Thl and Th2 cells express
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CCRb5 [133-135]. Subsequently, Hirahara et al. [136] reported
that Foxp3™" Tregs also preferentially express CCR4. The di-
rect consequence of these findings refers to the selective hom-
ing of various cell types as a result of their chemokine recep-
tor expression. For example, Th17 cells predominantly express
the chemokine receptor, CCR6, and its exclusive ligand
CCL20 is constitutively expressed in the epithelial cells of cho-
roid plexus in mice and humans to direct the homing of Th17
cells [137]. The results of a recent study have shown that an
attenuated form of disease develops as a result of aberrant traf-
ficking of Th17 cells when EAE is induced in CCR6-deficient
mice [137]. The consequences of the CCL20-CCR6 interaction
on the biological properties of Th17 cells are not known yet
and still need to be studied. Another example is the CXCR3
ligand, CXCL10, which is preferentially expressed in the CNS
during the accelerating phase of EAE and is associated with
enhanced recruitment of CXCR3" Th1 cells to the CNS [21].

In addition to directing the migratory properties of CD4" T
cells, the selective interaction of chemokines and their recep-
tors affects their biological properties. For example, the che-
mokine receptor, CCRS, is preferentially expressed on CD45"
Th2 cells and Foxpf&Jr Tregs [138], and F0xp34r Tregs sup-
press effector T cell functions by various mechanisms [107],
and Th2 cells produce IL-4, which also restrains Thl activities
[80]. It has been suggested that that Th2 and Foxp3™ T cells
are not only attracted to the site of inflammation via the CCR8
receptor but also, that the interaction of CCLI with its exclu-
sive CCR8 receptor potentiates their anti-inflammatory activi-
ties [138], although this possibility has yet to be explored. An-
other example is the interaction between the CCR5 receptor
that is expressed on Thl cells and Th2 cells and its three dif-
ferent ligands, CCL3 (MIP-a), CCL4 (MIP-$), and CCL5
(RANTES) [1]. Recently, Molon et al. [68] reported that sig-
nals that are mediated by CCL5 by stimulation of the CCR5
receptor are required for effective activation of the CCR5 re-
ceptor, thus serving as costimulatory signals in T cell activa-
tion. Subsequently, Camargo et al. [70] showed that the inter-
action between the CCRb receptor and its ligands induces sig-
nals via translocation of the transcription factor, NFAT, which
results in IL-2 production by CD4" T cells.

Less is known about the role of chemokines in the polariza-
tion of CD4" T cells. CXCR3 is a chemokine receptor that is
expressed mainly on CD4" cells and in particular, Th1 cells
[134], and three ligands bind to this receptor: CXCL9 (mono-
kine induced by IFN-y), CXCL10 (IFN-inducible protein 10),
and CXCLI11 (IFN-inducible T cell-a chemoattractant). In
1998, Gangur et al. [139] reported that the addition of
CXCLI10 to proliferating human T cells polarizes them into
IFN-y"#"I[-4'% Th1 cells. Based on this information, we have
shown that indeed, CXCLI10 not only attracts CXCR3™" T cells
to the site of inflammation but also polarizes them into effec-
tor Th1 cells in two different experimental models of inflam-
matory autoimmune disease, namely EAE and adjuvant-in-
duced arthritis [26, 41]. Thus, targeted neutralization of
CXCL10 reduces the severity of ongoing EAE and adjuvant-
induced arthritis by shifting the Th1/Th2 cell balance in favor
of the Th2 cells [26, 41]. More recently, Flanagan et al. [140]
reported that the lymphoid chemokine, CCL21, polarizes na-
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ive T cells into Th1 cells. In our recent publication, we re-
ported that chemokines may polarize some CD4" subsets, and
this finding supports the notion that competence is not lim-
ited only to effector cell polarization but also for skewing the
polarization of effector T cells into Tregs [28].

