
Introduction

Prokaryotes have evolved complicated signal
transduction mechanisms to perceive sensory information
and so facilitate their adaptation to changing
environmental conditions including changes in
temperature, pH, osmolarity and nutrient availability.
Such mechanisms frequently involve a two-component
sensory transduction system consisting of a sensor
protein that detects the environmental stimulus and a
second component that acts as a regulator controlling the
expression of particular genes, thus facilitating an
adaptive response.   

Signal transduction and gene regulation through the
phosphorylation of two regulatory components is now
recognised as one of the major global regulatory
networks in bacteria (1). However, not all types of

sensor-regulator circuits relay information via phosphoryl
transfer. Alternative signalling systems mediated by small
diffusible molecules termed autoinducers or pheromones
have long been recognised to be involved in the control of
gene expression.

Numerous signalling molecule-mediated sensing and
response pathways have now been identified and many
fall within the scope of a form of regulation which is
known as quorum sensing. 

Quorum sensing is commonly used to describe the
phenomenon whereby the accumulation of a low-
molecular-mass signalling molecule enables individual cells
to sense when the minimal population unit or ‘quorum’ of
bacteria has been achieved for a concerted action to be
initiated (2). This system relies on two major
components, a small diffusible signalling molecule which
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Abstract: It has become increasingly and widely recognised that bacteria do not live as isolated entities but instead exist as
communities that exploit elaborate systems of intercellular communication to facilitate their adaptation to changing environmental
conditions. A well-characterised example of such intercellular communication is quorum sensing. Quorum sensing depends on the
production of diffusible signal molecules termed autoinducers or pheromones, which enable a bacterium to monitor its own cell
population density. A variety of physiological processes in a range of bacterial species is regulated by quorum sensing. Examples
include bioluminescence, antibiotic biosynthesis, swarming, biofilm differentiation, conjugation and the production of virulence
determinants in animal, fish and plant pathogens. The best studied common signalling molecules found in Gram-negative bacteria
are N-acyl derivatives of homoserine lactone (acyl HSLs). In this paper, the current state of research concerning acyl HSL-mediated
quorum sensing in Gram-negative bacteria is reviewed.

Key Words: Quorum sensing, acyl homoserine lactones, bacterial signalling, gene expression

Gram-Negatif Bakterilerde Çevreyi Alg›lama

Özet: Bakterilerin izole varl›klar olarak yaflamad›klar›, de¤iflen ortam koflullar›na uyumlar›n› kolaylaflt›rmak için karmafl›k hücreler
aras› haberleflme sistemleri kullanan toplukluklar halinde bulunduklar› giderek artan bir yayg›nl›kla kabul edilmektedir. Bu tip
hücreler aras› haberleflmenin iyi karakterize edilmifl bir örne¤i, çevreyi alg›lamad›r. Çevreyi alg›lama, bir bakteriye kendi hücre
populasyon yo¤unlu¤unu izlemesine olanak veren autoinducer veya feromon olarak adland›r›lan sinyal moleküllerinin üretimine
ba¤›ml›d›r. De¤iflik bakteri türlerinde, çeflitli fizyolojik ifllemler, çevreyi alg›lama ile regüle edilir. Bu ifllemlere örnek olarak,
biyolüminesens, antibiyotik biyosentezi, biyofilm oluflumu, konjugasyon ve hayvan, bitki ve bal›k patojenleri taraf›ndan oluflturulan
virülens etkenlerinin üretimi verilebilir. Gram-negatif bakterilerde en yayg›n olarak bulunan sinyal molekülleri N-acyl homoserine
lakton türevleridir (acyl HSLs). Bu makalede, Gram-negatif bakterilerdeki acyl-HSL arac›l› çevreyi alg›lama üzerindeki araflt›rmalar›n
bugünkü durumunun bir derlemesi yap›lm›flt›r.

Anahtar Sözcükler: Çevreyi alg›lama, acyl homoserine laktonlar, bakteriyel sinyal, gen ekspresyonu



accumulates in a population density-dependent manner
and a transcriptional activator protein which, in concert
with the signalling molecule, activates the expression of
relevant genes. This review will focus on the wide range
of quorum sensing systems that employ N-acyl-
homoserine lactones (acyl HLs) as the signalling molecule.
Long thought to be unique to Vibrio fisheri and certain
closely related marine bioluminescent bacteria, it has now
become evident that acyl HLs are produced by a wide
variety of terrestrial and marine bacteria including some
Gram-positive and Gram-negative bacteria and they have
been shown to control a diverse range of cell density-
dependent factors (Table). Figure 1 illustrates the
structures of some N-acyl homoserine lactone molecules
produced by Gram-negative bacteria. Recent studies have
shown that some bacteria produce multiple AHLs, each
controlling different phenotypes. AHLs signalling was first
described in V. fisheri and has become a model for studies
of quorum sensing. This review will, therefore, begin
with quorum sensing in V. fisheri. 

