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Abstract: We present a new technique for comparing models using a median form of cross-validation and least median of
squares estimation (MCV-LMS). Rather than minimizing the sums of squares of residual errors, we minimize the median of the
squared residual errors. We compare this with a robustified form of cross-validation using the Huber loss function and robust
coefficient estimators (HCV). Through extensive simulations we find that for linear models MCV-LMS outperforms HCV for
data that is representative of the data generator when the tails of the noise distribution are heavy enough and asymmetric enough.
We also find that MCV-LMS is often better able to detect the presence of small terms. Otherwise, HCV typically outperforms
MCV-LMS for ‘good’ data. MCV-LMS also outperforms HCV in the presence of enough severe outliers.

One of MCV and HCV also generally gives better model selection for linear models than the conventional version of cross-
validation with least squares estimators (CV-LS) when the tails of the noise distribution are heavy or asymmetric or when the
coefficients are small and the data is representative. CV-LS only performs well when the tails of the error distribution are light
and symmetric and the coefficients are large relative to the noise variance. Outside of these contexts and the contexts noted
above, HCV outperforms CV-LS and MCV-LMS.

We illustrate CV-LS, HVC, and MCV-LMS via numerous simulations to map out when each does best on representative
data and then apply all three to a real dataset from econometrics that includes outliers. © 2015 The Authors. Statistical Analysis

and Data Mining published by Wiley Periodicals, Inc. Statistical Analysis and Data Mining 8: 14-33, 2015
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1. INTRODUCTION

It is common for statistical researchers and subject matter
users to assume normal noise in their linear models. To
be more realistic, often this is phrased as saying the error
distribution in a linear regression model is approximately
symmetric, has light tails, and is unimodal leaving it
aside how these criteria are to be interpreted precisely. To
dramatize the pitfalls of the usual approach, consider the
following example.

EXAMPLE 1:
Consider the model

Noise terms and variable selection.

Y; = Bix1; + Baxoi + Ej, ()

fori =1, ..., n where the Y; is the response, E; is the error
term, and x;;, xp; are design points for two explanatory

* Correspondence to: Bertrand Clarke (bclarke3 @unl.edu)

variables generically denoted by x; and x,. Suppose we
have data of the usual form, i.e. we have data (y;, x1;, x2;)
for i =1,...,n, and we assume the error terms E; are
independent and identical (IID) normal with zero mean or
close enough that the approximation error can be ignored
in comparison with other sources of error.

The usual estimator for the coefficients in Eq. (1) is found
by least squares. Write this as /§LS = (,31, ,32)T. Although
Eq. (1) is very simple, it is standard to check if any
submodel of Eq. (1) will fit as well as the full model.
Obviously, this can be done by testing 81 = 0 or 8, = 0.

To set up our routine analysis, we generated 30 IID
outcomes to use for x; by setting X; ~ N(0, 1). We also
generated 30 outcomes for x, by a different technique. So,
an analyst cannot make any valid assumptions, at this stage,
about the distributional properties of X,. However, we
ignore the randomness in the generation of (X, X») since
we are regarding their values as deterministically chosen
design point To find y;’s, a linear function of (x, xy) was
taken and perturbed by IID standard normal noise.

© 2015 The Authors. Statistical Analysis and Data Mining published by Wiley Periodicals, Inc.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.



Yu and Clarke: Median Cross-Validation 15

Table 1. Inference for B; and B, in Eq. ((1)).

Least squares Standard
Parameter estimate error t-value  p-value
Bi 2.037 0.680 2.996 0.00567
B 1.003 0.008 128.854 <2 x 10710
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Fig. 1 Normal quantile plot of ¥ on the model with X and X,.

Now, consider fitting Eq. (1). The usual analysis is shown
in Table 1. The standard errors indicate that (B, 82) =
(0, 0) would be rejected at any reasonable level, meaning
neither parameter can be taken as zero. This is reinforced
by noting R* = R}, = 0.998.

Likewise, a quantile plot, see Fig. 1, shows that Eq.
(1) provides good fit. The residuals track the diagonal line
reasonably closely apart from the right tail where two points
look a little far from the regression line. This is a hint of
non-normality in the right tail, but this is very slight as
the deviations are within three standard errors. Overall, this
appears to be a successful fit leading to the point predictor
Y =1 X1+ B Xo.

However, the model is far wrong and its predictions will
quickly discredit it.

In fact, the data generator for ¥ was

Y, =2x;; + E;, fori=1,...,n, )

where {E; :i =1,...,n} were IID from the univariate
skewed 7-distribution with mean parameter zero 0, skew-
ness parameter 5, variance parameter one, and 0.5 degrees
of freedom. As stated before, X; was generated IID
N (0, 1). However, X, was artificially constructed by set-
ting X, = ¢ + N(0,25) noise, where ¢ is the residual from

the least squares estimators in Eq. (2) using only Y and
X . Thus, there need not be any tipoff that the normality
assumption is wrong and that downstream inferences will
be poor. (]

This example suggests more: In practice, analysts with
large numbers of explanatory variables who assume normal
errors may just be selecting those variables that happen
to construct a normal noise rather than explaining the
response, even when the correct noise term is far from
normality. This is possible because only the sum of the
linear function and error is identifiable, not each term
individually. It is true that if » — oo relative to the number
of explanatory variables the problem seen in this example
becomes less and less likely. However, it never disappears
and can occur even in cases such as this example where
there are 10 data points per parameter; here n = 30 and we
have estimated B;, 8, and o (even though o does not exist
for the error distribution used).

The family of skewed ¢-distributions that we use will
be denoted by skew —(v,y) where v is the degrees
of freedom and y is the skewness parameter. That
is, Y ~ skew —t(v,y) if and only if ¥ =yW + JWZ
where W ~ InverseGamma(v/2,v/2) and Z ~ N(0, 1).
The t(v,y) class includes symmetric and asymmetric
distributions controlled by y as well as light- and heavy-
tailed distributions controlled by v. The ¢(v,y)’s are
a subset of more general skewed ¢-distributions that
are multivariate, permit nonzero location parameters, and
nonidentity variance matrices in the normal term. Skewed
t-distributions have been used in a variety of linear models
problems, see refs 1-5 (which have an extensive reference
list) among others. As a separate class of distributions that
permit control of skewness and heaviness of tails we have
also used the Levy o stable distributions (see ref. 6 for
a review) that regularly occur in the analysis of critical
behavior in physics and in financial models. However, for
appropriate choices of the two parameters in the Levy class,
results qualitatively the same as we show in this paper for
the skew — t(v, y) distributions can be shown. Hence, we
limit our focus to the skew —t class because it is more
familiar in statistics.

There are several subject matter disciplines where heavy-
tailed distributions are common, such as climatology, see
ref. 7, the study of dependence via copulas, see refs 8 and
9 (and the references therein), econometrics, see ref. 1, and
computer traffic, see ref. 10. A recent overview can be
found in ref. 11. The key feature that seems to unite these
is that the response is the result of many small influences
of substantial variability. This will be seen in the IMF data
we analyze in Section 5.

As a separate issue, part of the popularity of the skewed
t-distributions (or the Levy class) is that they permit
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asymmetry, indeed strong asymmetry. There is a rich,
if under-appreciated, literature on this as well. See, for
instance, refs 12—14. In fact, one can argue that the whole
burly field of quantile regression is devoted to the fact that
knowing the quantiles of error terms is often essential—and
this is most important in the asymmetric case.

Instead of positing a model and testing coefficients to find
a submodel, one might compare linear models via cross-
validation (CV). The central idea is to split the data into
two sets. The first, called the training set, is used to fit a
candidate model which is then evaluated on the second set,
called the test set. Doing this repeatedly one can find the
average cumulative discrepancy or CV error. The (leave-
one-out) CV error is usually based on squared error loss
and is given by

1 A
CV() = =3 (i = fi' ), 3)
i=1

where ﬂ_i(xi) = fr(X;; ,3_[ ) is an estimate of the regres-
sion function f; at the point Xx;, ﬂA ~ is estimated without
using x; and kK = 1, ... K indexes the possible true mod-
els. As a generality, when using CV, the coefficients in
the linear model are estimated by least squares to make
the sense of distance the same for parameters and mod-
els. Since we are limiting attention to linear models, we
write fi(X;; B) = X¢.;Br where k indicates a selection of
the variables in the collection of all the explanatory vari-
ables x and their coefficients S in the full parameter vector
B. The basic idea of CV is to choose the f; with the small-
est value of Eq. (3) since Eq. (3) estimates the prediction
error of using f; for Y. Note that Eq. (3) only makes sense
when the error term has a finite variance.

