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ABSTRACT

The plasma membrane of immune cells is a highly orga-
nized cell structure that is key to the initiation and regu-
lation of innate and adaptive immune responses. It is
well-established that immunoreceptors embedded in
the plasma membrane have a nonrandom spatial distri-
bution that is important for coupling to components of
intracellular signaling cascades. In the last two de-
cades, specialized membrane microdomains, including
lipid rafts and TEMs, have been identified. These do-
mains are preformed structures (“physical entities”)
that compartmentalize proteins, lipids, and signaling
molecules into multimolecular assemblies. In APCs, dif-
ferent microdomains containing immunoreceptors
(MHC proteins, PRRs, integrins, among others) have
been reported that are imperative for efficient patho-
gen recognition, the formation of the immunological
synapse, and subsequent T cell activation. In addition,
recent work has demonstrated that tetraspanin mi-
crodomains and lipid rafts are involved in BCR signaling
and B cell activation. Research into the molecular
mechanisms underlying membrane domain formation is
fundamental to a comprehensive understanding of
membrane-proximal signaling and APC function. This
review will also discuss the advances in the microscopy
field for the visualization of the plasma membrane, as
well as the recent progress in targeting microdomains
as novel, therapeutic approach for infectious and ma-
lignant diseases. J. Leukoc. Biol. 95: 251-263; 2014.

MEMBRANE MICRODOMAINS

The plasma membrane is essential for cell function as a result
of its unique role in the communication between the inside
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and outside of the cell. Immune cells rely on the activation
and collaboration of multiple different receptors in the plasma
membrane that are central to leukocyte function, including
antigen recognition and presentation, cell adhesion, and cyto-
kine production. A contemporary goal of researchers has been
to uncover how immune cells physically organize and compart-
mentalize receptors and signaling molecules into efficient, reg-
ulated membrane-proximal signaling complexes. Whereas
many studies have been performed on investigating the plasma
membrane of T lymphocytes, this review focuses on new in-
sights into the immunological relevance of microdomains in
the membrane of APCs.

In 1972, Singer and Nicolson [1] presented their classical
view of membrane structures, in which monomeric and amphi-
philic membrane proteins diffuse in a two-dimensional fluid
lipid bilayer. The identification of specialized membrane do-
mains, including lipid rafts, TEMs, and caveolae, has been a
major breakthrough in cell biology and has changed the classi-
cal fluid mosaic model. Although different in size and compo-
sition, we define them as membrane microdomains through-
out this review. Lipid rafts are microdomains with an esti-
mated size of 10-200 nm, present in the plasma membrane of
all eukaryotic cells [2]. The outer leaflet of lipid rafts consists
of cholesterol that binds to glycosphingolipids and promotes
formation of a liquid-ordered phase within the disordered
glycerophospholipid bilayer of the plasma membrane (Fig. 1).
The inner leaflet of lipid rafts is composed of saturated phos-
pholipids [3, 4]. Inside of the cell, the concentration of cho-
lesterol is increased from the ER to the Golgi, which may un-
derlie the important role of cholesterol in the trafficking of
transmembrane proteins to the plasma membrane [5]. Typical
raft constituents within the outer leaflet are GPI-anchored pro-
teins [6], which partition to the lipid rafts in virtue of their
glycolipid anchor. Different models have been proposed that
underlie plasma membrane compartmentalization. Lingwood
and Simons [7] refer to lipid rafts as a membrane-organizing
principle, in which rafts allow lateral segregation of proteins in
the plasma membrane and recruitment of signaling molecules
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Figure 1. Schematic representation of a

lipid raft and a TEM. (A) Lipid raft.

Lipid rafts are enriched in sphingolipids,

cholesterol, and GPl-anchored proteins.

Certain transmembrane (TM) proteins '

are specifically associating with lipid rafts,
whereas other proteins are excluded. (B)
TEM. Tetraspanin proteins specifically
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recruit one or more partner molecules,
including (immuno-)receptors and signal-
ing molecules, whereby they induce the
formation of multimolecular complexes
in the membrane. These protein—protein
interactions can be direct or indirect (via B
other members of the tetraspanin family),
forming so-called TEMs or the “tetraspa-
nin web” (see text for details). Molecules
depicted in this schematic representation
of membrane microdomains are not
drawn to scale.

Non raft membrane

to compartmentalize cellular events, including signal transduc-
tion, membrane traffic, and endocytosis. Upon cross-linking of
raft-associated receptors, two or more rafts may coalesce into
larger domains, where more sustained signaling can occur,
and anchoring to the actin cytoskeleton can take place (re-
viewed in ref. [7]). Kusumi et al. [8] propose a major role for
the actin cytoskeleton in their “picket-fence” model that is de-
scribed by a hierarchical, three-tiered, mesoscale-domain archi-
tecture, present in the plasma membrane. Mesoscale refers to
a size greater than a nanometer and smaller than a micron.
The first hierarchy includes membrane compartments of 40—
300 nm, formed by a fence of an actin-based membrane cyto-
skeleton and pickets of transmembrane proteins anchored to
this fence. The second tier includes raft domains of 2-20 nm,
consisting of cholesterol, glycosphingolipids, and GPI-an-
chored proteins. The third tier includes dynamic protein com-
plexes of 3-10 nm, containing membrane-associated and inte-
gral membrane proteins. In this picketfence model, trans-
membrane proteins and phospholipids can undergo hop
diffusion among membrane compartments, whereas they can
move freely within a compartment, emphasizing the important
role of the actin cytoskeleton [8] versus the more classical
model of lipid-raft compartmentalization described by Simons
and Sampaio [5]. The nanoscale size of rafts is also consistent
with the “lipid shell” model, which proposes that each protein
is surrounded by a ring of laterally organized lipids [9].

Sixty years ago, small (60—80 nm) microdomains, called
caveolae, present on specific cell types, were first identified
using electron microscopy [10, 11]. Caveolae are cholesterol-
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enriched membrane invaginations consisting of caveolin pro-
teins and cavin proteins. These proteins interact with each
other to regulate signal transduction, endocytosis, and trans-
port of free cholesterol (reviewed in refs. [12, 13]). Like lipid
rafts, caveolae can cluster together and form extensive net-
works [14]. In the immune system, they are found in certain
myeloid [15] and lymphoid [13] cell lineages, depending on
the activation and maturation state of the cell. Studies on mu-
rine macrophages revealed that caveolae structural proteins
are important regulators of macrophage number and pheno-
type in the lung [16], and caveolin proteins may promote dif-
ferentiation of monocytes into macrophages [17]. The role of
caveolae in other APCs is not well established and will there-
fore not be the focus in the remainder of this review.