Quorum sensing in V. fisheri

One of the most intensively investigated quorum
sensing systems is the regulation of bioluminescence in V.
fisheri. V. fisheri is a marine bioluminescent, facultatively
aerobic, Gram-negative bacterium which lives both as a
specific symbiont in the light organs of certain marine fish
and squid and as a free-living organism in seawater.
When at low cell density in seawater, cultures of this
bacterium appear dark. However, when at high cell
density within the light organs, the population emits light
and becomes bioluminescent (3). The animals, marine fish
and squid, use the bacterial light in a variety of luminous
displays associated with avoiding predators, locating food
and finding mates. The bacteria are provided with
nutrients for growth in a habitat free of other micro-
organisms. In V. fisheri, bioluminescence is dependent on
the accumulation of an autoinducer. The autoinducer in V.
fisheri was identified as N-(3-oxohexanoyl) homoserine
lactone (OHHL). 
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Table.  Some examples of bacterial N-acyl homoserine lactones and their associated phenotypes.

Organisms Regulated Phenotype(s) Signal molecule(s)

Aeromonas hydrophila Biofilms, exoproteases BHL, HHL

Aeromonas salmonicida Exoprotease BHL, HHL

Agrobacterium tumefaciens Plasmid conjugation OOHL

Chromobacterium violeceum Exoenzymes, cyanide, violacein HHL

Erwinia carotovora (5R)-Carbapen-2-em-3-carboxylic acid antibiotic OHHL

Erwinia carotovora (Eca) Virulence factors: protease, cellulases, pectinases OHHL

Erwinia stewartii (Est) Exopolysaccaride synthesis OHHL

Escherichia coli Cell division Unknown

Pseudomonas aeruginosa Virulence factors including rhamnolipid, BHL+OdDHL
cyanide elastase, hemolysine.

Pseudomonas aureofaciens Production of phenazine HHL

Rhizobium leguminosarum Expression of rhizosphere genes HtDeHL

Serratia spp. ATCC 39006 Carbapenem antibiotic, pigment (Prodigiosin) BHL+HHL

Serratia liquefaciens Swarming motility BHL

Vibrio fisheri Bioluminescence OHHL

Vibrio harveyi Bioluminescence HBHL

Yersinia enterocolitica Unknown HHL+OHHL

Xanthomonas campestris Extracellular enzymes and polysaccaride virulence OOHL
determinants

OHHL N-3-(oxohexanoyl)-L-homoserine lactone
BHL N-butanoyl-L-homoserine lactone     
HHL N-hexanoyl-L- homoserine lactone

OOHL N-3-(oxooctanoyl)-L-homoserine lactone  
HBHL N-3-(hydroxybutanoyl)-L-homoserine lactone

OdDHL N-3-(oxododecanoyl)-L-homoserine lactone
HtDeHL N-3R-(hydroxy-7-cis-tetradecanoyl)-L- homoserine lactone



The bioluminescence gene, lux, cluster of V. Fisheri
consists of eight genes (luxA-E, luxG, luxI and luxR)
(Figure 2) (4,5). The rightward operon contains the
genes required for autoinducer synthesis (luxI) and light
production (luxCDABEG). The product of the luxI gene
is the autoinducer synthase protein which is necessary
for the synthesis of N-(3-oxohexanoyl)-L-homoserine
lactone (OHHL) (6). The leftward operon consists of a
transcriptional activator, luxR (7). At low cell densities
luxI is transcribed at a basal level and OHHL slowly
accumulates in the medium until it reaches a sufficiently
high concentration. It is then thought to interact with
the autoinducer domain of LuxR forming a complex.
The LuxR-OHHL complex then binds to the lux
promoter region upstream of luxI, known as the lux
box, and strongly stimulates transcription of the
luxICDABEG operon (Figure 2) (8,9). This causes an
induction of luminescence and generates a positive
feedback loop, leading to further expression of luxI and
more OHHL. 