Since the literature on CV is so vast we only note a few
classic references [15—19]. In addition, for multifold CV,
see refs 20, 21, and 22 and for the generalized CV, see 19.
Arlot and Celisse [23] provide a recent review.

Because CV is based on squared error, one of its key
problems is excessive sensitivity to influential data points,
e.g. outliers. One way to reduce this is to use a robust
form of the CV. For linear models one version of this was
developed in ref. 24 and used the M-estimating approach
of refs 25 and 26; see also refs 27 and 28. The idea is to
choose a function p and then find the & that minimizes

1 A
=D o = fT (0, )
i=1

see refs 25 and 26. Note that Eq. (4) includes Eq. (3) by
setting p(t) = 12 but that when p(¢) increases slower than
12, as |t| — oo, the minimum of Eq. (4) is less sensitive
to extreme values of residuals than the minimum of Eq.
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(3) is. When ref. 24 uses a version of Eq. (4), they use a
robust parameter estimator so the sense of distance used in
the robust CV matches that for the parameters.

An obvious limitation of this methodology is one must
choose p. In some nonparametric regression settings, Leung
[28] shows that the minimum of Eq. (4) is asymptotically
independent of the choice of p in large samples, this likely
holds for linear regression as well. However, for small or
moderate sample sizes, the minimum of Eq. (4) may depend
nontrivially on the choice of p and many of the choices for
p are essentially subjective. Nevertheless, Huber [25,26]
suggests

pe(t) = 27 2 L=y + (clt] = 27 D =y, (5)

for some ¢ > 0 for general usage. This approach has
been extensively studied and recently has been extended
to penalized regression settings, see ref. 29. A second
obvious feature of this methodology is that while it prevents
excessive reliance on outliers it does not discount them
either. This is good if the outliers are ‘for real’ and hence
influential data points, but may be bad if the outliers are
genuinely unrepresentative of the data generator.

When we study robust forms of regression for linear
models we use the R package rIm. One of the distances this
package uses on models is Eq. (5) and we have chosen the
default value (1.345) of ¢ chosen internally to rlm. When
providing parameter estimates, the default in rIm is to use
Eq. (5) as well. Thus, the model selection and parameter
estimation are based on the same sense of distance. Below,
we refer to the results from this combination of parameter
estimation and model selection using rim as Huber CV
(HCV). This is not identical to the method in ref. 24.
However, the two are similar and the method in ref. 24
has only been coded in Fortran.

There are many reasonable choices for p in (4) that
can be proposed. For instance, using p(#) = |¢| in Eq. (4)
gives least absolute deviation CV (or regression), which is
qualitatively different from regular CV under L?> or HCV
under Eq. (5). However, to avoid choosing p at all, we
propose using the sample median in place of the mean in
Eq. (3). That is, we find the model that minimizes

med (y; — £ (1)), (6)

1<i<n
over k. We call this median cross-validation (MCV). This
sort of procedure was first proposed in ref. 30 and used in
ref. 31 to choose the best number of neighbors to include
in a nearest-neighbors approach to nonparametric curve
fitting. Here, we advocate the idea more generally: Replace
means by medians systematically to give alternative
criteria with useful properties, in particular for model
selection.
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In addition to avoiding subjectivity in the choice of p,
there are two immediate advantages of MCV over CV. First,
MCYV does not assume that any terms have any moments.
So, MCV can be used with heavy-tailed errors terms such
as in Example 1. Second, because the median does not
depend on tail behavior of the residuals, the MCV is highly
resistant to aberrant data points. A related fact is that loss
functions have right-skewed distributions so the median of
the squared residuals will be more representative of the
distribution of the squared residuals than the mean is. We
comment that, unlike the mean of the squared residuals, Eq.
(6) is invariant to increasing transformations. So, it would
be equivalent to use the median of any increasing function
of the absolute error giving robustness to the choice of loss
function.

MCYV is the model selection analog of Rousseeuw’s least
median of squares estimator (LMSE) for parameters, see
refs 32 and 33. The LMSE is

Bims = arg min median(y; — f(x;.A)1’
<i<n

Like MCV, LMSEs are defined in terms of a median, do
not require any moments, and are as resistant to outliers as
possible. So, to ensure that the same sense of distance was
used for parameter estimation as model selection, we use
LMSEs with MCV. However, while the MCV is unique this
uniqueness is conditional on the uniqueness of the LMSE.
As noted in ref. 32, the LMSE is only ill-defined when
the data points used to find it are not in ‘general position’.
Since this happens only with probability zero (assuming a
continuous probability measure) we have ignored this in
our simulations below.

There are a variety of other techniques for robust model
selection. For instance, for linear models, Muéller and
Welsh [34] propose an objective function of three terms.
The first is a familiar robust model selection term using a
(weighted) form of Eq. (4) where p(z) = min(z?, b?) (for
b =2). The second is a compelxity penalty taken to be
essentially the Bayes information criterion penalty of k logn
where k is the number of parameters. The third term is a
predictive term intended to ensure future predictions are
close to future outcomes. This population-based term is
estimated by a technique [34] called a stratified bootstrap.
Minimizing the Mueller—Welsh objective function to find
a model gives consistent model selection. However, the
theorem establishing consistency uses the finiteness of the
second moment of the error term in an essential way. Thus,
the simulations for Table 5 in ref. 34 using a two-term
model list and either the slash or Cauchy distribution show
that their method never gave a probability of correct model
selection higher than 0.5, even in very simple settings.
Below some of our simulation results will show that Huber-
based robust CV performed well with the (skewed) Cauchy

error, but collapsed when the tails of skewed error become
heavier. Hence, it is reasonable to conjecture that with error
distributions even further from the normal than the Cauchy,
the technique in ref. 34 would perform even more poorly,
especially when the error is skewed. On the other hand,
the change in performance from using a median in place of
p remains unexplored. Regardless of this, when the error
distributions are not far from mormal, the technique in ref.
34 was extended to generalized linear models in ref. 35.

Another technique by which to do robust model selection
is in refs 36 and 37 and is based on variance inflation
factors (VIFs) that are essentially scale factors on the ﬁk’s.
The key idea is to make the technique in ref. 38 for large,
streaming datasets robust. The procedure is to start with
a small model and sequentially test, as data accumulate,
whether more explanatory variables are worth including
without overfitting. The robustness is accomplished by
using Tukey’s or Huber’s weights on residuals in an
estimating equation. So far, simulations have only shown
that this method is robust to outliers from a contaminated
normal error. The VIF method could presumably be
improved if a robust loss p were used in place of squared
errors, but this extension does not seem to have been tested.

Despite the substantial literature on robust model selec-
tion, the bulk of the results in the sequel are comparisons
among CV-LS, HCV, and MCV-LMS for a wide range of
model lists and error terms that are typically heavy-tailed
or skewed. Even for these settings, we make no claim that
our comparisons below are exhaustive.

To be precise about our comparisons, let My denote the
true model. We say that MCV-LMS works better than CV-
LS if and only if

Py (MCV-LMS chooses Mr)
> Py (CV-LS chooses M), (7)

In this expression, it is understood that either Py, takes the
nonuniqueness of the LMSE into account (for instance by
averaging) or that the LMSE is unique. We use the analog
of Eq. (7) for comparing CV-LS with HCV and HCV with
MCV-LMS.

As a first comparison of CV-LS, HCV, and MCV-LMS
consider the following toy problem.

