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ABSTRACT

The pentraxin SAP reduces neutrophil adhesion to ECM
proteins, inhibits the differentiation of monocytes into
fibrocytes, attenuates profibrotic macrophages, acti-
vates the complement pathway, and promotes phago-
cytosis of cell debris. Together, these effects of SAP
regulate key aspects of inflammation and set a thresh-
old for immune cell activation. Here, we present a re-
view of SAP biology with an emphasis on SAP receptor
interactions and how the effect of SAP on monocytes
and macrophages has been explored to develop this
protein as a therapeutic for renal and lung injuries. We
also discuss how there remain many unanswered
questions about the role of SAP in innate immunity.
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Introduction

The mammalian immune system is organized into two arms:
innate and adaptive immunity. Innate immunity is evolu-
tionary more ancient and constitutes the first line of de-
fense against foreign pathogens [1]. In vertebrates, adaptive
immunity complements innate immunity and provides im-
munological memory [2]. Pathogen recognition molecules,
such as pentraxins, are at the core of innate immunity [3,
4]. Pentraxins recognize evolutionarily conserved pathogen
molecules, such as C-polysaccharide, regulate complement
activation, and bind apoptotic cells to initiate and synchro-
nize the immune response [4-7].

Pentraxins are a family of conserved proteins that appeared
early on during the evolution of innate immunity [8] and have
a 200-aa long pentraxin domain with a conserved pentraxin
signature (HxCxS/TWxS, where x=any amino acid) [9]. Pen-
traxins are organized into two groups: the short and the long
pentraxins. The short pentraxins are identified by their penta-
meric structure consisting of 25 kDa monomers and include
CRP and SAP (for a review on CRP, see ref. [10]). The long
pentraxins have an N-terminal domain attached to a pentraxin
domain and include PTX3, PTX4, guinea pig apexin, NPTXI,
NPTX2, and NPTXR (for reviews, see refs. [4, 9, 11, 12]).

CRP=C-reactive protein, ECM=extracellular matrix, NPTX1/2=neuronal
pentraxin 1/2, PTX3/4=pentraxin 3/4, ROS=reactive oxygen species,
SAP=serum amyloid P
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The short pentraxins CRP and SAP are pattern recognition
molecules secreted by the liver that interact with pathogens
and cell debris to promote their removal by macrophages and
neutrophils [13]. SAP binds to rough LPS, and lack of SAP
causes hypersensitivity to laboratory strains of Escherichia coli
[14]. In addition, CRP and SAP interact with components of
the complement pathway to regulate complement activation
[15, 16]. However, the regulation of the innate immune sys-
tem by SAP is not limited to its effects on the complement
pathway and phagocytosis. SAP binds directly to monocytes,
neutrophils, and macrophages to modify their activation and
alter their differentiation to modulate the immune response.

REGULATION OF NEUTROPHIL
FUNCTION BY SAP

At the onset of inflammation, neutrophils are recruited to the
damaged tissue, where they release ROS and promote clear-
ance of pathogens and cell debris. This recruitment is medi-
ated by cytokines, tissue damage, complement activation, and
changes in adhesion receptors on the surface of endothelial
cells [17-19]. The migration and activation of neutrophils are
tightly regulated by factors expressed and secreted by endothe-
lial cells and macrophages [17]. However, factors present in
plasma also affect neutrophils [17].