During the 1990s, a novel type of membrane microdomain
was identified: the TEM [18]. Tetraspanins are a family of four
transmembrane proteins present on the plasma membrane
and on intracellular vesicles of virtually all mammalian cell
types. Their structure is characterized by four transmembrane
domains: a small and a large extracellular loop, and two short
cytoplasmic tails [19]. The size of a TEM varies among cell
types, and diameter sizes between 100 and 300 nm have been
reported (Table 1). The assembly of TEMs is dependent on
tetraspanin—tetraspanin interactions and tetraspanin interac-
tions with transmembrane receptors, enzymes, adhesion mole-
cules (integrins and others), and signaling molecules (re-
viewed in refs. [23, 24]). These interactions can be divided
into three levels [21, 25]. Level 1 refers to very robust and di-
rect interactions that are stable in strong detergents (i.e., Tri-
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TABLE 1. Characteristics of TEMs and Lipid Rafts

TEM

Lipid raft

Estimated diameter size 100-300 nm [20]
Content/characterization

proteins, cholesterol

Biochemical features

cholesterol”
Signaling molecules

Enriched in tetraspanins, tetraspanin-partner

Partition into low-density fractions of sucrose
gradients; resistant to mild detergents (Brij
97) at 37°C% partially dependent on

PKC, PI4K, phosphatases, Rac, other

10-200 nm [2]

Enriched in cholesterol, sphingomyelin, lipids with
saturated acyl chains, raftophilic proteins
(GPI-anchored, caveolin, other)

Partition into low-density fractions of sucrose
gradients; resistant to nonionic detergents
(Tx-100) at 4°C; dependent on cholesterol”

Src kinases, H-Ras, PI3K/Akt, BCR- and
TCR-associated signaling effectors

Although TEMs and conventional lipid rafts display some similarities (both enriched in cholesterol and partition into low-density fractions of
sucrose gradients), there are a number of critical differences that distinguish these two microdomains. “Tetraspanin—protein interactions have
been classified into three categories, based on their stringency in different detergents (see text for more details). This concept is also relevant for
lipid rafts, as the protein content of DRMs differs, depending on the detergent used. “Although direct interactions between tetraspanins and their
partners are resistant to cholesterol depletion [21], signal transduction downstream of TEMs is affected by MCD treatment [22].

ton X-100). Level 2 interactions are less robust and are dis-
rupted by strong detergents but are stable in hydrophobic de-
tergents (i.e., Brij 96 or Brij 97). Level 3 consists of weaker,
indirect interactions, only detected in mild, less hydrophobic
detergents {i.e., Brij 99 or 3-[(3-cholamidopropyl)dimethylam-
monio]-1-propanesulfonate}. These different interaction levels
reveal the concept of a tetraspanin web, in which tetraspanins
are organizers of multimolecular complexes on the plasma
membrane. Each tetraspanin molecule recruits specifically one
or more partner molecules, following interaction with another
tetraspanin molecule to form larger complexes [25] (Fig. 1).
The composition of TEMs is highly dependent on the specific
cell type studied, and it has been shown that different TEMs
exist within one particular cell type [20]. In the Golgi com-
plex, tetraspanin proteins can be palmitoylated, which allows
dynamic homo- or heterodimerization with another tetraspa-
nin molecule or with associated proteins in the plasma mem-
brane. Palmitoylation is the covalent attachment of fatty acids,
such as palmitic acid, to cysteine residues of membrane pro-
teins, which promotes protein—protein interactions in the lipid
environment. This post-translational modification was shown to
be important for the assembly of TEMs, as described previ-
ously for tetraspanins CD9 [26] and CD151 [27]. These pro-
tein—protein interactions in the plasma membrane have an
important role in intercellular (adhesion, migration, synapse
formation) and intracellular (organizers of membrane-signal-
ing complexes) interactions, as well as intracellular protein
transport and endo- and exocytosis. TEMs are not static enti-
ties; instead, there is now prevailing evidence from studies in
living cells that their localization and composition are dynamic
[26, 28]. There is constant diffusion of individual tetraspanins
and partner proteins among specific microdomains, which
may induce clustering of two or more TEMs to enhance the
strength of a response. Furthermore, the diffusion dynamics of
the different molecules present in the microdomain can be
influenced by ligation of a receptor within the TEM.

Despite the different biochemical principles regulating rafts
and TEMs, these microdomains are dynamic in time and
space, and their molecular constituents may exchange between
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different types of microdomains [21, 26, 29]. In the remainder
of this review, we will focus on the characterization and func-
tion of lipid rafts and TEMs in APCs.

APPROACHES TO CHARACTERIZE
MICRODOMAINS

The formation of membrane microdomains depends on lipid—
lipid, lipid—protein, and protein—protein interactions, indicat-
ing the existence of a variety of biochemical principles that
allows these interactions to occur at the molecular level.
Strong interactions between cholesterol and sphingolipids pro-
mote their cosegregation in raft domains, which in turn, can

sequester specific signaling proteins, allowing the formation of
large signaling complexes. In the past, the nanoscale size and
dynamic nature of lipid rafts have posed technical challenges
for their identification and the study of their composition. A
solution to this problem came with the discovery that segrega-
tion of certain proteins into lipid rafts was determined by their
capacity to reside in a specific fraction of membrane-derived
material that appeared to resist detergent treatments [30, 31].
These so-called DRMs were isolated initially after cell lysis in
the presence of the detergent Triton X-100 and subsequent
ultracentrifugation on sucrose gradient, where the floating
fraction was found to contain DRMs (for a detailed description
of the most widely used protocols, see ref. [32]). Another fre-
quently used technique to study lipid rafts is MCD treatment,
which depletes cholesterol, an essential constituent of lipid
rafts, from the plasma membrane.