EXAMPLE 2: Three nested model classes. Suppose the
true model is

Y=2+42x1+ .80+ E, (8)

where x; and x, are explanatory variables and E is an error
term and we are willing to consider three nested model

Statistical Analysis and Data Mining DOI:10.1002/sam
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Fig. 2 Histograms of the sampling distributions for model class selection by tenfold CV-LS, HCV, and MCV-LMS. The proportions
of selection for each of the three methods are denoted by Eprop (expectation proportion) or CV-LS, by Mprop (median proportion) or
MCV-LMS, and by Hprop (Huber function proportion) or HCV. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

classes, namely

Model class 1: Y ~ By + Bix1,
Model class 2: Y ~ By + Bi1x1 + Baxa,
Model class 3: Y ~ By + Bix1 + Baxa + B3x3.

Suppose N = 500 IID samples of the form (xi;, xo;, x3;),
i =1,...n =50 are drawn from the Unif[0,1] and in each
iteration each of the explanatory variables is studentized.
Next, consider four distributions for the error term, namely
N(,1), skew —1t(1,0), skew —1(0.5,0) and skew —
1(0.5,5) and for each case use all three cross-validatory
methods.

The model selection results are shown in Fig. 2. The
upper left panel shows that when the error term is N (0, 1)
CV-LS does best, but is only better than HCV by a very
small amount, .016. This persists if the N (0, 1) is replaced
by a contamination distribution of teh form (4/5)N (0, 1) +
(1/5)N(a, 1) for | a |< 3. When | a |> 3 HCV performs
best (figures not shown). MCV-LMS tends to do poorly

Statistical Analysis and Data Mining DOI:10.1002/sam

because it chooses model class 3 too often. The upper
right panel shows that when the tails of the error are
skew —t(1,0), i.e. Cauchy and the error is symmetric,
HCV performs much better than either of the other two
methods. This persists even when the error distribution is
asymmetric (y =5, 10, 15, figures not shown). The lower
left panel shows that even when the tails are heavier
than the Cauchy, HCV performs best when the error
distribution is symmetric, although not by much. The
lower right panel shows that when the tails of the error
distribution are heavier than a Cauchy and asymmetric
MCV-LMS performs best. Figure 2 also shows that when
CV-LS does poorly it does so by choosing models that are
too small. ]

In Fig. 2 we could have used fivefold or leave-one-out
CV, and the results would not have changed qualitatively.
Indeed, in all our work we found that changing the &
in k-fold CV did not affect our conclusions—although
the results often had to be stabilized by bootstrapping
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Fig. 3 Histograms of the sampling distributions for model class selection by tenfold CV-LS, HCV, and MCV-LMS. The panels are in
the same order as the models in Eq. (9). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

as in Section 5. From a theoretical standpoint Shao [21]
(Theorem 1) suggests that for CV-LS and error terms
with a finite variance that asymptotically most of the
data should be used for testing rather than training.
Although not directly relevant here (since our focus is
on cases where the variance does not exist), it is good
intuition so we have followed it, making the k is k-fold
CV as large as reasonably possible, even for HCV and
MCV-LMS. More recently, Lund [39] in Section 2.1.4,
implicitly suggests that reasonable K’s range from 1 to
20. Moreover, Arlot and Celisse [23] state on p. 61: °...the
best risk estimator is LOO, whereas 10-fold CV is more
accurate for model selection’. Here, in using K as large
as possible, the range was from four to ten—within the
recommendations.

As a final introductory example, consider another toy
problem with a bigger model list.

EXAMPLE 3: 31 non-nested model classes Suppose
the model list now consists of all 2° — 1 = 31 nontrivial
linear models using five explanatory variables x, ..., x5
from U(c(a),c(l —a)) where c(o) is the 100« per-
centile of a standard Cauchy and the error distribution is

skew — t(0.5,0). Consider six possible true models all
from the same model class, namely,

Y =2+0.5x; +0.5x5 +0.5x3 + 0.5x4 + 0.5x5 + E

Y =2+4+5x; +0.5xp + 0.5x3 + 0.5x4 + 0.5x5s + E

Y =2+5x; +5x +0.5x3 +0.5x4 + 0.5x5 + E

Y =245x; +5x3 +5x3+0.5x4 +0.5x5s + E

Y =24 5x; +5x2 +5x3 + 5x4 +0.5x5 + E

Y =24 5x1 +5x2 +5x3 +5x4 +5x5 + E, 9)

in which the number of terms with small coefficients is
decreasing. From Example 2, we expect that HCV should
do well because the error term is symmetric. In fact, the
results are shown in Fig. 3 for a sample size of n = 100
and N = 1000.

In all panels MCV-LMS performs best—the reverse of
what was seen in Example 2. Indeed, as the number of
small terms decreases, HCV performs better compared with
MCV-LMS until in the lower right panel, MCV-LMS and
HCV are equivalent. [

Statistical Analysis and Data Mining DOI:10.1002/sam
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The reason the performances of MCV-LMS and HCV
reverse may be related to the fact that HCV tends to spread
out over a larger class of possible models than MCV-LMS
does when the data are spread out enough; this was not
possible in Example 2 since the model list was so small.
In effect, HCV may have a lower mode at the true model
than MCV-LMS does. In addition, it is seen that the degree
of non-sparsity is important. That is, MCV-LMS tends to
give better performance than either HCV or CV-LS when
the number of detectable small terms in the true model is
high. Finally, as a generality, heavier tails and asymmetry
tend to favor MCV-LMS more than they favor either HCV
or CV-LS.

To date we have been unable to formalize our findings
in theorems. Techniques from median regression seem not
to apply. For instance, the Bahadur representation of the
median has too large an error to identify lower order terms.
Moreover, existing proofs for consistency of the CV or the
optimality of HCV do not adapt to MCV. As a consequence
we base our conclusions on extensive simulations and
graphical analysis. On the other hand, we hold out hope
that techniques from ref. 40 (or perhaps ref. 41) may be
helpful for the future study of MCV.

The rest of this article is organized as follows. In Section
2, we state our procedure formally and then extend our find-
ings from Example 3 to a wider class of error distributions
for ‘good’ data, i.e. data that is representative of the data
generator, e.g. no outliers. In Section 3, we return to the
nested case but use larger model lists to compare the sam-
pling distributions of HCV and MCV-LMS for model selec-
tion, taking into account both error distributions and the size
of the coefficients in the true model. In Section 4, we exam-
ine the effect of varying the model list and noise term taken
as true, in particular, we show how HCV and MCV-LMS
behave when the true model is on the model list, when it
is not on the list, when its location on the list varies, and
when the noise term varies. Sections 3 and 4 continue to use
‘good’ data. However, in Section 5, we analyze an econo-
metrics dataset to show how MCV-LMS performs with
complex data that includes outliers. In Section 6, we give
recommendations for when each technique is appropriate.

2. NON-NESTED MODEL LISTS

For precision, we begin by stating the HCV and MCV-
LMS procedures formally and stating the generic form of
our simulations. The simulations do not include outliers;
these are treated in Section 5. Then, we turn to the extension
of Example 2.

2.1. Formal Method

Both the HCV and MCV-LMS methods are similar
in structure to CV-LS. Here we present the MCV-LMS
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method because the key steps in HCV can be found in
ref. 24 and CV-LS is well known.

To compare models fi,..., fx, using (y;,x;), i =
1,...,n where x; is a vector of explanatory variables,
V-fold MCV-LMS is the following.

1. Split the sample of size n into V disjoint and
exhaustive subsets Si, ..., Sy.

2. Foreach k and v=1,...,V use Sy =, 4, S« to
find LMSEs for S, the parameter in f;.

3. Forv=1,...,V, geta collection of
dy(k) = { (i — fi i s () ¢ Vi € Sy},

where the superscript —i indicates that the ith data
point was not used to form fi rums, the estimate of
Sk using the LMSEs from S;.