THE MULTIPLE FACES OF CXCL12
DURING ONGOING INFLAMMATORY
AUTOIMMUNITY

The CXC chemokine, CXCL12, which is also known as SDF-1
[141], was identified originally as a growth factor for murine
pre-B cells [142]. It exists in two alternative splice variants:
SDF-1a and SDF-18. It is expressed constitutively by various
cells and exhibits chemoattractive activity for monocytes, BM
neutrophils, and early-stage B cell precursors, as well as being
a highly efficient and potent chemoattractant for T cells and a
costimulator of their activation [143]. Furthermore, CXCL12
induces adhesion of T cells to ICAM-1 (CD54) [144] by up-
regulating the binding activity of LFA-1 (CD11a/CD18) and
modulates the adhesion of a4-B7 integrin-mediated lympho-
cytes to mucosal addressin cell adhesion molecule-1 and fi-
bronectin [145]. In light of these findings, it is thought that
CXCLI12 plays an important role in the attraction of T cells to

specific sites. Furthermore, it was also suggested that CXCL12
could play a proinflammatory role in various autoimmune dis-
eases, particularly RA and nephritis, in murine lupus erythem-
atosus and therefore, could be a valid target for neutralization
in these diseases [35, 146]. Our findings showing that CXCL12
functions as an anti-inflammatory chemokine during the in-
flammatory process challenge this concept [28].

In the healthy CNS, CXCLI12 serves as a survival and migra-
tory factor for neural and oligodendrocyte precursors that ex-
press the CXCR4 receptor [147]. The expression of CXCLI12
within the CNS is up-regulated in the astrocytes of the MS
brain; hence, its role in the regulation of this disease is not
fully understood [148-150].

Our working hypothesis has been that targeted neutraliza-
tion of CXCLI2 during EAE would suppress the disease. In
initial experiments, we tried to neutralize CXCL12 at different
time-points after active EAE was induced and found contradic-
tory effects. When a CXCLI12-Ig fusion protein was adminis-
tered to mice after the induction but before the onset of
symptoms of EAE, we showed that the onset of disease was de-
layed for 2-3 days (Moran Meiron, Yaniv Zohar, and N. Karin,
unpublished data). In contrast, there was rapid remission of
the disease when the fusion protein was administered after the
onset of disease [28].

The delay of the onset of disease following early administra-
tion of the CXCL12-Ig fusion protein could be explained by
CXCL12 acting as a chemoattractant of leukocytes that are es-
sential for the regular “policing” of the CNS. It is likely that
endogenous CXCL12, which is produced within the CNS by
astrocytes and other cells, is involved in modulating the migra-
tion of those leukocytes that are essential for the regular polic-
ing of the CNS. The development of progressive, multifocal
leukoencephalopathy following anti-a4-integrin (VLA-4) ther-
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apy [151] may serve as an example for the importance of po-
licing the CNS by T cells and macrophages.

However, according our observations, when the inflamma-
tory process within the CNS later enters into an accelerating
phase, CXCL12 functions as an anti-inflammatory chemokine
that directs the polarization of CD4" T cells and macrophages
to become IL-10"#"producing Tregs [28]. The implication of
these results for humans is that CXCL12 could be used as a
potential drug only during advanced stages of inflammatory
autoimmunity because of its pleiotropic characteristics.

The results of several studies have shown that C-C chemo-
kines may affect the polarization of antigen-specific T cells by
altering the Th1/Th2 cell balance [6, 152, 153]. However, the
results of our recent study have shown that a chemokine can
direct the polarization of IL-10-producing Tregs [28], thereby
introducing a new concept that proposes chemokines as po-
tential anti-inflammatory proteins. Are there other chemokines
that polarize Tr-1 cells? We have observed recently that of the
three CXCRS3 ligands, CXCL9, CXCL10, and CXCL11, only
CXCL11, which competes effectively with CXCL10 in binding
their common CXCR3 receptor, antagonizes the function of the
other CXCRS3 ligands by skewing CD4" T cell polarization into
IL-10-producing Tr-1 cells (Yaniv Zohar, Gizi Wildbaum, Nir
Netzer, and N. Karin, manuscript in preparation). CXCR3-defi-
cient mice can develop an extremely severe form of EAE and
T1DM [154, 155]. We do not exclude the possibility that the ex-
acerbation of these diseases in experimental models is, in part, a
result of the lack of protective, anti-inflammatory signals, which
are mediated by the CXCL11-CXCR3 interactions.