LuxR-LuxI type quorum sensing in other bacteria

Quorum sensing in Pseudomonas aeruginosa

In recent years, the micro-organism on which most
quorum sensing related studies have been initiated is P.
aeruginosa. P. aeruginosa is an important human
pathogen which is responsible for opportunistic infections
in cancer, AIDS and cystic fibrosis (CF) patients (10-12).
A wide variety of extracellular enzymes contribute to the
virulence of P. aeruginosa. These include elastase,
protease, hemolysins, exotoxin A, rhamnolipid
biosurfactants and phospholipase. These exofactors are
collectively capable of causing extensive tissue damage in
humans and other mammals (13,14). 

Regulation of the genes encoding these exoproducts is
controlled through quorum sensing systems. Unlike in V.
fisheri, in P. aeruginosa, two quorum-sensing systems
have been identified, i.e., LasR/I and RhlR/I (VsmR/I)
(15,16). Each system is comprised of (i) a specific N-acyl
homoserine lactone signal (autoinducer) and (ii) an
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Figure 1. Some of the more common microbial acyl HSLs: (A) N-(3-oxohexanoyl)-L-homoserine lactone
(OHHL): (B) N-butanoyl-L-homoserine lactone (BHL): (C) N-(3-hydroxybutanoyl)-L-
homoserine lactone (HBHL): (D) N-hexanoyl-L-homoserine lactone (HHL): (E) N-(3-
oxooctanoyl)-L-homoserine lactone(OOHL): (F) N-(3-oxodeconoyl)-L-homoserine lactone
(ODHL): (G) N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL).



autoinducer-dependent transcriptional activator (R
protein). In the las system, LuxI homologue LasI is
involved in the synthesis of the autoinducer N-(3-
oxododecanoyl)-L-homoserine lactone (OdDHL) (Table)
(17,18). LuxR homologue LasR and OdDHL is required
for the activation of virulence genes including encoding
elastase (lasB), protease (lasA), alkaline protease (apr)
and toxin A (toxA) (19). 

The discovery of a second quorum sensing-based
system revealed that quorum sensing in P. aeruginosa is
more complex than originally thought (20-22). The rhl
quorum sensing system consists of the transcriptional
activator proteins RhlR and RhlI which are responsible for
the synthesis of two autoinducers, predominantly N-
butonoyl-L-homoserine lactone (BHL) and a small amount
of N-hexanoyl-L-homoserine lactone (HHL) (Table) (23).
The rhl system regulates the production of rhamnolipids,

elastase, pyocyanin, cyanide and lipase (16,24). It has
been demonstrated that the las and rhl regulatory
systems are connected via a hierarchical cascade (25,26).

P. aeruginosa also employs quorum sensing to control
the formation of differentiated biofilms (27). Biofilm
differentiation is thought to protect the organisms from
host defences and provide increased resistance to
antibiotics. Davies et al., (28) have shown that the
production of OdDHL via LasI is necessary for the
formation of normal biofilm.

Quorum sensing in other pseudomonads

Many other species of pseudomonads possess quorum
sensing systems. One of these species is Pseudomonas
aureofaciens. P. aureofaciens produces phenazine antibiotics
which are responsible for both suppression of fungal take-all
disease of wheat and enhanced survival of this organism
within the wheat rhizosphere in competition with other
organisms (29). The production of this antibiotic is growth-
phase dependent. The phenazine antibiotic genes are
transcriptionally regulated, from at least two divergently
transcribed operons, by PhzR (a LuxR homologue). The
analysis of the regulation of phenazine production also
identified a LuxI homologue, PhzI. Together these two
proteins (PhzI/PhzR) comprise an N-hexanoyl-L-homoserine
lactone (HHL) response system. It has been shown that PhzR
activates phenazine production in conjunction with HHL
produced by PhzI via the transcriptional activation of the
phenazine biosynthetic gene phzB (30,31). 

Quorum sensing in Erwinia carotovora

E. carotovora is an opportunistic phytopathogen that
causes soft-rot in several plant species (32). It is of
economic importance due to the diseases it causes in
numerous commercial crop plants such as the potato,
carrot, turnip, celery, cucumber, onion and pineapple. 