4. The V-fold MCV-LMS model is f; for which
k= arg min [median({d; (k), ..., dy (k)}D].

This is the same as CV-LS but it uses the median in place
of the mean, and LMSE in place of LSE. Likewise, HCV
is the same except that it uses a truncated squared error
criterion for robust estimation of the parameters and for
robust evaluation of the CV error (see Egs. ((4)) and ((5))).
Next, since we will be presenting numerous simulations,
we describe their general form. We randomly generated
design points X from a uniform distribution on the
range [c(a),c(l —a)] for o = .05 where c(x) is the
«100%-th quantile of a Cauchy distribution. Given these
values, we generated error terms E from various skew — t
distributions. Then we formed variables Y from Xg + E
for various choices of parameter vector . To compare
MCV, HCV, and CV we only permitted the model selection
procedures to use the design points X and the response
values Y. Given that n data points were generated, V-
fold CV of whichever form meant following the four steps
above. Doing this for each candidate model gave the MCV-
LMS, HCV, and CV-LS errors and we chose the models
with the smallest MCV-LMS, HCV, or CV-LS errors.

2.2. Extending Example 3

Recall Example 3 showed that for the skew — t(.5,0)
error distribution MCV-LMS outperformed HCV and CV-
LS in a non-nested model list setting. Here we extend this
finding to a larger class of error distributions. Recall the
model list consisted of models of the form

Y =Bo+vipixi+...+vpBix + E, (10)
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Fig. 4 The six panels in the figure show the percent decrease of using HCV instead of MCV-LMS for 12 error distributions in a
non-nested model setting; the degree of asymmetry is indicated along the horizontal axis.

where y; = 0,1 according to whether x; is or is not in
the candidate model, for j =1,...,k and we set k =5
so there are 31 nontrivial models. Because all the x;’s
were generated the same way, any two models with the
same number of explanatory variables are equivalent. We
continue to use n = 100, N = 1000, and tenfold CV.

To dramatize our results, rather than looking at the
probability of correct model selection we look at the percent
decrease in correct model selection when HCV is used
instead of MCV-LMS. As before, the models taken as true
for the six panels are as in Eq. (9). We chose the coefficients
to be five and 0.5 on the grounds that (i) five was a simple
number large enough that any method ought to be able
to detect it given the range of the error distributions and
explanatory variables and (ii) 0.5 was a simple number,
large enough to matter if we were to use one of the models
to make predictions but small enough that we would not
expect the terms with coefficient 0.5 always to be found,
i.e. it provided a nontrivial check on the model selection
methods.

Here, we use 12 different error distributions: four choices
for the heaviness of the tails (v = .5, 1, 50, co) and three
choices for the degree of asymmetry (y =0, 5, 12). Our
results are shown in the six panels of Fig. 4. (CV-LS was
dropped since it performed so poorly in Example 3.)

It is seen that when the true model has all coefficients
0.5, HCV and MCV-LMS are essentially equivalent for
v=1,50,00 for all choices of asymmetry parameter.
However, when v =1/2, MCV-LMS gives noticeably
better performance over all values of the asymmetry
parameter and improves relative to HCV as the asymmetry
increases. This pattern is strongest when all five coefficients
are 0.5 and decreases as the number of coefficients 0.5
decreases until, when all coefficients are 5, HCV and MCV-
LMS are equivalent over the 12 error terms we used. This
suggests that in model selection problems of a realistic size,
MCV-LMS tends to perform better than HCV when the
tails are heavy, the asymmetry is significant, or the true
model is non-sparse. Results qualitatively the same as those
presented in Fig. 4 are obtained if other sizes of true model
are used provided the coefficients are similar or if other
non-nested model lists are used.

3. NESTED MODEL LISTS

In this section we examine the effect of non-sparsity by
presenting simulations that assume the true model is a sum
of terms of diminishing influence on Y. We suggest that this
mimics real scenarios where many small influence combine
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Fig. 5 Histograms of the sampling distributions for model class selection by tenfold CV-LS, HCV, and MCV-LMS assuming the three
true models with coefficients 5, 0.5, and 0. The middle peak representing MCV-LMS is seen to be highest. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]

to influence the behavior of Y and it is not a priori clear
which ones should be regarded as part of an announced
model. The model list therefore consists of models of the
form (10) that have been put in equivalence classes based
on the number of explanatory variables and then ordered by
size so they can be assumed nested. While nesting reduces
the number of models to be considered, it is a reasonable
assumption when there are many terms that can be ordered
for inclusion by, say, a shrinkage method such as LASSO
or SCAD.

We consider two classes of models with non-sparsity.
The first is an extension of Eq. (9) and Section 2.2 from
five explanatory variables to 25 explanatory variables. The
second permits the coefficients of the variables to decrease
monotonically. All the results in this section assume a
skew — t(0.5, 10) error distribution and that the data have
no aberrant points.

3.1. Coefficients 0, 0.5, 5

A model in this class is defined by having some leading
terms with coefficient five, the next sequence of terms has
coefficient 0.5, and the last terms have coefficient zero. So,
write

Y =2+5x1+5x 4+ -+ 5x17+ 5x18+ -+ .5x1 + E,
Y=2+5x;1+5x+ - +5x13+.5x14+---+ 5x1 + E,
Y =2+5x;+5x2+ -4+ 5x9+ Sxj0+ -+ .5x1 + E,

in which the last four explanatory variables xp;, ..., X5
are decoys. Thus, the number of small terms is increasing
even though the model size is fixed, i.e the model with 21
explanatory variables is always true.

In this case, Fig. 5 shows the results for CV-LS, MCV-
LMS, and HCV. As might be expected, CV-LS does
poorly—bailing out to the trivial model. Only MCV-LMS
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and HCV give useful results. Both have modes at the true
model in all three cases, but MCV-LMS has a stronger
mode indicating it puts more probability on or near the true
model than HCV does.

The three panels all look the same meaning that MCV-
LMS detects the smaller order terms better, no matter how
many or fewer there are. A sidebar comment is that as the
number of 0.5 terms increases, HCV spreads out a little
while MCV does not and CV-LS concentrates ever more at
the trivial model.

3.2. Decreasing Coefficients

The second model class consists of decreasing coefficient
models of the form

Y =245x1 4+ 2x +x3+ (2/3)x4
+- + @2/ = D)xi 4+ ...+ (1/12) X5 + E,
(11)

where i =2,...,25. For the sake of comparison we
consider as true models the cases that i =9, 13,17, and
21. The results are in Fig. 6. They show that for i =9, 13
MCV-LMS is much more likely to find the true model but
that for i = 17, 21 as the coefficients shrink HCV is more
likely to find the true model.

The results from Figs 5 and 6 are a little paradoxical but
suggest that MCV-LMS imposes more sparsity than HCV
(but much less than CV-LS that bails out to model 1, not
shown). This may be the result of the same phenomenon
seen in Example 3: HCV tends to give better performance
than MCV-LMS with smaller model lists. That is, if
Fig. 6 was regenerated without nesting the models MCV-
LMS might outperform HCV. However, the computational
burden increases rapidly with the number of explanatory
variables making such comparisons difficult in practice.
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It is tempting to interpret the difference between Figs 5
and 6 as arising from the different treatment of sparseness
by MCV-LMS and HCV: Below a threshold, MCV-LMS is
unable to detect terms as effectively as HCV does. This is a
little surprising since in most other settings the reverse is
true—again tentatively suggesting it is the size of the model
list that is the issue. Indeed, one expects a bias-variance
tradeoff for model list selection: Too small a model list
will give bias and too large a model list will give excess
variance. For heavy-tailed or asymmetric errors MCV-LMS
usually has a lower bias at the cost of a higher variance
while HCV usually has a higher bias at the cost of a
lower variance. On the other hand, this line of reasoning
is limited because in the lower panels of Fig. 6 neither
method achieves a probability of correct model selection
above 0.25.

Figure 7 shows the probability of correct selection of
models with decreasing coefficients for true models of
size noted on the horizontal axis. MCV-LMS has a higher
probability of correct model selection for all true models
up to size 14, but this is only meaningful up to 13 because
beyond model 12 MCV-LMS has probability of correct

selection less than 0.5. By contrast, HCV always has
probability less than 0.5.