SAP binds to neutrophils to regulate their function
One circulating factor that regulates neutrophil accumulation
in tissues is SAP [20]. SAP binds to human and murine neu-
trophils and decreases TNF-a- and IL-8-induced neutrophil
binding to ECM components [20, 21]. SAP also reduces TNF-
a-induced human neutrophil adhesion to endothelial cells
[22]. One possible mechanism underlying the effect of SAP on
neutrophils involves SAP binding to, and thus, potentially
blocking, the adhesion receptor L-selectin on neutrophils
[22]. This is supported by the observation that adding anti-I-
selectin antibodies to human neutrophils decreases their bind-
ing to umbilical vein endothelial cells [22]. A second possible
mechanism involves SAP binding to FcyRs on neutrophils
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[23-25]. FcyRs are best known for binding IgG and in hu-
mans, include the activating receptors FcyRI, FcyRlI]a,
FcyRIIla, and FcyRIIIb and the inhibitory receptor FcyRIIb
[26, 27]. FcyRIla and FcyRIIb are expressed at high levels on
human neutrophils, and activation of FcyRIIa by SAP results
in the phosphorylation of the ITAM in the cytosolic region of
FcyRIla [28]. ITAM activation can then lead to conforma-
tional changes in adhesion receptors on neutrophils via inside-
out signaling [29]. Much remains to be investigated about the
effects of SAP on neutrophils, and most likely, this effect in-
volves a variety of receptors, including FcyRs and L-selectin.

SAP inhibits neutrophil spreading

In addition to decreasing neutrophil adhesion, SAP decreases
human neutrophil spreading, a necessary step for cell polariza-
tion and migration [20, 30-33]. Paradoxically, SAP does not
influence human neutrophil migration in response to fMLP in
a Boyden chamber [20]. This inconsistency may be a result of
the differences in the adhesion receptors used during neutro-
phil migration on matrix proteins and after stimulation with
chemotactic stimuli in a Boyden chamber. On fibronectin,
neutrophils use the 81 (VLA-4 and VLA-5) integrins to mi-
grate, whereas in an uncoated Boyden chamber, 82 (CD11b/
CD18) integrins are the key adhesion receptors [34, 35]. SAP
may act as a chemoattractant of human neutrophils, although
this finding has not been replicated [21]. Alternatively, it is
possible that the timing of stimuli (i.e., SAP) could determine
how neutrophil spreading and migration are influenced.

Indirect effects of SAP on neutrophils

Neutrophils secrete proteases, such as elastase, to degrade the
ECM and facilitate tissue infiltration (for a review, see ref.
[36]). SAP but not CRP binds to neutrophil elastase and in-
hibits its enzymatic activity [37]. This can hinder neutrophil
extravasation and the secondary damage caused by the proteo-
Iytic activity of elastase in tissues [36-40]. SAP also induces
macrophages to produce the anti-inflammatory cytokine IL-10,
which in turn, decreases TNF-a and CXCL8 production. This
then results in decreased neutrophil recruitment [23, 41-43].
These observations suggest that SAP regulates many aspects of
neutrophil biology to exert an anti-inflammatory effect and set
a threshold for neutrophil recruitment and activation (Fig. 1).
In agreement with this, we have observed that SAP injections
can decrease neutrophil accumulation in a mouse model of
acute respiratory distress syndrome [20].

SAP INHIBITS MONOCYTE-TO-
FIBROCYTE DIFFERENTIATION

Monocytes present within the blood are attracted to sites of
injury where they differentiate into macrophages, dendritic
cells, or fibrocytes [44, 45]. Fibrocytes are spindle-shaped, fi-
broblast-like cells and at least, in part, mediate tissue repair
and fibrosis (for a review, see ref. [45]). Fibrocytes have been
detected in human pathological conditions, including pulmo-

nary fibrosis, keloid scars, asthma, chronic kidney disease, and
nephrogenic systemic fibrosis [45-49]. In addition to contrib-
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Figure 1. SAP inhibits neutrophil recruitment. (A) In response to che-
moattractants, such as CXCLS8, neutrophils begin to migrate into the
tissue in a process that involves neutrophil rolling, arrest, and extrava-
sation. All of these steps are mediated by adhesion receptors on the
endothelial cells and on neutrophils. (B) In the presence of high lev-
cls of SAP, neutrophil recruitment to the tissue is reduced, as SAP-
induced IL-10 inhibits the secretion of CXCL8. SAP also reduces neu-
trophil adhesion by preventing L-selectin binding to adhesion recep-
tors on endothelial cells. SAP may further affect neutrophil adhesion
by regulating adhesion receptors on neutrophils by inside-out signal-
ing via FcyRs. In addition, SAP reduces neutrophil migration by inhib-
iting neutrophil spreading and elastase activity.