It should be noted that DRM extraction has been used pri-
marily to determine the association of membrane proteins
with lipid rafts. In fact, although localization of TEMs in DRMs
has been documented [33, 34], seminal work from the Hem-
ler laboratory [21, 35] has demonstrated that TEMs are dis-
crete units that are distinct from lipid rafts but can occasion-
ally interact with them (Table 1). In addition, proteomics ap-
proaches have demonstrated that the composition of TEMs is
specifically distinct from that of lipid rafts, as different sets of
proteins were detected in lipid rafts and TEMs (reviewed in

Volume 95, February 2014  Journal of Leukocyte Biology 253



JLB

ref. [36]). Part of the controversy was caused by the sensitivity
of DRMs and TEMs to cholesterol depletion by MCD, al-
though for the integrity of TEMs, the effects of cholesterol
depletion were reported to be milder [22]. MCD has been
widely—and sometimes without including basic controls of cell
viability or residual cholesterol levels—used to determine the
association of membrane proteins with lipid rafts. Lack of re-
ceptor functionality upon MCD treatment has often been at-
tributed to impaired colocalization with lipid rafts. However,
one should consider that MCD has been shown to exert pleio-
tropic effects, which include destruction of clathrin-coated pits
[37, 38] and rearrangement of the cytoskeleton [29, 39].
Despite the slightly artifactual nature of DRMs and MCD
treatment, one should acknowledge that these approaches
have been instrumental to the original identification of the
potential raftophilic/raftophobic nature of a large variety of
proteins. However, it is increasingly recognized that protein—
protein and protein-lipid interactions that mediate the forma-
tion of specific membrane compartments or scaffolds are often
transient and highly dynamic. Therefore, although DRMs give
a broad view of domain composition, they represent a bulk
snapshot of a specific situation and cannot provide informa-
tion on the spatiotemporal variations of the membrane do-
mains. Moreover, whereas the use of the detergent Triton has
been shown to induce formation of DRMs [40], different de-
tergents have a different ability to solubilize membrane pro-
teins selectively or enrich glycosphingolipids and cholesterol

i)
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e

[41], emphasizing the notion that DRMs might not be fully
representative of lipid rafts. Fast developments in fluorescence
microscopy techniques have now made it possible to measure
protein aggregation state, dynamics, and interactions in living
cells, facilitating in situ measurements of biochemical parame-
ters and revealing novel aspects of membrane microdomain
organization and function.

Although a detailed overview of all of the state-of-the-art mi-
croscopy techniques that can image membrane domains falls
outside of the scope of this review, it is worth highlighting the
increasing application of novel imaging techniques that are
perfectly suited to visualize the nanoscale organization of the
plasma membrane, including lipid rafts and TEMs. Images of
membrane domains were obtained initially by using immuno-
gold labeling and transmission electron microcopy on mem-
brane sheets or intact cells [42—-45]. With the advent of super-
resolution microscopy techniques in the past decade, tech-
niques, such as NSOM, STED, and localization microscopy,
were shown to be capable of directly mapping out the nano-
scale landscape of the cell surface [46-48] (Fig. 2). Nanoscale
proximity of raft components and transmembrane adhesion
receptors has been revealed by NSOM imaging of the cell sur-
face of human monocytes [49, 50], whereas pioneering mea-
surements of STED, combined with fluorescence correlation
spectroscopy, have been able to determine fast diffusion of
phospholipids and sphingolipids in living cells [51, 52]. More
recently, photoactivated localization microscopy, in combina-

«» Signaling

Immunoreceptor Co-receptor
molecule

Regulator
of signaling

- Membrane Cortical
microdomain actin

Confocal

Figure 2. Model illustrating microdomains in the plasma membrane that can facilitate
immunoreceptor clustering, cross-talk, and immune cell signaling. (1) Clustering. Im-
munoreceptors can be clustered within membrane microdomains, leading to an in-
crease of receptor avidity. (2) Cross-talk. Membrane microdomains provide a local
environment that facilitates cross-talk between different immunoreceptors and their
coreceptors, resulting in enhancement (or dampening) of their function. In addi-
tion, regulators of signaling can be excluded. (3) Signaling. Signaling molecules are
recruited specifically toward membrane domains, where stable signaling complexes
are created. It should be noted that the plasma membrane is much more crowded

with proteins than depicted in this model, adding an extra level of complexity. An example of visualization of membrane microdo-

mains is given in the lower-left corner: confocal and super-resolution microscopy (STED) of tetraspanin microdomains in the plasma
membrane of human B cells, demonstrating the need for advanced imaging techniques to investigate single-membrane microdomains
and their constituents. The diameter size of a TEM in B cells is estimated to be ~100 nm. Original scale bars, 2 wm.
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tion with pair-correlation analysis, has been shown to be a
promising tool to analyze complex organization patterns of
membrane proteins, enabling quantification of protein cluster
size, density, and abundance in the cell membrane [53].

Single-molecule imaging, such as FRET-FLIM and multicolor
SPT, can provide a view of protein dynamic behavior at the
molecular level [54]. Elegant FRET-FLIM studies from the
Sanchez-Madrid group [28] have demonstrated the existence
of specialized, preformed, tetraspanin-enriched adhesive plat-
forms at the plasma membrane of endothelial cells containing
VCAM-1 or ICAM-1, ligands for the leukocyte integrins VLA-4
(a4B1) and LFA-1, as well as the tetraspanins CD151 and CD9Y,
respectively. This study also shows that the spatial organization
of membrane receptors in nonimmune cells affects immune
cell function during cell-cell interactions, such as adhesion
and transmigration. Despite the numerous interactions discov-
ered between tetraspanins and immune receptors, only few
similar studies have been performed on immune cells [55].