Thus, the results of this subsection and the last are
compatible: Regardless of the how the coefficients decrease,
when HCV outperforms MCV-LMS, both methods are
breaking down in the sense that the probability of correct
model selection is < 0.5. Note that this is for skew —
t(.5,10); the next section will look at how MCV-LMS
compares to HCV over a range of error distributions.

4. EFFECT OF MODEL LIST SELECTION

In this section we continue to investigate the effect of the
model list when the true model has attenuating coefficients.
That is, we take true models to be of the form

M, Y =242X1+ X2+ (2/3)X3

+-+ QDX+ -+ 2/ X, (12)

and the model class contains 7 nested models, where the
i-th model M; consists of Xi,...,X; in order. So,

Statistical Analysis and Data Mining DOI:10.1002/sam
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when p < 7, the true model M, is on the model list
{Mi,..., M} but when p > 7 the true model M, is
outside the class. Our goal is to see how the choice of u
and t affects the model selection procedures when the error
distributions are varied but outliers are not considered.

Note that this is the same class as used in Section 3.2.
However, the results from Sections 3.2 and 3.1 are very
similar so it seems safe to regard Eq. (12) as generally
representative of the decreasing coefficient case for which
CV-LS works very poorly—in spite of the data being
‘good’. Hence, in this section, CV-LS is not included.

In Section 4.1 we present simulations assuming © < t,
i.e. the model list contains models that are as big or bigger
than the true model in the sense of number of terms. Thus,
in some cases, the true model is at the right hand endpoint of
the model list and in some case the model at the right hand
endpoint of the list is larger than the true model. In Section
4.2 we present simulations for the case i > t, i.e. the true
model is larger than any model on the model list; we regard
this as a realistic scenario. In these cases, the true model
is a submodel found by taking some coefficients zero. In
Section 4.3, we present simulations for the case that the true
model itself is not on the model list but the model list con-
tains models that are too small and some that are too large.

4.1. Model List Contains Models Bigger
than the True Model

Here, 1 < t and we present results for HCV and MCV-
LMS under four different error terms: skew — (1, 0),
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skew — t(1, 10), skew — t(.5,0) and skew —t(.5,5). All
these simulations assume a tenfold CV procedure with
sample size n = 150 and number of replications N = 1000.
In the tables of this subsection, we indicated the model list
by &. That is, the model list is & = {M, ..., Mg} where
each of the models is of the form M, in Eq. (12). (The
double usage of & as the model list and the largest model
on that list will not cause any confusion.) Then, the entry in
a table for a given column & and a row p is the probability
of choosing the correct model p when the model list is &.

One of the important qualitative features of all the tables
in this section is that the probability of selection of the
true model by MCV-LMS or HCV decreases as the model
size and list increases. Sometimes this decrease is slow
and sometimes it is relatively fast, but it always seems to
happen.

Results for Cauchy noise, i.e. skewt (1, 0), are given in
Table 2. There are two points to note. First, all the entries
in the top half of the table for MCV-LMS are much lower
than the corresponding entries in the bottom half of the table
for HCV. For instance, when model M,, with i = 8 is true,
the probability of selecting it when & = 9 is 0.62 for MCV-
LMS and 0.84 for HCV. Second, there is a sudden drop as
the list of candidate models goes even one step beyond the
true model indicating both methods are parsimonious.

As a second example, results corresponding to Table 2
are given for asymmetric Cauchy noise skew — t(1, 10)
in Table 3. In this case, again, all the entries in the
top half of the table for MCV-LMS are lower than the
corresponding entries in the bottom half of the table for

Table 2. Model selection with the skew — 7(1, 0) noise term.
Top: MCV-LMS. Bottom: HCV. Probabilities are rounded to two
decimal places.

Model List
&

Percentage of choosing
the true model M, 6 7 8 9 10

True model M,, 6 1 0.67 059 055 0.53
7 098 0.66 0.56 0.53
8 094 0.62 0.57
9 0.88 0.62
10 0.79
Model List

3

Percentage of choosing
the true model M, 6 7 8 9 10

True model M,, 6 1 088 081 077 0.77
7 1 0.84 0.82 0.78
8 1 0.84 0.82
9 1 0.86
0
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Table 3. Model selection with the skew — (1, 10) noise term.
Top: MCV-LMS. Bottom: HCV. Probabilities are rounded to two
decimal places.

Table 4. Model selection with the skew — ¢(.5,0) noise term.
Top: MCV-LMS. Bottom: HCV. Probabilities are rounded to two
decimal places.

Model List
3

Percentage of choosing
the true model M, 6 7 8 9 10

Model List
§

Percentage of choosing
the true model M, 6 7 8 9 10

True model M,, 6 1 072 0.64 061 0.63 True model M,, 6 096 0.70 0.66 0.66 0.68
7 1 0.68 0.61 0.62 7 090 0.68 0.61 0.62
8 1 0.70 0.63 8 0.8 0.62 0.59
9 1 0.71 9 0.64 0.50
10 0.99 10 0.47
Model List Model List
& §

Percentage of choosing
the true model M, 6 7 8 9 10

Percentage of choosing
the true model M, 6 7 8 9 10

1 081 075 0.73 0.70
1 0.81 0.76 0.74
1 0.81 0.78

True model M,,

[s>INalNeBEN lo N

True model M,, 6 091 0.82 0.81 0.80 0.80
7 0.88 0.80 0.79 0.75

8 0.86 0.74 0.71

9 0.76 0.69

10 0.70

HCV. However, in comparison to Table 2, Table 3 shows
that HCV outperforms MCV-LMS by a smaller margin.
The effect of skewness is to improve the performance of
MCV-LMS relative to HCV.

When the tails of the noise term are heavier than
Cauchy but symmetric, for instance, skew — (.5,0),
Table 4 suggests that for smaller model lists, MCV-LMS
has a higher probability of choosing the correct model but
that for larger model lists HCV still has a higher probability
of choosing the correct model. This is reminiscent of Fig. 7
where larger models were unfavorable to MCV-LMS but
here the reversal occurs at model size eight. Note also that
the probabilities in a row do not strictly decrease. We regard
this as an indication that more iterations would have to be
done to get a finer resolution since in all other cases strictly
decreasing probabilities were found. The values in Table 4
are satisfactory (especially in view of Fig. 8 in Section 4.3)
since they suggest the two methods are performing more
similarly to each other as the tails get heavier, the same as
was observed for increasing asymmetry.

Finally for this subsection, suppose the noise term has
heavier tails than a Cauchy and is asymmetric, for instance,
a skew —1(.5,10). It can be seen that the entries in
the top half of Table 5 for MCV-LMS are higher than
the corresponding entries in the bottom half of the table
for HCV. That is, when the tails of the noise term are
sufficiently heavy and asymmetric MCV-LMS outperforms
HCV. (The value 0.77 for © = 6 and & = 10 is an anomaly
of using simulations; sometimes the answer will not fit an
established pattern.)

Table 5. Model selection with the skew — (.5, 10) noise term.
Top: MCV-LMS. Bottom: HCV. Probabilities are rounded to two
decimal places.

Model List
&

Percentage of choosing
the true model M, 6 7 8 9 10

True model M,, 6 1 0.79 0.72 0.73 0.77
7 099 0.76 0.75 0.73
8 0.98 0.74 0.71
9 0.92 0.72
10 0.79
Model List

§

Percentage of choosing
the true model M, 6 7 8 9 10

6 0.79 0.57 0.54 052 051
7 0.69 0.55 0.50 048
8 0.64 048 047
9
0

True model M,, pu

0.54 044
0.47

4.2. Model List Contains Models Strictly Smaller
than the True Model

In this subsection we consider true models of the
form M,, where u > v, i.e. where the model class
{My, ..., M} does not contain the true model as an
interior or boundary point. Essentially, we allow p >t
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Table 6. Sampling distributions for MCV-LMS (top) and HCV (bottom) for various model lists with the skew — (1, 0) noise term.

Probabilities are rounded to two decimal places.

