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Abstract
Multiple Sclerosis (MS) is the most common cause for permanent disability in young adults. 
Current pathophysiological understanding has identified an autoaggressive immune reaction 
with infiltration of immune cells into the central nervous system and local inflammatory and 
demyelinating reactions. The current therapy focuses on a modulation or suppression of 
immune functions. Sphingolipids, main components of nervous tissue, have been linked to MS 
already 60 years ago with the description of an unusual myelin lipid distribution in diseased 
patients. There is tremendous information developing on the role of different sphingolipids 
in MS. Antibodies against sphingomyelin, sulfatide or galacosylceramide have been detected 
in serum or CSF of MS patients, although up to now, this knowledge did not find its way into 
clinical use. Ceramide and the enzymes linked to its production have been described to play a 
pivotal role in oligendrocyte damage and demyelination. Nowadays, especially sphingosine-
1-phosphate (S1P) is in the focus of pathophysiological research and therapy development. 
A S1P analogue, FTY720, is a widely distributed therapy against relapsing-remitting MS, 
attenuating the emigration of activated, autoreactive lymphocytes from lymph nodes, thereby 
preventing new inflammatory infiltration into the central nervous system. Beside, there is more 
and more evidence, that especially S1P receptors on oligodendrocytes and astrocytes are 
involved in demyelination processes and subsequent axonal degeneration, important features 
of chonic progressive MS disease course. Further information and research on the manifold 
role of sphingolipids are needed to prepare the ground for further clinical trials. This review 
focuses on the current knowledge of the role of sphingolipids in MS and describes the current 
therapeutical implications.
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Features of Multiple Sclerosis

Multiple Sclerosis (MS) is a frequent course of disability in the younger age. The 
prevalence in Western countries ranges from 100 to 120 per 100.000 with a clear 
predominance of females. A recent metaanalysis has identified an increase in incidence and 
prevalence of MS over the last years [1]. 

Initially, 85-90 % of the patients suffer of a relapsing-remitting disease course, whereas 
in the later stages, secondary chronic progressive disease course is more prevalent [2]. It has 
been assumed for a long time that early conversion to a chronic progressive disease course 
is a predictor for a severe disability. Clinical disease severity is worldwide categorized by 
the expanded disability status scale (EDSS), ranging from 0 to 10, indicating lower disability 
by lower scores. Recent information points towards an equal disease progression after 
reaching EDSS 4 and even more important this progression then is independent from the 
initial disease course. The estimated reduction of lifespan varies between 6 and 12 years [3]. 

Although research efforts brought MS to a treatable disease, the aetiology is still 
unclear. There are variations in MS epidemiology in different areas of the world, which might 
be caused by genetic and environmental factors. The long assumed relationship between 
latitude and MS prevalence is currently under discussion [1, 4].

The most widely accepted view regarding the pathogenesis implicates a cellular 
immune process as central mechanism. This is supported by histopathological observations 
of activated T cells present in the perivascular spaces and the parenchyma in early 
disease phases [5-7]. MS is pathologically characterized by infiltration of lymphocytes and 
macrophages into the central nervous system (CNS) parenchyma. Demyelined plaques and 
associated astrocytic scars are the result of local inflammation and the major pathological 
characteristics of the disease [8-10]. 

Most of the pathophysiological understanding of MS biology has been gained by 
studies of its animal model, the experimental autoimmune encephalomyelitis (EAE). EAE 
can be induced by both, active immunization with myelin components, representing disease 
initiation together with CNS effector phase or by passive transfer of in vitro activated myelin-
specific T cells, selectively representing the later CNS effector phase [11-13]. 

T cell priming and myelin-specific expansion occurs within systemic immune 
compartments and is initiated by immunization with myelin antigens. Recently, it has been 
shown that lymphocyte activation and transition to migratory subtypes occurs in the lungs 
and is a pre-requisite for immigration into the CNS parenchyma [14].

Migration of T cells across the blood brain barrier (BBB) is a complex multi-step 
process and occurs via interactions between complementary adhesion molecules found on 
the surfaces of lymphocytes and endothelial cells [15].

T cells, circulating in the peripheral blood, slow down due to the contact between 
distinct adhesion molecules on their surface and on CNS endothelial cells. In EAE and MS, T 
cells roll via the interaction of α4-integrins and P-selectin glycoprotein ligand 1 [16]. 

Thereafter, homeostatic chemokines, such as CCL19 and CCL21 are produced by 
endothelial cells and are assumed to mediate T cell activation during EAE [17, 18]. Intravital 
microscopy studies of T cell interaction with brain microvasculature suggest that signaling 
through G-protein-coupled receptors might be essential for the integrin activation and 
subsequent firm arrest of the myelin-specific T cells to the endothelial cells [19]. This T cell 
activation step is then followed by a firm adhesion, crawling against the blood stream and 
final transmigration of the lymphocytes [20]. In several studies the intercellular adhesion 
molecule-1 (ICAM-1) and the vascular cell adhesion molecule-1 (VCAM-1) expressed on CNS 
microvascular endothelial cells and their respective T cell ligands, the leukocyte function-
associated molecule-1 (LFA-1) and the α4β1 integrin were identified to play crucial roles in 
the transmigration step during EAE [21, 22]. 