CXCL12 POLARIZES ANTIGEN-SPECIFIC
TR-1 CELLS BY TWO COMPLEMENTARY
MECHANISMS

Antigen-specific Tr-1 cells were first identified by Groux et al.
[110], who showed that the addition of IL-10 and IL-2 to cul-
tured, primary T cells caused them to proliferate in response
to their target antigen and polarize them into Tr-1 cells. Un-
der these working conditions (in vitro) and at an inflamma-
tory site (in vivo), IL-10 is produced by two major types of
cells: the APCs that include dendritic cells (also known as D2
cells) and monocytes (also known as M2 cells) [61, 156] and
the IL-10-producing Tr-1 cells [110]. We have shown that
CXCLI12 via stimulation of the CXCR4 receptor induces IL-10
production in macrophages and also acts directly on CD4" T
cells that are being activated. We, therefore, suggest that the
outcome of CXCLI12-induced skewing of CD4* T cells to be-
come Tr-1 cells is a result of two complementary pathways: a
direct effect on the CD4™ T cells and an indirect effect that is
mediated by antigen-presenting T cells to produce IL-1, which
together with IL-2, polarizes Tr-1 cells (Fig. 1).

IMPLICATIONS FOR THERAPY OF
AUTOIMMUNITY, GRAFT REJECTION,
AND CANCER

Various tumors and in particular, androgen-dependent tumors,
such as prostate cancer, breast cancer, and ovarian cancer cells,
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Figure 1. Direct and indirect polarization of Tr-1 by CXCL12. CXCLI12
polarizes Tr-1 cells by two complementary independent mechanisms. A
direct effect on CXCR4" CD4" T cells, including effector Th1 cells, and
an indirect effect by eliciting IL-10 production in M2 macrophages and
D2 dendritic cells (DC) that then polarize antigen-specific Tr-1.

produce CXCL12 predominantly and express its two receptors,
CXCR4 and CXCR?7 [157-161]. In these types of tumors,
CXCLI2 functions, in an autocrinic manner, as a survival/growth
factor, as well as a chemoattractant of tumor cells, and in particu-
lar, during tumor spread to the bones [53, 158, 159, 162-166].
Aside from its role as a survival/growth factor and a chemoattrac-
tant of tumor cells, CXCL12 suppresses anti-tumor immunity by
promoting IL-10 production by CXCR4" tumor-associated macro-
phages that are recruited at the tumor site. The relevance of this
hypothesis has been explored in humans by Zou et al. [157], who
showed that CXCL12 recruits and directs the function of plasma-
cytoid precursor dendritic cells so that they become IL-10-produc-
ing cells that are capable of suppressing immunity in human
ovarian neoplasms. These results reinforce the idea that anti-
CXCLI12-based therapies could be beneficial for some types of
cancers.

As mentioned previously, CXCL12 is essential for the homing
of BM stem cells to the BM, and this action has potential implica-
tions for the treatment of some types of cancer. The ability of
CXCLI2 to attract BM-derived cells to the BM is mediated by the
CXCR4 receptor [31]. Thus, a molecule that selectively blocks
the CXCR4 receptor (AMD3100, Pleixafor) has been approved
recently as a drug (in combination with GM-CSF) for hematopoi-
etic stem cell mobilization from the BM to the blood, where they
could be collected for autologous human stem cell transplanta-
tion [167]. This approach has been approved for intervention in
two relevant cancer diseases: multiple myeloma and non-
Hodgkin’s lymphoma [167].

As discussed above, CXCLI2 has pleiotropic actions in inflam-
matory autoimmune disease. It directs monocyte and T cell re-
cruitment to restricting sites for immune surveillance, and by do-
ing so, it stimulates effector T cells to combat potential infections
at these immune-restricted sites. Nevertheless, it acts in an oppos-
ing manner during severe inflammation, where it polarizes IL-10-
producing Tregs and IL-10-producing macrophages to suppress
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the inflammatory process [28]. This finding suggests that
CXCLI12-based therapies for autoimmune diseases may be consid-
ered in the treatment of ongoing diseases but not for prophylac-
tic use.