Candidate model M,

T

Proportions of choosing each candidate model 1 2 3 4 5 6 7 8 9
True model M, "n 7 0 0 0 0.01 0.08 0.92
8 0 0 0.00 0.02 0.14 0.84
8 0 0 0 0.00 0.02 0.13 0.85
9 0 .00 0.00 0.03 0.21 0.76
9 0 0 0.00 0.01 0.04 0.20 0.76
9 0 0 0 0 0.01 0.03 0.17 0.79
10 0 0.00 0.01 0.05 0.20 0.74
10 0 0 0.00 0.02 0.07 0.24 0.68
10 0 0 0 0.01 0.01 0.07 0.20 0.71
10 0 0 0 0.00 0.00 0.02 0.07 0.23 0.69
Candidate model M,
T
Proportions of choosing each candidate model 1 2 3 4 5 6 7 8 9
True model M, In 7 0 .00 0.00 0.00 0.00 1
8 0 0 0 0 0.00 1
8 0 0 0 0 0 0 1
9 0 0 0 0 0 1
9 0 0 0 0 0 0 1
9 0 0 0 0 0 0 0 1
10 0 0 0 0 0.00 1
10 0 0 0 0 0 0.00 1
10 0 0 0 0 0 0 0.01 0.99
10 0 0 0 0 0 0 0 0.00 1

to mimic the case that the true model is bigger than any
model on the model list. So, the best a model selection
procedure can do is to give the largest model on the
model list.

Here it is enough to show the results from MCV-LMS
and HCV for skew —t(1,0) and skew — ¢(.5, 10) noise
terms since the other cases, skew — f(1, 10) and skew —
t(.5,0) examined in Section 4.1, give results similar to
skew —t(1,0) in that HCV outperforms MCV-LMS and
the degree of outperformance decreases as the tails get
heavier or more asymmetric. As in the last subsection,
the probability of correct selection generally decreases as
model size increases. The simulations here assume tenfold
CV with n = 150 and N = 1000 replications and hence the
data are representative of the data generator, i.e. there are
no data points that can reasonably be regarded as outliers.

The tables here are of a different form from the tables in
Section 4.1. Here, the rows are indexed by , the size of the
true model. Each possible true model size may be associated
with model lists of various sizes. Thus, in Table 6, when
@ = 9 model lists £ = 6, 7, 8 may be used but not £ = 9 for
then M9 would be on it. Thus, each row gives the sampling
distribution of a model selecction technique with the model
list as its support. For instance, Table 6 is similar to Table 2
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in that HCV outperforms MCV-LMS. The same holds here,
as in Tables 3 and 4, when the noise is skew — ¢ (1, 10) and
skew — t(.5, 0), but to a smaller extent. Likewise, when the
noise distribution is skew — £(.5, 10), Table 7, like Table 5,
shows that MCV-LMS outperforms HCV.

4.3. True Model Not on a Two-Sided Model List

To conclude this section, we present simulations for
model selection with a fixed model list while varying the
noise term. The true model is Mg and the model list
is {My,..., M5, M7,..., Mjo}. In this case, the most
appropriate model to choose is M. Since there are many
cases to handle, we used tenfold CV with n = 100 data
points and N = 500 replications.

Figure 8 shows where MCV-LMS is better than HCV at
identifying My (solid dots) and HCV is better than MCV-
LMS (open dots) when the error term is a skew — ¢ with
the indicated skewness and degrees of freedom. If the table
is extended beyond asymmetry parameter 10, MCV-LMS
continues to outperform HCV for degrees of freedom less
than or equal to 0.6, i.e. for 0.7 or greater HCV outperforms
MCYV at choosing M. When the degrees of freedom is too
low and the skewness is small, MCV-LMS outperforms
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Table 7. Sampling distributions for MCV-LMS (top) and HCV (bottom) for various model lists with the skew — 7(.5, 10) noise term.

Probabilities are rounded to two decimal places.

Candidate model M,

T

Proportions of choosing each candidate model 1 2 3 4 5 6 7 8 9
True model M, "w 7 0.00 0.00 0.00 0.00 0.06 0.94
8 0 0 0 0.02 0.14 0.84
8 0 0 0 0 0.01 0.10 0.89
9 0 0 0.00 0.02 0.18 0.80
9 0 0 0 0.00 0.05 0.19 0.75
9 0 0 0 0 0.00 0.03 0.17 0.80
10 0 0 0.00 0.06 0.21 0.73
10 0 0 0.00 0.01 0.05 0.23 0.70
10 0 0 0.00 0.00 0.01 0.08 0.25 0.66
10 0 0 0 0 0.00 0.02 0.07 0.21 0.698
Candidate model M,
T
Proportions of choosing each candidate model 1 2 3 4 5 6 7 8 9
True model M, n 7 0.01 0.03 0.03 0.06 0.13 0.75
8 0.01 0.02 0.04 0.06 0.14 0.74
8 0.01 0.01 0.02 0.03 0.06 0.16 0.71
9 0.01 0.02 0.03 0.06 0.13 0.76
9 0.00 0.01 0.02 0.03 0.07 0.16 0.70
9 0.01 0.01 0.02 0.04 0.05 0.07 0.19 0.61
10 0.01 0.02 0.04 0.06 0.16 0.71
10 0.01 0.02 0.03 0.05 0.08 0.15 0.68
10 0.01 0.01 0.03 0.03 0.05 0.08 0.20 0.59
10 0.01 0.02 0.02 0.02 0.04 0.07 0.10 0.18 0.542

HCV but neither does well; the probability of correct
selection by MCV-LMS is below 0.5. This is indicated by
solid triangles. Indeed, in many cases, even when MCV-
LMS assigned a higher probability to M5 than HCV did,
it also assigned a higher probability to M5 than M. That
is, MCV-LMS it is more likely to choose a a model that
leaves out a term than to choose a model class for which
a submodel would be right. This indicates that MCV-LMS
has slightly more tendency toward sparsity than HCV does
but nowhere near as much as CV-LS does. However, Fig. 8
indicates that below 0.3 degrees of freedom neither method
gives good results and even at degrees of freedom 0.3,
there must be a little skewness for MCV-LMS to choose
the right model successfully. Of course, above degrees of
freedom 0.7, HCV always does better than MCV-LMS
and for a few cases with small degrees of freedom and
small amounts of skewness HCV also does better than
MCV-LMS.

Note that Fig. 8 is dual to Fig. 7. Specifically, Fig. 7
shows the collection of models for which MCV-LMS
outperforms HCV for a fixed noise term while Fig. 8
indicates the collection of noise terms for which the
most appropriate model is selected when a fixed model
is true.

5. ECONOMETRIC DATA EXAMPLE

In this section we analyze a real dataset to express
national gross domestic products (GDP) in terms of
macroeconomic variables. When analysis ready, we will
have 35 explanatory variables and sample size n = 172.
The data exhibits both heavy tails and asymmetry, and has
outliers. Overall, this is a relatively complicated dataset.
Here, we apply CV-LS, HCV, and MCV-LMS to do model
selection and parameter estimation.

To implement these methods we first sphere the data to
transform the original explanatory variables so they will
be approximately orthogonal. Then, we order the sphered
variables by their (absolute) correlation with the response
so we have a list of nested models. By bootstrapping, we
obtain an approximation to the sampling distribution for
CV-LS, MCV-LMS, and HCV. From these we choose the
modal model. Then, we transform back to the original
variables removing any terms for which the coefficients
are too small. Apart from the bootstrapping, this procedure
is much the same as in ref. 42 for selecting a useful
number of principal components. We take the extra step of
bootstrapping to find the sampling distribution to account
for variability in the parameter estimation and model
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Comparison of MCV and HCV
under the skew-t error
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Fig. 8 Values of degrees of freedom and skewnesses for which
HCV is better than MCV-LMS (open circles) and for which MCV-
LMS is better than HCV (dark circles) at choosing model M5
when the model list is {M; — Ms} U {M7 — Mo}, when the
better of the two has probability at least 0.5. The dark triangles
indicate degrees of freedom and skewnesses for which MCV-
LMS is better than HCV but has probability of selecting M5
less than 0.5.

selection; this is important for complex data such as we
are analyzing here.