uting to the mass of fibrotic lesions, fibrocytes promote angio-
genesis, which can then promote the growth of the lesion, and
secrete TGF-B, which activates resident fibroblasts [50]. Fibro-
cyte differentiation is regulated by several factors, including
cytokines, TLR ligands, semaphorins, and hyaluronic acid [45,
51-53]. We found that when human, mouse, or rat PBMCs
were cultured in serum-free media, some of the cells became
fibrocytes after 3-5 days [54]. The fibrocytes did not appear
during this timeframe when serum was present [54]. We puri-
fied the fibrocyte differentiation inhibitor from human serum
and identified it as SAP [54]. When PBMCs were cultured in
serum that was depleted of SAP, fibrocytes appeared rapidly,
indicating that SAP is the main endogenous inhibitor of fibro-
cyte differentiation in the blood. In agreement with this, we
observed that depleting SAP from dermal wounds in pigs can
facilitate fibrocyte differentiation and scar-tissue formation
[55]. We also tested whether SAP could inhibit fibrocyte differ-
entiation and fibrosis in bleomycin-induced lung fibrosis [56].
We found that SAP injections led to reduced numbers of fi-
brocytes in the lungs and reduced fibrosis in rats and mice
and that delaying SAP injections until inflammation and fibro-
sis were already apparent could also reduce symptoms [56].
SAP inhibits fibrocyte differentiation, in part, by binding to
FcyRs [57]. In support of this, we have found that cross-linked
but not monomeric IgG inhibits fibrocyte differentiation and
that blocking the signal transduction pathway of the FcyRs
with pharmacological inhibitors blocks the ability of SAP and
cross-linked IgG to inhibit fibrocyte differentiation [58]. In
mice, deletion of the FcRvy, which is necessary for FcyRI and
FcyRIIla signaling, significantly reduces sensitivity to SAP [23,
57, 59]. However, deletions of FcyRIIb, FcyRIII, and FcyRIV
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do not affect sensitivity to SAP [57]. We found similar results
using small interfering RNA knockdowns of human receptors
[57]. However, in all cases, SAP still caused some inhibition of
fibrocyte differentiation [23, 57], indicating the presence of
additional SAP receptors on monocytes. These observations
suggest that SAP, in part, uses FcyRI and FcRy to inhibit fibro-
cyte differentiation (Fig. 2).

SAP REGULATES MURINE MACROPHAGE
POLARIZATION

Macrophages are considered one of the most important innate
effector cells (for reviews, see refs. [60—62]). Macrophages can
be classified into the classically activated macrophages (M1)
and the alternatively activated macrophages (M2) [60, 63]. M1
macrophages are induced in response to TNF-a, IFN-y, and
specific TLR agonists [60, 64]. The classically activated M1
macrophages modulate host defense against intracellular
pathogens, tumor cells, and tissue debris but are also responsi-
ble for tissue damage associated with their release of ROS [60,
63, 65-67]. M2 is a general term for several overlapping mac-
rophage subsets, which are induced in response to I1-4, IL-10,
IL-13, and SAP [23, 60, 64].The role of M2 macrophages in
the immune system is highly dependent on the activating stim-
uli (i.e., IL-10 vs. I1.-4) and the environmental context. The
alternatively activated M2 macrophages can be classified into
three main groups: immunoregulatory macrophages, profi-
brotic/wound-healing macrophages, and tumor-associated
macrophages [60, 63, 68, 69]. The hallmark of immunoregula-
tory macrophages in humans and mice is high levels of the
anti-inflammatory cytokine IL-10 and low levels of the proin-
flammatory cytokine IL-12 [60]. Wound-healing macrophages
express high levels of IL-10 and IL-12, whereas tumor-associ-
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Figure 2. SAP inhibits fibrocyte formation. (A) When SAP is present
in the tissue, as is the case in early inflammation, SAP binds to FcyRI
to inhibit fibrocyte differentiation. Deletion of the FcyRI or the FcRy
significantly reduces the inhibitory effect of SAP. (B) At late stages of
inflammation, when SAP levels are low, monocytes differentiate into
fibroblast-like cells called fibrocytes. Fibrocytes then secrete ECM com-
ponents, such as collagen and extracellular-modifying enzymes, to re-
store the architecture of the damaged tissue.
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ated macrophages are identified by their secretion of a variety
of angiogenic factors [60, 68].