Whereas FRET-FLIM generally provides averaged values of
ensemble measurements, SPT offers the opportunity to distin-
guish fractions of proteins exhibiting different dynamic behav-
ior. An excellent example was provided by Jagaman and col-
leagues [56], who used SPT to investigate the dynamics and
signaling of the scavenger receptor CD36 at the plasma mem-
brane of macrophages that was controlled by the cortical cyto-
skeleton. Recent work from our laboratory also demonstrated
the power of SPT to study immune receptor nanoscale organi-
zation and function. On monocyte-derived DCs, we followed
single molecules of the PRR DC-SIGN and demonstrated a di-
rect relationship between spatial nanopatterning and lateral
diffusion to provide DC-SIGN with the exquisite ability to bind
many different viruses [57]. On the cell surface of human
monocytes, where the integrin LFA-1 is organized in nanome-
ter-sized domains [45, 49], we unraveled the intricate coupling
between conformation and lateral diffusion of LFA-1 microdo-
mains. Domain mobility was crucial for the formation of stable
and large clusters that initiate LFA-1-mediated leukocyte adhe-
sion [58]. In addition, these novel imaging techniques have
now provided compelling evidence that tetraspanins regulate
the mobility of integrin molecules in the plasma membrane.
The physical association of the laminin-binding «6 integrin
with tetraspanin CD151 was demonstrated to promote random-
confined diffusion of the integrin in mammary cells, which
may regulate its interaction with the cytoskeletal protein talin
[59]. In B lymphocytes, we have shown that the tetraspanin
CD37 is required for the mobility and clustering of a4B1 in-
tegrin molecules in the plasma membrane, which is important
for plasma cell survival and antibody production [60]. These
studies provide novel, mechanistic insights into the contribu-
tion of TEMs to integrin lateral motility and adhesive proper-
ties. Still, studies addressing the mechanisms underlying TEM
dynamics and interactions in the plasma membrane are scarce,
in particular, in immune cells. The elegant study on the mo-
bility of single molecules of tetraspanin CD9 in prostate carci-
noma cells revealed that CD9 mostly exhibits Brownian diffu-
sion at the plasma membrane but is transiently confined to
platforms that are enriched in CD9, and its interaction part-
ners [26] again highlight the importance of investigating
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TEM:s in living cells. Although no single technique is able to
unravel the concept of membrane receptor compartmentaliza-
tion and function, we believe that the best approach toward
understanding the principles of membrane microdomains is to
compare and contrast results obtained with the existent meth-
ods, as well as exploring new techniques as they are developed
and improved. The advantages and limitations of the discussed
microscopy techniques that are able to image all types of mi-
crodomains are reviewed nicely elsewhere [61]. A major cur-
rent challenge in the field is to increase insight into the mo-
lecular mechanisms underlying the regulation of membrane-
proximal signaling by membrane microdomains in immune
cells.

SIGNAL TRANSDUCTION REGULATED BY
PLASMA MEMBRANE MICRODOMAINS

It is well-established that signaling transduction efficiency is
dependent on the selective concentration of signaling proteins
into discrete clusters in the plasma membrane (reviewed in
refs. [62, 63]), including their recruitment into specialized
microdomains, such as rafts and TEMs [64, 65]. Whereas some
proteins constitutively reside in rafts, like most Src family ki-
nases, other proteins become only transiently associated with
rafts, for example, upon activation. Similarly, PKC recruitment
to TEMs and subsequent activation are inducible processes
that depend on integrin activation [66]. Thus, microdomains
can serve as “scaffolds” to localize and transiently concentrate
specific signaling molecules [67]. The time that a protein re-
sides within a microdomain can be altered upon oligomeriza-
tion of the protein after, for example, multivalent ligand bind-
ing. In addition, activated receptors can induce coalescence of
rafts with a different composition, resulting in large and stable
structures on the plasma membrane [64, 68], again underscor-
ing the dynamic nature of the signaling capacity of membrane
microdomains.

Within the microdomain environment, receptors can be
modified by local kinases, leading to further downstream sig-
naling. Indeed proteomics data demonstrate an enrichment of
specific signaling molecules in raft fractions compared with
total membrane fractions [69] (Table 1). Although the exact
mechanisms underlying this enrichment need to be identified,
it is apparent that special domains or motifs in the molecular
structure of signaling proteins determine their localization to
the plasma membrane [62]. This concept is illustrated nicely
by members of the ubiquitously expressed proteins of the Ras
family of GTPases. The importance of Ras for APC biology is
illustrated by R-Ras-deficient murine DCs that show impaired
maturation and T lymphocyte priming, which are linked to
defective LPS signaling [70]. H-Ras and K-Ras are highly ho-
mologous proteins; still, they generate very distinct signaling
outputs as a result of their different lipid anchors interacting
with different regions of the plasma membrane. H-Ras, which
is palmitoylated, has transient interactions with lipid rafts,
whereas K-Ras clusters in nonraft areas of the plasma mem-
brane [42]. Palmitoylation, by itself, is not a prerequisite for
raft localization, as this modification has also been shown es-
sential for tetraspanin—tetraspanin interactions, the stability of
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TEMs, and its signaling capacity [71, 72]. Several tetraspanins
have been reported to interact with G protein subunits, PI4K,
and activated PKC isoforms in many different cell types, in-
cluding APCs (reviewed in refs. [24, 65, 73]). Whether these
signaling proteins interact directly to tetraspanins is unclear,
but the intracellular or the transmembrane regions of tetraspa-
nins have been implicated in their interaction with PKC [66,
74, 75]. Interestingly, some tetraspanins contain a PDZ do-
main binding motif in their C-terminal tail, which facilitates
the anchoring of transmembrane proteins to the cytoskeleton,
and hold together signaling complexes, thus providing a direct
way to sequester components of a signaling cascade to TEMs
[24, 76]. Furthermore, several studies have demonstrated that
TEMs are implicated in regulation of the JNK and Akt signal-
ing pathways [60, 77-79]. In B cells, we have recently shown
the requirement of tetraspanin CD37 for proper «4f1 integrin
mobility and clustering, which is essential for Akt signaling
and survival of IgGl-producing plasma cells [60]. Many studies
support the concept that tetraspanins act as linker molecules to
recruit kinases in the proximity of integrins [66, 72, 80]. Strik-
ingly, it was shown that tetraspanin CD37 is able to signal by it-
self, as it contains predicted ITAM- and ITIM-like motifs in its two
intracellular tails [81]. Antibody cross-linking of CD37 on B cells
resulted in recruitment of Lyn and SHP1 via its ITIM-like do-
main, leading to cell death, whereas its ITAM-like domain re-
cruited PI3K and Akt, leading to cell survival. Thus, upon anti-
body ligation of CD37, two opposing stimuli act simultaneously
on the Akt signaling pathway, although the involvement of FcRs
cannot be excluded completely in this study. Different groups
have demonstrated that TEMs can also inhibit signal transduction
pathways by the recruitment of phosphatases [82, 83] or alterna-
tively, by the sequestering of kinases away from their site of action
[84, 85]. Recently, the C-terminal cytoplasmic domain of tetraspa-
nin CD81 was shown to interact directly with the GTPase Rac and
to inhibit Rac activation [86].