To be precise, sphering means that the n x p design
matrix X, is transformed so that the arithmetic mean of
each column is zero and the empirical covariance matrix is
the identity. Let X, be the empirical covariance matrix,

1 n . .
Z= =) (X=X (X = Xp)T,
i=1

where X; is the ith observation of the p variables, and Yp
is the p x 1 column vector of the arithmetic mean. The
spectral representation of X, gives

Z:n = An AHAZ’
where A, is a diagonal matrix of the eigenvalue of the

empirical covariance matrix, and A, is the corresponding
matrix of eigenvectors. The sphere designed matrix is

SX, = (X — L1 X)) x AuA, V2, (13)

where 1,4 is the n x 1 column vector of ones. Given this,
we can apply CV-LS, MCV-LMS, and HCV to the dataset
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Table 8. Definition of the variables

Variable Definition

Y Gross domestic product (GDP),
purchasing-power-parity (PPP) share of world total

X1 Inflation, average consumer prices

X2 Inflation, end of period consumer prices

X3 Volume of imports of goods and services

X4 Volume of exports of goods and services

X5 Population

X6 General government revenue

X7 General government total expenditure

X8 General government net lending/borrowing

X9 Current account balance

fairly since all variables have been located and scaled the
same way.

5.1. IMF Data

Consider the 2009 financial data found at http://www.imf.
org/external/pubs/ft/weo/2011/02/weodata/weoselgr.aspx.
There were 46 variables measured on world economies;
they were partitioned into six categories (national accounts,
monetary, trade, people, government finance, and balance
of payments). One was GDP (in purchasing power parity)
which we try to explain using the other 45. In fact, we did
not use all the other 45 variables, we used a selection of
them since many had incomplete data. Out of 184 countries
reporting we removed all those with more than ten missing
variables. Then, we did a cull of the remaining variables
by removing some that seemed to duplicate the information
in other variables that we thought were more important to
include. Thus, we reduced the 45 variables to nine. This still
represents a relatively large number of variables because in
many cases the products of these explanatory variables are
important to include. Thus, the primary goal of our anal-
ysis is to determine the effects of nine financial variables
X1 - Xo, with their product terms, on the response variable
Y, where Table 8 provides the short definitions of the vari-
ables. (The IMF webpage provides the formal definitions.)

It is easy to see the nine variables lead to 45 cross-
terms. However, we retained only 26 of these, namely:
X5X6, Xs5X7, X4X5 Xs5Xs, X5X5, X5X9, X2 X5, X1 X5,
X7Xs, XoXo, X4Xg, X3Xg, X7X9, X1 X6, X1X7, X4X7,
X3X7, X¢Xo, X4X6, X3X6, X1X9, X4X9, X6X3, X2Xo,
X7X7, and X;X,. The statistical reasons are (i) these
terms had the highest absolute magnitude of their Pearson
correlations with Y and (ii) they led to covariance matrices
that were not singular, a key issue for stability of results.
Specifically, our selection process stopped when we get a
negative eigenvalue of the covariance matrix of the sphered
covariates. It is inconceivable that the model list contains
the true model for GDP, however, we can hope that one
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Sampling distribution of the selected model
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Fig. 9 Bootstrap estimates of the sampling distributions of CV-
LS, MCV-LMS, and HCV. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

of the models is not hopelessly wrong. This scenario is
somewhat like that in Section 4.3 except that for practical
purposes we must reduce the full non-nested model list of
size 2% — 1 to a nested model list.

A key feature of this dataset is that even if the dataset
could be said to be representative of a single data generator,
there are outliers, influential data points, and other aberrant
data points that can affect the model selection. This is on
top of the fact that there is reason to believe the error term
is heavy-tailed and asymmetric. Moreover, it is plausible to
regard the real economy as consisting of a large number
of small influences that do not die away and are small
relative to economic variability, somewhat like the models
in Sections 3 and 4. Taken together these points suggest that
CV-LS will do poorly, HCV will do better, and MCV-LMS
will do best.

Proceeding, once sphering gave approximate orthogonal-
ity, we sorted them in order of the absolute magnitudes of
their Pearson correlations with Y. This gave a class of 35
nested models. We then took 2000 bootstrap samples of
size n = 172 from the sphered data to estimate the sam-
pling distributions for the three methods CV-LS, HCV, and
MCV-LMS. The use of the bootstrapping for CV-LS and
HCV is to account for their instability under fourfold CV;
the use of bootstrapping for MCV-LMS is to account for
its instabilty under fourfold CV and the instability from
the LMS estimation. The bootstrapping also accounts for
the instability of parameter estimation in CV-LS and HCV,
but it is not clear how important this is. (We comment that
using the R function rim gave more than 50 warning mes-
sages, even with 2000 iteration steps indicating some sort
of problem with this implementation of HCV.)

The boostrapped sampling distributions are shown in Fig.
9. It is seen that the histogram for CV-LS bails out to
one sphered variable. It is possible that the first sphered
variable is the best model for the GDP, but the rest of the
sampling distribution for CV-LS is essentially uniform over
models of size two through 35 and the first model only gets
approximate probability 466/2000 = 0.23. (It is tempting to
see a weakly bimodal sampling distribution but that is likely
just the result of variability.) The sampling distribution for
HCV is seen to break down similarly. There is an overall
mode at the first sphered variable, a very low value for
two sphered variables, and a higher value for three sphered
variables. Assuming the low value at two sphered variables
is an anomaly due to variability, HCV also bails out to
one sphered variable but is concentrating at that single
variable better than CV-LS is because HCV has a gradual
decrease while CV-LS is sudden. Otherwise put, neither
CV-LS nor HCV seems able to concentrate meaningfully
anywhere credible. By contrast, MCV-LMS gives a well-
defined mode at three sphered variables. Accordingly,
we surmise that CV-LS and HCV both choose a one-
sphered-variable model (but with different coefficients),
while MCV-LMS chooses a three-sphered-variable model.
The similarity between CV-LS and HCV may be due to
the fact that HCV is a variation on CV-LS to stabilize it by
using a loss function that is linear outside an interval. That
is, HCV, like CV-LS, is still much more sensitive to large
and small values than MCV is.

To examine the effectiveness of these three models for
this dataset, we found the models explicitly and generated
quantile plots for them; see Fig. 10. These plots are based
on normal quantiles and so show departures from normality.
Indeed, it is seen that the left panel for CV-LS strongly
suggests that both the left and right tails of the error term
are heavier than normal with the right hand tail being much
heavier than the left tail. It also suggests a nearly normal
shape on the mid-range. Overall, this panel suggests heavy
tails and asymmetry. Unsurprisingly, the right panel for
HCV suggests the same, likely because HCV and CV-LS
are more similar to each other (in choosing the same number
of sphered terms) than either is to MCV. The panel for
MCV-LMS also suggests heavy tails and asymmetry but is
smoother and hence more believable than the cusps on the
right hand tails of the histograms for CV-LS and HCV. This
is consistent with the fact that heavy tails with asymmetry
are precisely the setting where MCV-LMS outperforms CV-
LS and HCV as a model selection technique.

Let us now turn to an assessment of the effect of outliers
and influential data points. One way to visualize this is to
use the CV-LS model and generate partial residual plots for
X1, ..., X9, the nine original variables. This is shown in
Fig. 11. All the panels show that a significant proportion of
the data points must be regarded as aberrant in the sense
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Fig. 10 Q-Q plots for the residuals from CV-LS, MCV-LMS, and HCV.
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that they are outliers or overly influential. Indeed, there
seem to be enough of them of large enough magnitude that
even reducing their effect to a linear p as with HCV will
only reduce their influence not eliminate it. That is, Fig. 11
suggests outliers in general are a major problem with this
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dataset and merely reducing their influence somewhat may
not be enough.