SAP promotes immunoregulatory macrophages in
mouse renal injuries

In a mouse model of systemic lupus erythematosus, macro-
phages in the kidneys have elevated expression of IL-10, iNOS,
and TNF-«a [64]. IL-10 is a marker for M2 macrophages,
whereas iNOS and TNF-« are typically associated with M1 mac-
rophages [60, 64]. When the mice were injected with SAP, the
expression of the M2 markers IL-10 and arginase 1 in the kid-
ney macrophages was increased, whereas the levels of the M1
markers iNOS and TNF-a decreased [64]. This change in gene
expression involved the PISK/Akt-ERK signaling pathway and
indicates a shift toward an immunoregulatory phenotype in
macrophages [64].

In mouse models of renal fibrosis, SAP injections decreased
expression of the M1 markers Mip2a and IL-183, and the profi-
brotic M2 markers CCL17 and CCL22 on renal macrophages
[23, 60]. These changes were accompanied by a significant
increase in the levels of IL-10 [23]. In IL-10 and FcRy knock-
out mice, the effects of SAP on renal fibrosis were reduced
[23]. Together, these observations suggest that SAP, in two
different models of renal injuries, polarizes macrophages to-
ward an immunoregulatory phenotype.

SAP attenuates profibrotic macrophages in mouse
lungs

In TGF-B-driven mouse models of pulmonary fibrosis, SAP alle-
viates fibrosis, in part, through its effect on macrophages [70,
71]. In this model of pulmonary fibrosis, SAP injections de-
creased M2 markers, while increasing the M1 marker CXCL10
on pulmonary macrophages [60, 70]. This is in stark contrast
to the role of SAP in renal injuries, where it promotes immu-
noregulatory macrophages and decreases M1 macrophages.
This inconsistency may be attributed to differences that exist
in the milieu of kidneys and lungs. In support of this, similar
to TGF-B-driven pulmonary fibrosis, SAP attenuated M2 macro-
phage activation in the spore-induced allergic airway disease of
mice [60, 72]. Furthermore, in spore-induced allergic airway
disease, SAP injections increased expression of the M1 marker
IFN-v in lung macrophages, whereas not significantly altering
levels of the immunoregulatory marker IL-10 [72]. Together,
these observations suggest that SAP has a significant role in regu-
lating macrophage polarization, but the outcome is tissue-depen-
dent and at times quite different. (Fig. 3).

CONCLUDING REMARKS

SAP plays a significant role in the regulation of the innate im-
mune system by binding to FcyRs. SAP decreases neutrophils
adhesion, regulates macrophage activation, enhances phagocy-
tosis of cell debris, activates the complement pathway, and in-
hibits fibrocyte differentiation. Together, these effects of SAP
inhibit many aspects of innate immunity that contribute to in-

flammation and fibrosis. Depletion of SAP on dermal wounds
in pigs and injections of SAP in animal models of acute respi-
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Figure 3. SAP inhibits profibrotic macrophages in mice. SAP attenu-
ates profibrotic macrophages in renal and pulmonary injuries of mice
in an FcRy-mediated manner. SAP also opsonizes cell debris to pro-
mote their removal by macrophages.

ratory distress syndrome and fibrosis, as well as in patients with
pulmonary fibrosis, suggest that manipulating SAP levels may
be an effective therapeutic. Despite the variety of roles that
SAP plays in the innate immunity, little is known about the
underlying mechanism. Furthermore, it is not clear how SAP
influences the adaptive immune system. Further work will
hopefully delineate how this phylogenetically ancient protein
regulates leukocyte biology and affects human health.
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