THE MULTIPLE FACES OF CXCL12 IN
TISSUE HOMEOSTASIS, IMMUNE
SURVEILLANCE, AND CANCER: WHAT
SHOULD BE TAKEN IN CONSIDERATION
WHEN PLANNING LONG-TERM
THERAPEUTIC INTERVENTIONS?

The aims of administering a CXCL12-Ig fusion protein for treat-
ing inflammatory autoimmunity are twofold: to direct the polar-
ization of antigen-specific T cells so that they become IL-10-pro-
ducing Tr-1 cells and to polarize macrophages into IL-10-produc-
ing macrophages. The short halflife of chemokines suggests that
a stabilized form of CXCL12, such as CXCLI12-Ig- fusion protein,
could be used in the therapy of inflammatory autoimmunity
[28]. Which of the inflammatory autoimmune diseases could be
a suitable candidate for CXCLI12-Ig-based fusion protein therapy?
Based on the underlying mechanism of disease, autoimmune dis-
eases can be separated into those in which the direct attack of
self-components is mediated by effector T cells, such as MS; in-
flammatory bowel diseases, such as Crohn’s disease and ulcerative

www jleukbio.org
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Figure 2 . Multiple faces of CXCL12.
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colitis, TIDM, amongst others; and antibody-mediated autoimmu-
nity, such as systemic lupus erythematosus. Tentatively, CXCL12-
based therapy should be preferentially directed against effector T
cell-mediated autoimmunity. Hence, it should be noted that ef-
fector T cells also direct and assist B cells to produce autoanti-
bodies in antibody-directed autoimmunity. Thus, CXCL12-Ig-fu-
sion protein therapy could also be beneficial for these diseases.
Other points that should not be overlooked are the other activ-
ities of this pleiotropic chemokine, which includes its role in tis-
sue homeostasis, immune regulation of cancer, and immune sur-
veillance. As mentioned previously, the major functions of
CXCLI2 in the maintenance of tissue homeostasis are directing
the homing of BM stem cells and neutrophil homeostasis to en-
sure adequate protection against microbial pathogens [32].
Whether repeated administration of a CXCL12-Ig fusion protein
would affect these functions has not yet been established. An-
other point of concern is whether this type of therapy would af-
fect the Yin-Yang regulation of autoimmunity and cancer, in
which the immune system protects the host from pathogens and
emerging cancer cells and at the same time, minimizes local
damage to tissue. Thus, shifting the balance between effector
response and tolerance to favor increased tolerance to self-
antigens may promote unwanted tolerance to tumor growth
[168, 169]. Soluble peptide therapies [170-172] can be
used to overcome this obstacle, as they can induce antigen-
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specific tolerance, which could then be amplified by
CXCL12-Ig fusion protein therapy. It should be noted, how-
ever, that such therapy might also result in undesirable side-
effects, such as causing the production of antigen-specific
IgE, which in turn, can lead to an allergic response [88].

CONCLUSIONS

This review focuses on exploring the various biological proper-
ties of CXCLI12 as summarized in Fig. 2. In particular, its role
in directing and regulating immunity. In this review, we de-
scribe the distinct functions of this chemokine in noninflam-
matory/low-inflammatory conditions and severe inflammation.
In noninflammatory or low-inflammatory conditions, CXCL12
attracts monocytic cells and T cells to various tissues as a part
of immune policing. In severe inflammation and at tumor

sites, CXCL12 functions as an anti-inflammatory chemokine
that skews the polarization of antigen-specific Tregs and IL-10-
producing dendritic cells/monocytic cells to restrain the in-
flammatory process in inflammatory diseases [28] and sup-
press anti-tumor immunity in cancerous diseases [157]. Al-
though these functions are beneficial for combating
autoimmunity or restraining an aggressive, infectious, inflam-
matory process, they are undesirable in cancerous diseases, as
they suppress immunity against cancer cells. It is therefore
likely that therapies aiming at neutralizing the biological func-
tion of CXCLI2 could be used in the therapy of various can-
cer diseases, whereas the administration of stabilized CXCIL12
could be considered for therapy of ongoing inflammatory au-
toimmune diseases.
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