Taken together, microdomains are implicated in enhancing or
dampening signaling from immune receptors by serving as plat-
forms for the dynamic assembly of signaling complexes. Consid-
ering the complexity of TEMs and lipid rafts, it not surprising
that they regulate many different signaling pathways by their ca-
pacity not only to include but also to exclude proteins from mi-
crodomains. For instance, phosphatase CD45, a negative regula-
tor of receptor signaling, is well-known to be excluded from lipid
rafts [87]. Another example is the interaction of tetraspanins
(CD81, CD82) with CD4 and CD8 coreceptors that can sequester
these proteins away from the TCR signaling complex in the
plasma membrane [84]. Next to regulating the recruitment of
signaling molecules and activation of immune receptors on the
plasma membrane, microdomains can also promote cross-talk
among different receptors (Fig. 2). These fascinating processes
will be discussed below, taking PRRs, MHC class II, and the BCR
as classical examples of immune receptors regulated by mem-
brane microdomains during the course of an immune response.

PRRs

APCs are equipped with a broad panel of specific PRRs that
are essential for the recognition and uptake of pathogens.
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APCs bind pathogens by means of complex multimolecular
interactions among different PRRs and a wide variety of micro-
bial structures called PAMPs. Efficient pathogen recognition
and uptake are dependent on a high level of organization of
PRRs in the plasma membrane of APCs. There is now increas-
ing evidence that specialized microdomains can serve as orga-
nizing platforms that facilitate PRR multimerization and clus-
tering, cross-talk between different PRRs, and integration of
downstream signal transduction pathways. The two main PRR
subclasses that are expressed on the plasma membrane of
APCs include CLRs and TLRs.

Receptor multimerization is a well-defined mechanism that
increases receptor avidity and ligand engagement. A classical
example is the CLR DC-SIGN, which exists as tetramers in the
plasma membrane and is clustered into microdomains during
DC differentiation [44, 88]. A direct structural relationship
between tetramer stability and nanoclustering formation, sus-
tained by the neck region of DC-SIGN, has been reported re-
cently [57]. This provides DC-SIGN with the ability to bind
nanoscale pathogens (viruses) of different sizes, highlighting a
physiological role for nanoclustering. Another CLR, Dectin-1,
has been found to cluster in a “phagocytic synapse” (a struc-
ture reminiscent of the immunological synapse formed be-
tween APCs and T cells) in myeloid cells, which is crucial for
triggering phagocytosis and full antifungal activity [89]. Differ-
ent studies have shown that Dectin-1 interacts with tetraspanin
proteins (CD63 and CD37) on the cell surface of APCs, which
may facilitate Dectin-1 clustering [90, 91]. CD37 deficiency
leads to impaired stabilization of Dectin-1 molecules in the
membrane of APCs as a result of increased internalization.
The Dectin-1-CD37 interaction also has functional conse-
quences, as Dectin-1-mediated IL-6 production by APCs is in-
hibited by CD37.

TLRs have also been reported to dimerize into homodimers
and/or heterodimers, which facilitates recruitment of intracel-
lular signaling adapters and kinases. Dimer formation of TLRs
occurs at the extracellular leucin-rich repeat domain and the
cytosolic Toll/IL-1R domain. TLR localization into microdo-
mains may induce receptor clustering further. TLR2 and
TLR4-CD14 recruitment to lipid rafts has been described [92-
94], although other studies documented TLR4 association with
tetraspanin microdomains in macrophages [95]. It is not un-
likely that different pools of TLRs exist in the membrane that
are localized to different microdomains. Regulation of these
receptor pools may be linked to ligand-specific cellular re-
sponses and/or depend on the activation status of the cell.
This hypothesis may be resolved by investigating TLR cluster-
ing and localization in living APCs using high-resolution mi-
croscopy (such as multicolor SPT). Recently, the scavenger
receptor CD36 has been found in multimolecular complexes
composed of tetraspanin CD9, CD81, integrins, and Syk kinase
[96]. Although not a classical PRR, CD36 can recognize Plas-
modium falciparum and bacterial diacylglycerides. Similarly, the
scavenger receptor CD5 that recognizes B-glucan in the fungal
cell wall was reported to interact with the tetraspanin CD9Y,
although functional implications of this interaction have not
been reported [97]. Thus, assembly of PRRs in membrane mi-
crodomains may underlie the mechanism of receptor multim-
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erization (reviewed in refs. [98-100]). It is important to note
that besides the presence of PRRs in preassembled clusters,
pathogen binding itself will induce PRR clustering further,
possibly altering PRR-induced signaling intensity and duration.

Receptor cross-talk refers to the collaborative induction of a
response by different receptors that is distinct from the re-
sponse elicited by individual receptors. Microdomains are be-
lieved to provide a platform for efficient receptor cross-talk in
the plasma membrane. For example, mutual signaling from
TLR2 and Dectin-1 is documented to be required for proin-
flammatory cytokine production by APCs upon B-glucan bind-
ing [101]. Besides synergistic responses, the outcome of PRR
cross-talk may also dampen unwarranted immune responses
when receptors act antagonistically. For example, there is now
evidence of existing inhibitory interactions between different
TLRs in the membrane of human PBMCs [102]. A conse-
quence of such receptor cross-talk is the integration of differ-
ent signal transduction pathways that eventually determine the
outcome of the immune response aimed to eradicate the
pathogen (reviewed in ref. [100]). However, less well-known is
the existence of cross-talk among different signaling mole-
cules, already at the level of the plasma membrane [62]. In
this context, signaling molecules that contain specific protein
or lipid-binding specificity can dock at the plasma membrane,
which often coincides directly with their activation. For exam-
ple, the kinase Syk gets recruited to the phosphorylated ITAM-
like motif in the intracellular tail of Dectin-1 upon yeast bind-
ing [103]. Although the precise role of lipid rafts and TEMs in
PRR cross-talk needs to be established, evidence is accumulat-
ing that membrane microdomains are important for the for-
mation of multimolecular signaling complexes by providing a
local environment that allows for efficient physical interactions
between signaling molecules and PRRs [98].