The pathogenicity of E. carotovora depends on its
ability to produce large quantities of exoenzymes,
including pectate lyases (Pels), pectin lyases, cellulases
(Cels) and proteases (Prts), that enable them to macerate
the parenchymatous tissue of plants (33,34). The
production of enzymes by only a few cells would not have
an effect on the plant tissue, and more likely, it would
elicit a defence reaction from the plant host. Therefore, it
is crucial that the timing of exoenzyme production by E.
carotovora is tightly regulated in order to evade and
overcome these defences. 
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Fig. 2. The regulation of bioluminescence in Vibrio fisheri.

A) At low population density, luxR and luxI are transcribed at
a low level and there is insufficient accumulation of OHHL.

B) When the intracellular concentration of OHHL reaches a
certain threshold, an OHHL-LuxR complex activates
transcription of the luxICDABE operon resulting increased
levels of OHHL and bioluminescence. 



The quorum sensing component of exoenzyme
regulation can provide information regarding population
density and contribute to the coordinate control of the
genes in the exoenzyme regulon(s). Regulation through
quorum sensing relies on the LuxRI homologues ExpR
and ExpI. ExpI is responsible for the synthesis of the
pheromone OHHL and inactivation of expI leads to a
down regulation of exoenzyme biosynthesis in E.
carotovora and the subsequent loss of virulence (35,36).
In contrast, the interruption of expR has no significant
effect upon virulence, exoenzyme synthesis or OHHL
production. Interestingly, the overproduction of expR
results in decreased exoenzyme production and this is
relieved by additional exogenous OHHL (37). These
findings have led to the proposal that ExpR might act as
a repressor of exoenzyme synthesis by sequestering the
level of OHHL.

In addition to the agricultural importance of Erwinia
spp., some strains of Ecc have been found to produce a
simple b-lactam antibiotic, 1-carbapen-2-em-3-carboxylic
acid (carbapenem) (38). Production of this antibiotic is
thought to increase the organism’s fitness for survival in
the rhizosphere by reducing the number of antibiotic-
sensitive competitor bacteria (39). 

The commercial potential of this natural b-lactam and
the genetic tractability of Ecc initiated molecular genetic
studies of carbapenem production in this organism. One
such molecular genetic study of an Ecc carbapenem
mutant has led to the identification of a novel cluster of
eight genes (carA-H) responsible for the production of
carbapenem (40). Molecular genetic analysis suggests
that the first five genes in the cluster, carABCDE, are
required for antibiotic biosynthesis. The next genes in the
cluster, carF and carG, encode a carbapenem resistance
mechanism (41). The function of CarH is unknown.

The car cluster is located immediately downstream
from the carR gene. The product of this gene has been
demonstrated to be a member of the LuxR-type family of
transcriptional activators (37). Like most of the LuxR
family regulators, CarR relies on a pheromone signalling
molecule for its function . The major pheromone in Ecc
has been identified as N-(3-oxohexanoyl)-L-homoserine
lactone (OHHL), which is the same molecule as that
responsible for the autoinduction of bioluminescence in V.
fisheri. This molecule is produced by the unlinked carI
gene in a cell-density-dependent manner and results in
the cell-density- dependent expression of the car genes
via carR. 

Quorum sensing in other Erwinia spp.

It has been found that strains of E. carotovora subsp.
atroseptica, E. herbicola and E. chrysanthemi produce
various different acyl HSLs. The expI gene product is
responsible for the synthesis of OHHL, HHL and DHL.
Like Ecc, a luxR homologue is located adjacent to expI
(42,43).

E. stewartii is the etiological agent of Stewart’s wilt
of corn. The pathogenesis of E. stewartii is correlated
with the ability to produce large amount of extracellular
polysaccaride (EPS). The production of EPS is controlled
by quorum sensing (44). Two genes, esaR and esaI,
encode regulatory proteins. EsaI has been shown to be
responsible for OHHL production and EsaR is the cognate
gene regulator. It has been recently reported that strains
containing an esaR mutation produce high levels of EPS
in the absence of OHHL. This indicated that in E. stewartii
EsaR functions as a repressor, in contrast to most other
LuxR homologues (45).

Quorum sensing in Agrobacterium tumefaciens

A. tumefaciens is a Gram-negative soil bacterium
that causes crown gall tumours in plants via the transfer
of oncogenic DNA to the nucleus of its host. The major
virulence determinant of A. tumefaciens is a large plasmid
known as the tumour inducing, Ti, plasmid. Upon
infection, a region of the Ti plasmid, the T-DNA, is
transferred from A. tumefaciens to the plant cell where it
is integrated into the nuclear genome (2,46,47). 