Taken together, this reasoning leads us to the view
that the data generator has heavy, asymmetric tails and
is prone to major problems with outliers—precisely the
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setting where MCV-LMS, because it is based on medians,
promises to give better results than CV-LS or HCV, as
seen in Fig. 9. We comment that, as a generality, when a
model selection procedure breaks down it often does so
by choosing a trivial model—the smallest or the largest
possible; see ref. 43 for examples of this. This may
be what is happening with CV-LS and HCV; neither is
capable of good inference with data as complex as this
IMF data.

To complete this analysis, we find the three models based
on the sphered data and transform back to the original
variables for the sake of interpretability. First, for CV-
LS, if we retain only those terms with coefficients at least
1074, we get a model based on six terms Xs5Xg, X5X7,
X4Xs5, X5X9, X2Xs5, and X;Xs5. For HCV, we get the
same terms plus one more: X% That is, among the 35
covariates (9 variables, 26 cross-terms), we retain six and
seven terms, respectively, for CV-LS and HCV. Retaining
only the terms with coefficients at least 10~* for MCV-LMS
also gives seven terms but they are X5X¢, X5X7, Xs5Xg,
X7 X5,X1X5, X4X7, X4Xg. So, the model selection methods
agree on four product terms: XsX¢, Xs5X7, X»Xs, and
X1 X5, based on inflation, population, government revenue,
and expenditure. Terms X4X5 and Xs5Xg that are in the
CV-LS and HCV models, but not the MCV-LMS model
represent exports, population, and current account balance.
The extra term in the HCV model not in the CV-LS
model is the square of expenditure. The extra terms in the
MCV-LMS models not in the CV-LS or HCV models are
XsXg, X4X7 and X4Xg depending on exports, revenue,
and expenditure. Thus, the CV-LS and HCV models do not
depend on X3 or Xg and the MCV-LMS model does not
depend on Xo.

Aside from the argument that the data is heavy-
tailed, asymmetric, and has many outliers so that MCV-
LMS is more reasonable to use than CV-LS or HCV,
one can also argue that the model MCV-LMS gives
makes more sense than the models from either CV-
LS or HCV. Going back to Table 8 it is seen that the
CV-LS and HCV models for GDP do not depend on
imports or government net borrowing while the MCV-
LMS does not depend on the current account balance. If
one recognizes that government net borrowing is often
the most important a component in the current account
balance then the MCV-LMS model is more reasonable
because it includes imports and loses little from leaving
out current account balance and so depends on more of the
essential nine variables than CV-LS or HCV does. Thus,
from an econometric standpoint, the fact that the MCV-
LMS model includes imports while the CV-LS and HCV
models do not means the MCV-LMS model seems more
appropriate.

6. DISCUSSION

It is well known that conventional CV has limitations
due to its sensitivity to outliers, its requirement that second
moments exist, and its excessive sparsity in that it often
does not detect terms that make small but detectable
contributions to a response variable. Likewise, it is well
know that HCV is a viable, if underused, alternative that,
whatever its other flaws, seems to outperform CV-LS over
a wide range of settings. These include noise distributions
with tails that are heavy or asymmetric but not too heavy or
asymmetric, especially for models that do not have a large
number of small terms that contribute to the response. HCV
is also resistant to outliers, although this resistance is only
up to the point permitted by the Huber function.

However, HCV itself has limitations as well: When
the tails are too heavy or asymmetric or there are too
many outliers with enough severity, HCV does not give
results that are much better than CV-LS. Therefore, we
have proposed a different technique, MCV-LMS that seems
to overcome the two main flaws of CV but not as
well as HCV—except under more extreme conditions. In
particular, MCV-LMS is insensitive to the tail behavior of
the noise term because it does not rely on any moments
existing. Second, despite being insensitive to tail behavior,
MCYV seems more sensitive to central behavior being more
able in our simulations and data analysis to find non-sparse
models, i.e. those with numerous small influences not just
those with a few dominant terms. Overall, in contrast to
MCV-LMS, CV-LS has a tendency to lump small terms
incorrectly into the noise term. In contrast to HCV, MCV-
LMS underperforms until the setting for model selection
is complex enough. Even when MCV-LMS underperforms
HCYV, the degree of underperformance can be small (several
percentage points).

One of the other benefits of MCV is that it has useful
robustness properties. This is obvious if one recalls that
outliers in X or in Y will not contribute to the MCV error
unless over half the data points are outliers. This level
of robustness is maintained, provided the least median of
squares (or other similar estimators) are used to estimate
the parameters in the model. By contrast, it is well known
that the mean of the squared error, as commonly used in
CV and LS estimators, is unstable in comparison to the
median. Thus, even though we have not argued this in detail
except in our data analysis, MCV should work better than
CV in the presence of outliers. HCV has similar outlier
robustness properties formalized in Theorem 1 of ref. 24,
however, it likely has a breakdown point that is smaller
than MCV-LMS.

Arguably, the most important pragmatic point is to be
able to decide which of CV-LS, MCV-LMS, and HCV
to use in a given setting, especially when the conclusions
they give differ. Given our examples presented, and
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literature search, we can state our main methodological
recommendations for the use of MCV-LMS, HCV, and
CV-LS as follows.

1. Outside of very narrow settings such as light tails,
little asymmetry, and the true model consisting of
relatively few terms with large coefficients, CV-
LS should not be used. In fact, even when CV-
LS outperforms HCV, the degree of outperformance
is slight. CV-LS tends to choose models that are
systematically too small by imposing too much
sparsity.

2. HCV seems to be the preferred technique for
scenarios that have tails that are not too heavy, do
not exhibit high asymmetry, or do not have too many
small terms. As a generality, HCV imposes the least
sparsity—but its performance deteriorates as non-
sparsity increases.

3. MCV-LMS seems to be the preferred technique
when the conditions favoring HCV fail dramati-
cally enough. For instance, when the tails are heavy
enough and asymmetric enough, or there are many
small terms. When these fall below detectability,
HCV works better than MCV-LMS but for the
detectable ones MCV-LMS works better. In this
sense MCV-LMS imposes some sparsity. Moreover,
MCV-LMS seems to outperform HCV when prob-
lems with outliers are sufficiently severe.

Note that these recommendations do not consider hybrid
techniques, e.g. CV-LMS. In the simulation we did for these
cases, the results turned out to be intermediate between the
‘pure’ cases where the distance for parameter estimation
matched the distance model selection. Also, we have not
included CV methods such as those based on least absolute
deviation; we expect them to be similar to CV-LS.

In addition to these methodological recommendations,
our data analysis leads us to the following pragmatic
heuristics. First, if there is enough data that, say, ten
quantile regressions for a few plausible models can be
done to assess the deciles of a regression function (possibly
chosen by CV-LS, HCV, or MCV-LMS) then the heaviness
and asymmetry of the error term can be assessed directly.
Otherwise, suppose we are trying to do model selection over
a class of models using one of CV-LS, HCV, and MCV-
LMS. Start by examining the quantile plot from the CV-LS
model. If it looks ‘nice’ indicating a strongly unimodal,
nearly symmetric noise distribution with light tails, then
CV is a reasonable choice, provided that there is no extra
knowledge to the effect that a sparse model is unlikely to
hold. Then, we can examine the partial residual plot, or
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other plots, to ensure that any possible outliers are few and
mild. If this is so, then it is hard to imagine the MCV-
LMS model being better, although the HCV model might
be comparable.

However, if the quantile plot from the CV-LS model
suggests problems, e.g. the histogram of residuals is not
‘nice’ looking in the sense of asymmetry or heavy tails or
we have reason to doubt the validity of a sparse model or we
have evidence from residual plots of problems with outliers
then we may be led to consider MCV or HCV. In particular,
if the tails of the quantile plot seem moderately heavy
and not more than slightly asymmetric and the outliers are
not too many, and not too severe then HCV is indicated.
However, if the error term seems to have very heavy tails
and nontrivial asymmetry or the problems with outliers
seem severe enough then MCV-LMS is indicated. Finally,
if it is believed that the true model is sparse, then CV-LS
or HCV might be preferable while sufficient non-sparsity
seems to suggest the MCV-LMS model will be best.
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