MHC CLASS i

APCs use MHC class II molecules to present nonself peptides
to CD4" T cells. As the abundance of relevant MHC class II-
peptide complexes is rather low, it is necessary to organize and
cluster MHC on the APC surface for efficient antigen-specific
T cell activation. Early crystallography studies of MHC class II
molecules revealed a structure described as a dimer of het-
erodimers [104] that supported a model, in which super-
dimers of MHC II molecules may facilitate the activation of T
cells by cross-linking TCRs [105]. However, this could not ex-
plain how sufficient numbers of agonistic MHC-peptide com-
plexes from all over the cell surface could be concentrated in
the center of a synapse to activate T cells. It is now widely ac-
cepted that MHC molecules cluster in the plasma membrane
of APCs [106]. MHC class II-peptide complexes in mature DCs
are collectively transported to the plasma membrane, where
they remain preclustered at the cell surface [107, 108]. This
has led to the concept that MHC-peptide complexes cluster
into specialized microdomains in APCs prior to the formation
of the immunological synapse [109]. This concept has been
supported by different studies that provide evidence for a
functional association of MHC class II molecules with lipid
rafts. The disruption of raft integrity on B cells indeed results
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in inhibition of MHC class II antigen presentation at low anti-
gen concentration. As the surface expression of MHC class 11
and the peptide binding to MHC class II were unaltered after
raft disruption, a model was postulated in which lipid rafts lo-
cally concentrate MHC class II-peptide complexes, crucial for
efficient antigen presentation at low doses of antigen [110].
However, there is also compelling evidence that MHC class 11
molecules interact with tetraspanins (CD9, CD63, CD37, CD53,
CD81, CD82), demonstrated by immunoprecipitation studies
[18, 111], FRET microscopy [55], and electron microscopy
[112, 113]. These studies revealed that tetraspanins are en-
riched on the internal membranes of MIICs in B cells, where
they can interact with MHC class II, HLA-DM, and HLA-DO
[112, 113]. In immature DCs however, CD63 was found exclu-
sively in MIICs, whereas CD9, CD53, and CD81 mainly interact
with MHC class II at the plasma membrane [114], indicating
that individual tetraspanins can interact selectively with MHC
class II in different compartments. Selective enrichment of tet-
raspanin molecules in the central supramolecular activation
complex, formed between APCs and T cells, has also been
demonstrated [115].

In addition, coclustering of murine MHC class II molecules
I-A and I-E has been reported to depend on TEMs. In CD9-
deficient DCs, MHC I-E failed to cocap with I-A molecules,
and exogenous expression of CD9 in CD9-negative B cells en-
hanced I-A/I-E interaction [116]. This model was challenged
in a study in which cholesterol depletion, but not absence of
CD9Y, did affect I-A/I-E interaction [117]. This controversy may
be explained by sensitivity of DRMs and TEMs to cholesterol
depletion by MCD, favoring a model where both microdo-
mains are involved in MHC clustering. The mobility of MHC
class II molecules in the plasma membrane is also dependent
on cholesterol [118]. Furthermore, single-molecule tracking
revealed that MHC class II molecules undergo hop diffusion
among membrane compartments [119], providing a possible
explanation for the molecular exchange among microdo-
mains.

Interestingly, some studies reported that tetraspanins associ-
ate predominately with peptide-loaded MHC class II com-
plexes [114, 120]. Tetraspanins were found in complexes with
multimerized MHC class II molecules, as shown by immuno-
precipitations with the antibody CDw78 [121]. These domains
were enriched with the CD86 costimulatory molecule and the
peptide editor HLA-DM and carried a restricted peptide reper-
toire. In contrast, the HLLA-DR molecules, found in rafts, dis-
played a highly diverse peptide repertoire [120]. However,
these studies must be interpreted with caution, as the specific-
ity of the CDw78 antibody has been questioned [122]. Silenc-
ing of tetraspanins CD9, CD63, and CD81 (but not CD82) re-
sulted in increased MHC class II expression but did not affect
MHC class II peptide loading [123]. Still, the importance of
tetraspanins in antigen presentation and T cell activation has
been validated by studies with APCs from tetraspanin-deficient
mice. DCs lacking CD37 or CD151 are hyperstimulatory to T
cells by different mechanisms. Whereas CD151 regulates co-
stimulation, CD37 is implicated in inhibiting antigen presenta-
tion via MHC class I and class II molecules [124]. Thus, indi-
vidual tetraspanins on APCs have specific functions that can
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even be opposing; for example, tetraspanins CD9 and CD82
may promote MHC clustering, whereas others, such as CD37,
may dysregulate MHC clustering at the plasma membrane. In
addition, cooperation among tetraspanins has also been dem-
onstrated; CD37xTssc6 double-knockout DCs were significantly
more hyperstimulatory than DCs isolated from either single-
knockout mouse [125]. Taken together, TEMs have been im-
plicated in the assembly (clustering), stabilization, and/or traf-
ficking of MHC class II-peptide complexes. The complexity of
the composition of the tetraspanin web and their localization
within the cell warrant further studies to clarify the precise
function of TEMs in the MHC class II lifecycle.

BCR

The BCR complex is composed of a membrane-bound Ig,
which mediates binding to antigen and the Iga/IgB (CD79)
heterodimer, which couples the receptor to downstream sig-

naling pathways. Iga and Igf contain an ITAM motif, which
becomes phosphorylated by Src-family tyrosine kinases after
receptor engagement. This allows for recruitment and activa-
tion of the cytosolic Syk/Zap70 family of protein tyrosine ki-
nases, leading to downstream signaling [126]. In resting B
cells, BCRs are located into nonraft areas of the plasma cell
membrane. Upon antigen binding, BCR molecules oligomer-
ize and translocate rapidly into lipid rafts, where BCR signal-
ing is facilitated. This was not only determined using biochem-
ical methods [127] but was also visualized in living cells by flu-
orescent microscopy [128, 129]. Partitioning into lipid rafts is
intrinsic to the BCR itself and independent of BCR signaling
or the actin cytoskeleton [130].