After immigration, T cells accumulate within enlarged perivascular spaces, where they 
potentially encounter their specific antigens (e.g. myelin components) presented in the 
context of major histocompatibility complex class II on the surface of antigen presenting 
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cells such as perivascular dendritic cells [23]. This results in a re-activation of the T cells 
involving further molecules (CD40, CD80/86 and CD134) [24, 25]. This antigen-triggered 
re-activation, then, enables T cells to transverse the glia limitans into the CNS parenchyma. 
Regarding this final passage through the glia limitans, it has been shown that the matrix 
metalloproteinases (MMPs) 2 and 9 are necessary for cleavage of dystroglycan, a protein that 
anchors astrocyte endfeet to the basal membrane. In the absence of MMP2 and 9, the cells 
cannot pass through the glia limitans into the brain parenchyma [26].

Once immigrated into the CNS parenchyma, T cells can activate local microglia, leading to 
the production of vasoactive substances, chemokines and cyto- and myelinotoxic cytokines, 
which further attracts peripheral leukocytes and progressively damages brain tissue [27]. 
This CNS damage is a complex multicausal process including oxidative stress and insufficient 
remyelination [28, 29]. 

Sphingolipids in MS pathophysiology 

Sphingolipids are widely distributed in the nervous tissue. Especially glycosphingolids 
are major components of oligodendrocytes’ plasma membranes and myelin. First ideas of 
a possible involvement of sphingolipids in MS go back to Cumings and Goodwin [30], who 
described an altered sphingolipid content in MS brains. This has been recently confirmed by 
electrospray ionization mass spectrometry analysis of MS lesions [31]. Beside, this idea is 
constantly strengthened by further signs of sphingolipid contribution, e.g., the observation 
that sphingolipid antibodies, e.g. against sphingomyelin, sulfatide and galatosylceramide 

Fig. 1. Schematic overview of the main changes de-
scribed in this review: In secondary lymphoid or-
gans, binding of FTY720 to the sphingosine-1-phos-
phate receptor 1, leads to a receptor internalization, 
which results in reduced migration and trapping 
of lymphocytes in the secondary lymphoid organs. 
This is the only approach that currently managed to 
translate into clinic use. Activated immune cells traf-
ficking in the blood compartment express adhesion 
molecules e.g. for their adhesion and transmigration 
through the blood-brain-barrier to gain access into 
the central nervous system. There are several hints 
that adhesion molecules can increase and activate 
the sphingomyelin cleaving enzymes neutral and 
acid sphingomyelinase, leading to an increase of 
ceramide levels. The main pathological happenings 
during MS take place in the central nervous system. 
It has been described that ceramide can induce oxi-
dative stress, which in a vicious circle can activate 
neutral sphingomylinase, again leading to increased 
ceramide levels. Beside, the derivative ceramide-
1-phosphate can induce the production of phospho-
lipase A2, a prominent inductor of inflammatory re-
actions. More and more information strengthen the 
importance of sphingosine-1-phosphate receptors 
also in the central nervous system. Especially sphin-
gosine-1-phosphate receptors 1 and 5 have been in-
dentified as critical receptors for demyelination.
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have been detected in MS serum and cerebrospinal fluid [32-35] and the detection of 
ceramide accumulation [36] or up-regulation of sphingosin-1-phosphate receptors 1 and 
3 in active MS lesions [37]. Thereby, a mechanistical role of most sphingolipids has only 
been investigated in general basic science research but has neither been transferred to MS-
specific aspects nor translated to treatment of patients. 

The glycosphingolipid α-galatosylceramide has been described to prevent EAE 
development, as it activates invariant natural killer T (iNKT) cells, which can either promote 
or suppress immune responses and e.g. skew T cell responses towards Th2 cytokine 
production [38]. This protection was mediated by a cooperative interaction between iNKT 
cells and myeloid derived suppressor cells (e.g. spleen and bone marrow derived myeloid 
progenitor cells) with contribution of different cytokines such as interleuktin-4, interferon- 
 by iNKT cells and interleukin-10, inducible NO synthase and arginase-1 by myeloid-derived 
suppressor cells [39]. 

The phosphosphingolipid, sphingomyelin has been described to be beneficial in brain 
vulnerability to oxidative stress, a main feature in MS pathophysiology, where the generation 
of reactive oxygen species, by e.g. activated macrophages or microglia is pivotal for 
oligodendrocyte and myelin damage. Increasing amounts of sphingomyelin have been shown 
to protect murine hippocampal nerve cells (HT22) towards oxidative stress. Conversely, 
treatment of stress-resistent HT22H2O2 cells with SMase abolished stress resistance [40]. 