The Ti plasmid, tra, genes are positively regulated by
the quorum sensing proteins TraR and TraI, which are
homologues of LuxI/LuxR, in conjunction with a diffusible
compound N-3-(oxooctanoyl)-L-homoserine lactone (AAI)
(48,49). The second regulatory determinant is TraM
(product of the traM gene), which inhibits the activation
of tra genes by TraR and AAI (2). This is thought to be a
mechanism whereby TraM sequesters TraR, preventing
TraR-mediated AAI induction at low cell density, until the
appropriate environmental conditions arise (50). 

In addition to the oncogenes, the T-DNA carries
genes for biosynthesis of opines which can be utilised by
A. tumefaciens as a sole carbon source enabling a
competitive advantage over other soil bacteria. The
opines function as signals to induce conjugation and
different opines induce different genes. Only when the
respective opines are present does expression of the tra
genes take place. For example, the transcriptional
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activator OccR activates the occ operon in the presence of
octopine and this leads to traR expression (51,52).

Quorum sensing in Rhizobium leguminosarum

Species of Rhizobium sustain symbiotic relationships
with leguminous plants via the formation of nitrogen-
fixing nodules on roots (53,54). In Rhizobium spp. most
of the genes required for legume nodulation (nod) and
symbiotic nitrogen fixation (nif) are often encoded on
large, so-called symbiotic (Sym) plasmids. The Sym
plasmid pRL1JI contains a transcriptional activator, RhiR,
that is homologous to LuxR in V. fisheri. This LuxR
homologue activates the rhiABC operon. The protein
products of these genes are strongly expressed in the
rhizosphere around legume roots, but not within legume
nodules (55). The activation of rhiABC genes is dependent
on a homoserine lactone made by RhiI. RhiI, the LuxI
homologue, has been identified very recently and shown
to be regulated by RhiR in a cell-dependent fashion
(56,57). Flavonoids which induce nod gene expression
repress rhiI expression. This suggests that the plant can
influence the level of homoserine lactone production.

Acyl HSL-based quorum sensing in other Gram-
negative bacteria

Many other bacterial species utilise quorum sensing
for the regulation of specific phenotypes. Two fish
pathogens, Aeromonas hydrophia and Aeromonas
salmonicida, possess LuxRI homologues termed AhyRI
and AsaRI respectively (58). Another fish pathogen,
Vibrio anguillarum, express the LuxRI homologue VanRI
(59). Burkholderia cepacia is commonly associated with
lung infections of CF patients and express LuxRI
homologues CepR and CepI, which are involved in the
production of siderophore and protease (60). In
Chromobacterium violaceum, purple pigment, chitinolytic
activity, antibiotic and virulence factor production are all
regulated by HHL (61,62). Many species belonging to the

genus Yersinia including Y. enterocolitica, Y. pestis, and
Y. pseudotuberculosis express quorum sensing systems
(63-65). The opportunistic human pathogen Serratia
marcescens makes the red pigment, prodigiosin, and
carbapenem antibiotic and the production of these is
regulated via a quorum sensing system (66,67).
Xenorhabdus nematophilus is a major insect pathogen
that utilises an acyl HSL-based quorum sensing system.
HBHL has been shown to play a key role in the
development of virulence by X. nematophilus (68).

Concluding remarks

The discovery that bacteria are able to communicate
with each other changed our general perception of many
single, simple organisms in our world. Understanding
how bacterial cells communicate with each other has a
number of important practical implications for the control
of pathogen organisms, and for the screening and
exploitation of bacteria that produce antibiotics and other
high value products. Since many important plant and
animal pathogens use quorum sensing to regulate
virulence, strategies intended to interfere with their
signalling systems will likely have many potential
applications. The disruption of signalling systems offers
an opportunity to prevent the bacteria from responding
to the signal and thereby prevent the expression of
virulence factors. Biotechnological research is now
focused on the development of AHL antagonists. In
medicine, such molecules have a potential use as
antimicrobial drugs. Similarly, in agriculture, AHL
antagonists could protect crops from damage caused by
pathogens such as E. carotovora. In biotechnology,
quorum sensing could be used to control fermentation
processes either by triggering early production of a
desired metabolite or by making the onset of synthesis of
a toxic product dependent on the addition of an
exogenous AHL.
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