CD19 forms together with complement receptor CD21, tet-
raspanin CD81, and Leu-13—an essential coreceptor complex
for the BCR. This coreceptor complex lowers the threshold for
B cell activation, as activated CD19 recruits signaling mole-
cules to the BCR [131]. Interestingly, BCR, which is coligated
to the CD19/CD21 complex, has a longer retention time in
lipid rafts, resulting in the formation of a stable signaling-ac-
tive complex at the plasma membrane [132]. Subsequently,
BCR internalization and targeting of the BCR to MHC class II
peptide-loading compartments are required for antigen pre-
sentation. This process was found to depend on the associa-
tion of phosphorylated clathrin with lipid rafts [133]. The
BCR is able to continue signaling after being endocytosed,
providing a means to activate different kinases at different sub-
cellular locations [134]. The role of tetraspanin CD81 in the
BCR coreceptor complex is critical, as CD81 is required for
stabilizing mature CD19 on the plasma membrane of human
and murine B cells [135-139]. Moreover, CD19, CD21, and
the BCR fail to translocate into DRMs in CD81-deficient cells
after coligation of CD21 and the BCR [33]. Palmitoylation of
the cytoplasmic tail of CD81 is increased upon coligation of
the BCR and CD19/CD21/CD81 complex, which is needed
for the stabilization of protein complexes in lipid rafts [140]
and TEMs. Thus, CD81 is critically involved in BCR localiza-
tion to microdomains and thereby, promotes BCR signaling.
The finding that CD81 can localize to TEMs and lipid rafts
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exemplifies again the dynamics and molecular exchange that
occurs between different types of microdomains.

An additional means through which the BCR can be com-
partmentalized is via the cortical actin cytoskeleton, which acts
as a barrier to BCR diffusion, compartmentalizing the BCR
from activating coreceptors, including CD19, thereby prevent-
ing spontaneous BCR signaling in resting B cells. Disruption
of the actin network is sufficient to induce robust signaling in
B cells in the absence of BCR stimulation [141]. After B cell
activation, however, the cortical actin cytoskeleton needs to be
remodeled for BCR clusters and rafts to coalesce and to form
stable signaling platforms [142, 143]. Ezrin-Radixin-Moesin
proteins, which link the actin cytoskeleton with plasma mem-
brane proteins, are transiently dephosphorylated upon BCR
stimulation. This results in dissociation of the plasma mem-
brane from the underlying actin cytoskeleton and a transient
increase in BCR diffusion [142, 144]. Recently, Mattila and
colleagues [145] elegantly showed that signaling through the
BCR is regulated by combined action of the actin cytoskeleton
and the CD81 tetraspanin web in primary B cells. With the use
of super-resolution microscopy techniques and CD19- and
CD81-deficient B cells, they deciphered the role of the tetras-
panin network in BCR signaling induced by cytoskeleton dis-
ruption. In contrast to the release of the BCR, CD19 diffusion
is not altered upon disruption of the cytoskeleton. Instead,
CD19 is restrained by the tetraspanin network, shown by the
significantly faster diffusion of CD19 in CD81-deficient cells.
CD81 thus holds coreceptor CD19 in place to interact with
mobile BCR nanoclusters released after cytoskeleton disrup-
tion. Whether BCR signaling is initiated in lipid rafts or
whether initial signaling needs to occur before reorganization
of the actin cytoskeleton allows the BCR microdomains to
move into stable raft-signaling platforms still needs to be ad-
dressed. Taken together, these studies demonstrate that the
interplay among different microdomains, including lipid rafts
and TEMs, is essential for efficient signaling via the BCR. In
the following section, the relevance of membrane microdo-
mains in different diseases will be discussed together with the
possibilities to target these structures as novel therapeutics.

IMPLICATIONS OF MICRODOMAINS IN
IMMUNE-RELATED DISEASES

Prevailing evidence suggests that certain pathogens use rafts
and tetraspanin microdomains to gain entry and to survive in-
side of the cell. Pathogens can use different strategies to take
advantage of microdomains in the membrane. For example,
bacteria, such as Salmonella typhimurium and Legionella pnewmo-
phila, exploit lipid rafts to create phagosomes that allow them
to survive inside APCs (reviewed in ref. [146]). Several bacte-
ria enter phagocytic cells through raft-associated proteins
(such as CD55 and CD48) that prevent trafficking to lyso-
somes, thus avoiding degradation and antigen presentation.
Although there is no evidence for the presence of PRRs in
caveolar structures, a role for caveolae in pathogen uptake has
been reported. For example, enrichment of GPI-anchored pro-
teins (such as CD48) into caveolae has been documented that
can bind bacterial antigens and thereby, facilitate pathogen
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entry into host cells [147]. In addition, caveolin proteins have
been reported to inhibit downstream signaling pathways of
TLRs [148].

Also, certain viruses, including HCV and HIV-1, use rafts
and tetraspanin microdomains for virus assembly and budding
[20] (reviewed in refs. [149, 150]). HCV binds directly to the
extracellular loop of tetraspanin CD81 to invade not only
APCs but also lymphocytes and hepatocytes. The clinical rele-
vance of the HCV-CD8]I interaction was shown by the capacity
of CD81-specific antibodies to mediate protection to HCV in-
fection in vivo [151]. Similarly, blocking CD55 could prevent
host-pathogen interactions [146]. In addition, cholesterol-se-
questering agents that interfere with cholesterol biosynthesis
(statins) may have therapeutic value for patients with infec-
tious disease and sepsis [152]. Another novel approach is the
use of recombinant soluble tetraspanin large extracellular do-
main proteins that may interfere with tetraspanin microdo-
main assembly [153], exemplified by their potency to inhibit
CCR5-tropic HIV-1 infection of macrophages [154]. Taken to-
gether, collaboration among different PRRs increases the spec-
ificity of recognition, extends their signaling competence, and
enables the host to respond to almost any type of infection. At
the same time, certain pathogens have evolved mechanisms to
take advantage of membrane microdomains for their own ben-
efit. The challenge is to translate this knowledge into new
therapeutic strategies for emerging infectious diseases.