Ceramide metabolite ceramide 1-phosphate mediates the activation of phospholipase 
A2, which is a key player in inflammatory processes [41]. Demyelination by oligodendrocyte 
injury is one of the key findings in MS pathophysiology. Interestingly, ceramide immunoactivity 
has been detected in astrocytes, but not macrophages or microglia, surrounding active lesions 
in brains of post-mortem MS patients as wells as in cuprizone treated mice, which mimics 
the demyelinating processes. Thereby, an up-regulation of the de novo ceramide synthesis 
pathway via serine palmitoyltransferase has been detected, while sphingomyelinases’ levels 
stayed unchanged [36].

The production of reactive oxygen species by e.g. activated macrophages or microglial 
cells contributes to oligodendrocyte and myelin damage. Ceramide can significantly increase 
reactive oxygen species liberation in hippocampal glial cells, thereby contributing to oxidative 
stress reactions [42]. Beside, T cells from MS patients, expressing natural killer cell receptor 
were resistant to alpha-galactosylceramide stimulation [43].

In human oligodendrocytes, it has been shown that reactive oxygen species (ROS) 
can induce production of ceramide and activation of neutral sphingomyelinase (NSMase). 
Moreover, by antisense knockdown of NSMase oxidative-stress induced apoptosis in human 
oligodendrocytes is ablated [44]. A Belgian study suggested NSMase as possible new marker 
candidate for MS [45]. In addition, studies with Jurkat T lymphocytes showed that cell 
stimulation via L-selectin led to an activation of nSMase and subsequent release of ceramide, 
followed by a capping of L-selectin receptor. Thereby, shedding of L-selectin was dependent 
on the function of nSMase [46]. 

The NSMase sibling enzyme, acid sphingomyelinase (ASMase) has for a long time 
been linked to death receptor or stress induced signalling pathways [47, 48]. It has been 
shown that aSMase is required for protection of memory T cells against cell death induced 
by glucocorticoids, a widely used MS relapse treatment. This effect is mediated by the 
supportive role of aSMase for interleuktin-2 secretion, important for T cell proliferation and 
survival [49]. There are several links of aSMase to immune functions: aSMase is activated 
upon stimulation of e.g. CD28, CD40, important T and B cell co-stimulatory receptors or 
leukocyte adhesion molecule LFA-1 [50-52]. Conversely, LFA-1, can also trigger the release of 
ceramide, possibly via aSMase [53]. Interestingly, the ASMase functional inhibitor, fluoxetin 
has been successfully demonstrated to reduce MRI lesion progression in a clinical trial with 
MS patients [54].

However, sphingosin-1-phosphate (S1P) is currently the only sphingolipid molecule 
that has gained access into clinical approaches with its non-selective S1P receptor modulator 
FTY720. FTY720 has been approved as the first oral MS medication 4 years ago [55]. In 
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two large multicentre trials (FREEDOMS [56] and TRANSFORMS [57]), FTY720 was shown 
to reduce the relapse rate by 60%. FTY720 targets S1P receptors 1, 3, 4 and 5 on T cells. 
Especially the effect on S1P receptor 1 results in receptor internalization and a redistribution 
of T cells to secondary lymphoid organs with subsequent reduction of circulating auto-
aggressive lymphocytes [58]. But, S1P receptors do also play a role in the CNS. Astrocytes as 
well as oligodendrocytes express S1P receptors (S1PR), whereat S1PR5 is more prominent 
on oligodendrocytes than S1PR1 > S1PR2 > S1PR3, while S1PR3 is higher on astrocytes than 
S1PR1 > S1PR2 > S1PR5 [59]. Interestingly, astrocytic S1PR1 deficiency reduced astrogliosis 
and EAE [55]. Beside, FTY720 due to its lipophilic structure can cross the blood-brain-barrier 
and even higher drug levels are achieved in CNS than in blood [59]. 

FTY720 treatment limited astrocyte-related inflammatory cytokine secretion and 
treatment prior to TNFα stimulation of human MS lesion-derived astrocytes, reduced 
ceramide production and expression of ASMase mRNA and subsequent monocytic 
transendothelial migration [60]. 

Especially S1PR5 on oligodendrocytes is discussed to be involved in CNS demyelination 
and axonal degeneration [61-62], major features of chronic progressive MS disease courses. 
The possibility of a recycling of S1P to ceramide in oligodendrocytes has been recently 
demonstrated [63]. 

These hints are the basis of a phase III clinical trial, investigating the effect of Siponimod, 
a S1P1 and S1P5 analogue in the chronic progressive disease course of MS [64]. Beside, no 
further results on sphingolipid involvement in MS have been translated to a clinical relevant 
step. 

Conclusion

Sphingolipids are multifaceted molecules and current research has identified important 
impact on different pathophysiological steps in MS. Nevertheless, only the S1P receptor 
mechanism on lymphocytes has been successfully translated into clinical use by the analogue 
FTY720. The investigation of more detailed modes of actions and understanding of their 
functions is needed in order to better elucidate if sphingolipids are really key players in MS 
pathophysiology.
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