The broad influence and the complex role of the tetraspa-
nin web on cell function are reflected in the diversity of phe-
notypes observed in human tetraspanin deficiencies. Tetraspa-
nin transmembrane 4 superfamily 2 is mutated in families with
X-linked mental retardation [155], and mutations in tetraspa-
nin-12 cause familial exudative vitreoretinopathy [156-158]. A
mutation in CD151, leading to loss of the integrin-binding do-
main, causes defects in assembly of basement membranes in
kidney and skin. These patients suffer from renal failure,
pretibial epidermolysis bullosa, sensorineural deafness, and
B-thalassemia minor [159]. In the immune system, tetraspanin
proteins play a crucial role, as demonstrated by human tetras-
panin deficiencies in CD53 and CD81. Lack of CD53 expres-
sion on neutrophils was found to be the cause of an immune-
deficiency syndrome in a family that suffered from opportunis-
tic infections and reactivation of chronic silent infections.
Although the mechanism underlying this defect in immune
cell function was not studied, a role for CD53 in the negative
regulation of the immune response was postulated [160]. Fur-
thermore, a patient with a gene defect in CD81 was reported
with severe nephropathy and hypogammaglobulinemia. Ab-
sence of CD81 expression as a result of a homozygous splice-
site mutation resulted in a complete lack of CD19 expression
on B cells. Rescue experiments by transduction of WT CD81
into the patient B cells showed that the CD81-deficient B cells
are able to produce CD19, but the maturation and subsequent
membrane expression of CD19 are defected in CD81-negative
B cells. As a consequence, BCR-mediated stimulation is af-
fected, resulting in impaired antibody responses and memory
B cell formation [139]. Taken together, defects in individual
tetraspanins can result in a wide variety of complex pheno-
types, and one could speculate that unidentified mutations in
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tetraspanin proteins could be the cause of unexplained human
diseases.

TARGETED THERAPY OF MICRODOMAINS

In the last decade, evidence has accumulated that microdomains
can be targets for novel treatment opportunities. For example,
targeting components of lipid rafts as therapeutic intervention for

cancer has been explored by inhibitors of the EGFR that is over-
expressed in breast cancer [161]. In malignancies of the immune
system, the B cell marker CD20 has been targeted by rituximab,
which was shown to be effective against non-Hodgkin’s lym-
phoma and CLL (reviewed in ref. [162]). In lymphoma B cell
lines, it has been shown that upon binding of rituximab on the
cell surface, CD20 molecules are redistributed to lipid rafts, re-
sulting in raft stability and organization and subsequently, induc-
tion of apoptosis via Src kinase-dependent pathway [163, 164].
Rituximab also inhibits BCR signaling by preventing relocaliza-
tion into lipid rafts [165]. Although the underlying mechanisms
have not been investigated thoroughly, lipid raft constituents are
being used to predict rituximab treatment affectivity. For exam-
ple, the expression of the raft-associated GM1 differs among vari-
ous primary B cell lymphomas, and low GM1 expression has
been shown to lead to unresponsiveness of lymphoma patients to
rituximab treatment [166].

Polyunsaturated fatty acids from fish oil can have a potential
therapeutic effect for patients suffering from inflammatory or
autoimmune diseases, such as colitis or asthma [167]. Al-
though the exact underlying mechanisms remain to be de-
fined, polyunsaturated fatty acids can enhance B cell function
in vivo by increasing MHC class II expression and diminishing
GM1 microdomain clustering [168, 169]. Lipids in microdo-
mains can also serve as a therapeutic target, exemplified by
mouse anticholesterol antibodies that are specific for clustered
cholesterol on the cell surface. Binding of this antibody to B
cell lymphoma cells in vitro has been reported to recruit MHC
class II and CD80 molecules into microdomains, resulting in
effective antigen presentation to T cells [170].

TEMs are already targeted by specific antibodies or soluble tet-
raspanin large extracellular domain proteins to interfere with
viral and bacterial infections, as described above. Moreover, tet-
raspanins are currently under detailed investigation as new tar-
gets for therapy of hematopoietic malignancies. CD37 is highly
expressed on B cells and is therefore a candidate therapeutic tar-
get for B cell malignancies, like CLL. Excitingly, CD37-specific,
anti-CD37 SMIP has been shown to induce apoptosis and ant-
body-dependent cellular cytotoxicity in lymphoma/leukemia cells
in vitro [171], and humanized anti-CD37 SMIP is currently in
Phase I/1I clinical trials for relapsed CLL and non-Hodgkin’s
lymphoma (http://www.
clinicaltrial.gov/). Anti-CD37 SMIP induces association of
CD37 with phosphorylated signaling proteins (pSHP1, pLyn,
and pSrc) within DRMs of CLL patient cells and thereby, regu-
lates CLL cell death directly [81]. Recently, dual-ligand immu-
noliposomes have been tested as a new concept for targeted
drug delivery and apoptosis in B-CLL cells [172]. These lipo-
somal nanoconstructs express two types of antibody ligands
with high affinity for B-CLL cells, such as CD19, CD20, and
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CD37. The antigen-expression levels on the cell surface vary
among patients, and this study showed that a combination of
anti-CD37 with anti-CD20 or anti-CD19 led to higher binding
and delivery efficiency of immunoliposomes than the single-
antibody immunoliposomes. Taken together, these studies
show the potential of targeting microdomains and provide a
solid basis for further research and development of new thera-
pies.

CONCLUDING REMARKS

It is well-established that the spatial organization of proteins and
lipids in the plasma membrane into multimolecular complexes is
fundamental for inter- and intracellular communication. In APCs,
specialized membrane microdomains are emerging as critical
players that regulate fundamental immunological processes, in-
cluding pathogen recognition, antigen presentation, T cell activa-
tion, and antibody production. Although we are only at the be-

ginning of understanding the biology of membrane microdo-
mains in APCs, we anticipate that advanced microscopy
techniques will provide comprehensive, new insights into the for-
mation, dynamics, and signaling capacity of these highly special-
ized membrane structures. In particular, pioneering studies at the
single-molecule level in living cells have revealed that the dy-
namic behavior of components of lipid rafts and TEM:s is hetero-
geneous, ranging from rapid diffusion to confinement. This may
provide cells with the capacity to regulate delicately the formation
of immunoreceptor signaling complexes in the plasma mem-
brane that are essential for APC function. Indeed, recent studies
have shown that tetraspanin proteins regulate the mobility of
their interacting immunoreceptors in the plasma membrane [59,
60]. As evidence is now accumulating that the development of
different human diseases is dependent on early-stage, nanoscale
changes of plasma membrane molecules, we envisage the exploi-
tation of membrane microdomains as novel, therapeutic targets
for treatment of infectious and malignant diseases.
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